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Reminders

• Homework 4: Logistic Regression

– Out: Fri, Feb 15

– Due: Fri, Mar 1 at 11:59pm

• Midterm Exam 1

– Thu, Feb 21, 6:30pm – 8:00pm

• Today’s In-Class Poll

– http://p11.mlcourse.org

• HW3 grades published

• Crowdsourcing Exam Questions
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NON-LINEAR FEATURES
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Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define 

• Examples: (M = 1)

5

For a linear model: 
still a linear function 
of b(x) even though a 
nonlinear function of 
x
Examples:
- Perceptron
- Linear regression
- Logistic regression



Example: Linear Regression

6x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise
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Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen



Polynomial Coefficients   

Slide courtesy of William Cohen
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Example: Linear Regression

16x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

Same as before, but now 
with N = 100 points

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise



REGULARIZATION

17



Overfitting
Definition: The problem of overfitting is when 
the model captures the noise in the training data 
instead of the underlying structure 

Overfitting can occur in all the models we’ve seen 
so far: 
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)
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Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict 

Google’s stock price at time t+1 
• What features should we use?

(putting all computational concerns 
aside)
– Stock prices of all other stocks at 

times t, t-1, t-2, …, t - k
– Mentions of Google with positive / 

negative sentiment words in all 
newspapers and social media outlets

• Do we believe that all of these 
features are going to be useful?
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Motivation: Regularization

• Occam’s Razor: prefer the simplest 
hypothesis

• What does it mean for a hypothesis (or 
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features 

(shrinkage)
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Regularization

Chalkboard
– L2, L1, L0 Regularization
– Example: Linear Regression
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Regularization
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Question:
Suppose we are minimizing J’(θ) 
where

As λ increases, the minimum of J’(θ) 
will move…

A. …towards the midpoint between 
J’(θ) and r(θ)

B. …towards a theta vector of negative 
infinities

C. …towards a theta vector of positive 
infinities

D. …towards the minimum of J’(θ) 
E. …towards the minimum of r(θ)



Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot test error vs . regularization weight (cartoon)
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Regularization
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Question:
Suppose we are minimizing J’(θ) 
where

As we increase λ from 0, the the 
validation error will…

A. …increase
B. …decrease
C. …first increase, then decrease
D. …first decrease, then increase
E. …stay the same



Regularization
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Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by !" -- that is, the parameter for which 
we fixed #" = 1

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its 

mean and dividing by its variance
• For regularization, this helps all the features be penalized 

in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



Example: Logistic Regression
• For this example, we 

construct nonlinear features 
(i.e. feature engineering)

• Specifically, we add 
polynomials up to order 9 of 
the two original features x1
and x2

• Thus our classifier is linear in 
the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized in 
low-dimensions (i.e. the 
original two dimensions)

31

Training 
Data

Test
Data



Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Regularization as MAP

• L1 and L2 regularization can be interpreted 
as maximum a-posteriori (MAP) estimation 
of the parameters

• To be discussed later in the course…
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Takeaways

1. Nonlinear basis functions allow linear 
models (e.g. Linear Regression, Logistic 
Regression) to capture nonlinear aspects of 
the original input

2. Nonlinear features are require no changes 
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are 

equivalent for appropriately chosen priors
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Feature Engineering / Regularization 
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and 

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to 

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly 

separable dataset in higher dimensions
• Describe feature engineering in common application 

areas
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Neural Networks Outline

• Logistic Regression (Recap)
– Data, Model, Learning, Prediction

• Neural Networks
– A Recipe for Machine Learning
– Visual Notation for Neural Networks
– Example: Logistic Regression Output Surface
– 2-Layer Neural Network
– 3-Layer Neural Network

• Neural Net Architectures
– Objective Functions
– Activation Functions

• Backpropagation
– Basic Chain Rule (of calculus)
– Chain Rule for Arbitrary Computation Graph
– Backpropagation Algorithm
– Module-based Automatic Differentiation (Autodiff)
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NEURAL NETWORKS
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A Recipe for 
Machine Learning

1. Given training data:
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Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 

And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Perceptron
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)


