

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Regularization + Neural Networks

Matt Gormley Lecture 11 Feb. 20, 2019

Reminders

- Homework 4: Logistic Regression
 - Out: Fri, Feb 15
 - Due: Fri, Mar 1 at 11:59pm
- Midterm Exam 1
 - Thu, Feb 21, 6:30pm 8:00pm
- Today's In-Class Poll
 - http://p11.mlcourse.org
- HW3 grades published
- Crowdsourcing Exam Questions

NON-LINEAR FEATURES

Nonlinear Features

- aka. "nonlinear basis functions"
- So far, input was always $\mathbf{x} = [x_1, \dots, x_M]$
- **Key Idea:** let input be some function of **x**
 - $\begin{array}{lll} & \text{original input:} & \mathbf{x} \in \mathbb{R}^M \\ & \text{new input:} & \mathbf{x}' \in \mathbb{R}^{M'} \end{array} \text{ where } M' > M \text{ (usually)} \\ \end{array}$

 - define $\mathbf{x}' = b(\mathbf{x}) = [b_1(\mathbf{x}), b_2(\mathbf{x}), \dots, b_{M'}(\mathbf{x})]$

where $b_i: \mathbb{R}^M \to \mathbb{R}$ is any function

Examples: (M = 1)

$$b_j(x) = x^j \quad \forall j \in \{1, \dots, J\}$$

radial basis function

$$b_j(x) = \exp\left(\frac{-(x-\mu_j)^2}{2\sigma_j^2}\right)$$

sigmoid

$$b_j(x) = \frac{1}{1 + \exp(-\omega_j x)}$$

log

$$b_j(x) = \log(x)$$

For a linear model: still a linear function of b(x) even though a nonlinear function of

Examples:

X

- Perceptron
- Linear regression
- Logistic regression

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial

basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial

basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial

basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial

basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + \mathbf{b}$ where f(.) is a polynomial

basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{\theta_0}$	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
$ heta_4$				-231639.30
$ heta_5$				640042.26
$ heta_6$				-1061800.52
$ heta_7$				1042400.18
$ heta_8$				-557682.99
$ heta_9$				125201.43

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

Same as before, but now with N = 100 points

Χ

REGULARIZATION

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when k is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

- Suppose we wish to predict Google's stock price at time t+1
- What features should we use? (putting all computational concerns aside)
 - Stock prices of all other stocks at times t, t-1, t-2, ..., t - k
 - Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets

S&P 500 (1950-2016)

 Do we believe that all of these features are going to be useful?

Motivation: Regularization

 Occam's Razor: prefer the simplest hypothesis

- What does it mean for a hypothesis (or model) to be simple?
 - small number of features (model selection)
 - small number of "important" features (shrinkage)

Regularization

Chalkboard

- L2, L1, Lo Regularization
- Example: Linear Regression

Regularization

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As λ increases, the minimum of J'(θ) will move...

- A. ... towards the midpoint between $J'(\theta)$ and $r(\theta)$
- B. ...towards a theta vector of negative infinities
- C. ...towards a theta vector of positive infinities
- D. ... towards the minimum of $J'(\theta)$
- E. ... towards the minimum of $r(\theta)$

Regularization Exercise

In-class Exercise

- 1. Plot train error vs. regularization weight (cartoon)
- 2. Plot test error vs . regularization weight (cartoon)

Regularization

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As we increase λ from 0, the the validation error will...

- A. ...increase
- B. ...decrease
- C. ... first increase, then decrease
- D. ... first decrease, then increase
- E. ... stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

- For this example, we construct nonlinear features (i.e. feature engineering)
- Specifically, we add
 polynomials up to order 9 of
 the two original features x₁
 and x₂
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum a-posteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

- 1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features are require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4. Regularization** and **MAP estimation** are equivalent for appropriately chosen priors

Feature Engineering / Regularization Objectives

You should be able to...

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Explain why we should not regularize the bias term
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas

Neural Networks Outline

Logistic Regression (Recap)

Data, Model, Learning, Prediction

Neural Networks

- A Recipe for Machine Learning
- Visual Notation for Neural Networks
- Example: Logistic Regression Output Surface
- 2-Layer Neural Network
- 3-Layer Neural Network

Neural Net Architectures

- Objective Functions
- Activation Functions

Backpropagation

- Basic Chain Rule (of calculus)
- Chain Rule for Arbitrary Computation Graph
- Backpropagation Algorithm
- Module-based Automatic Differentiation (Autodiff)

NEURAL NETWORKS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1. Explore a new class of decision functions (Neural Networks)
 - 2. Consider variants of this recipe for training

2. choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Train with SGD:

ke small steps
opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Linear Regression

Logistic Regression

Logistic Regression

Logistic Regression

Perceptron

