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Reminders

Homework 4: Logistic Regression
— Out: Fri, Feb 15

— Due: Fri, Mar 1 at 11:59pm

Midterm Exam 1

— Thu, Feb 21, 6:30pm - 8:00pm

Today’s In-Class Poll
— http://p10.micourse.org

Reading on Probabilistic Learning is reused
later in the course for MLE/MAP




Outline

Midterm Exam Logistics
Sample Questions

Classification and Regression:
The Big Picture

Q&A



MIDTERM EXAM LOGISTICS



Midterm Exam

 Time/Location

— Time: Evening Exam
Thu, Feb. 21 at 6:30pm - 8:00pm

— Room: We will contact each student individually with your room
assignment. The rooms are not based on section.

— Seats: There will be assigned seats. Please arrive early.

— Please watch Piazza carefully for announcements regarding room / seat
assignments.
* Logistics
— Covered material: Lecture 1 - Lecture 8
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review prior year’s exam and solutions
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Midterm

* Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important COnCEPtS — Linear Regression

— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions

1.4 Probability

Assume we have a sample space (). Answer each question with T or F.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

P(A)P(B|A)
P(A|B)

(b) [1 pts.] T or F: P(A|B) . (The sign ‘o’ means ‘is proportional to’)



Sample Questions




Sample Questions




Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D® and D® where DO = {(z\", y{"), .., @, yi")}
and D@ = {(? 4, . (@, y)} such that 2" € R%, 2/* € R%. Suppose d; > ds

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.



Sample Questions

(8) OM nnd new rogrossion Hoes, (b) OM and new rogression Enes. () OM nod now regression lines.




Sample Questions

'7"" /l"’-'-'-"’ '/r"'m.

(a) OM nnd now rogrossion o, (B) OM and new rogression B () Ol nod now regression lines.




Sample Questions

(8) OM nnd new rogrossion Hoes, (b) OM and new rogression Enes. () OM nod now regression lines.




Sample Questions

]

./1 . T—" ‘/q

(8) OM nnd new rogrossion Hoes, (b) OM and new rogression Enes. () OM nod now regression lines.




Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (h@(X(i)) _ y(i))
he(x) = p(y|z)

2. Least Mean Squares 5. 0. B + 1
ho(x) = 6"x F T T exp Ao (x@) — y®)

3. Perceptron 6.

()Y _ ()Y, (D)
he(x) = sign(HTX) O < Ok + A(ho (X)) — 4™y,

A. 1=5, 2=4, 3=6 E. 1=6, 2=6, 3=6
B. 1=5, 2=6, 3=4 F.1=6, 2=5, 3=5
C.1=6, 2=4, 3=4 G. 1=5, 2=5, 3=5

D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6
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Q&A



MULTINOMIAL LOGISTIC
REGRESSION






Multinomial Logistic Regression
Chalkboard

— Background: Multinomial distribution
— Definition: Multi-class classification

— Geometric intuitions

— Multinomial logistic regression model
— Generative story

— Reduction to binary logistic regression
— Partial derivatives and gradients

— Applying Gradient Descent and SGD

— Implementation w/ sparse features



Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

Buggy Program:

while not converged:
for i in shuffle([1,..,N]):
for k in [1,..,K]:
theta[k] = theta[k] - lambda * grad(x[i], y[i],
theta, k)

Assume: grad(x[i], y[i]l, theta, k) returnsthe gradient of the negative
log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k].
Llambda is the learning rate. N = # of examples. K = # of output classes. M = # of
features. thetais a Kby M matrix.



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(O,*f




Feature Engineering

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al,,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning

35



Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Look-up table Classifier
input embeddin ..

(context words) g > missing word

unsupervised

learning

similar words, cat: | o.11 | .23 .45
similar embeddings

dog:| 013 | .26 -.52

CBOW model in Mikolov et al. (2013)

Zhou et al,,
2005 Word /
@) embeddings
O Mikolov et al.,
2013

Feature Learning
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Feature Engineering

Where do features come from?

0 pooling —— /I;I\
Ve ~
] —( — — ] — —
| eI 6NN 1
S | S — ) — s s i ) —
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A~ 4
Zhou et al,, .
2005 word strmg
) embeddings
O embeddings _____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A

WDT,NN /7 N\
/ \

r ot 1t

The [movie] showed [wars]

2005 word
@) embeddings ____,
O Mikolov et al.,
2013

/
/

tree
O embeddings
Socher et al
O 2013
A Hermann & Blunsom,
/ 2013

string

embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning



Feature Engineering

Where do features come from?

A '?e’}be
: Sep,, 703, Sy,
word embedding ’773,7 Wy, “eq,,.
e, S,
hand-crafted features \/SJ’/) "Vl%
features A~ ----- >0 {'3(“(-
3 Turian et al. O ,C,bf
O O 2010 Hermann et al. =
Sun et al., 2011 Koo et8al. 2014
O ,'9‘200 tree
i O embeddings
! Socher et al.,
8 i O s
i a4 rermann & Blunsom,
: / 2013
O : /
I U
Zhou et al., i M tri
2005 ! word ,'I S rlng
) i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds®

features o~ ----- > O_ -
3 Turian et aIOO => O
O O 2019 Hermann et al. A

Sun et al., 2011 Koo et al. 2014

O ?2008 tree
i O embeddings
! Socher et al
8 i O o
i A Hermann & Blunsom,
| / 2013
O ! /
: /
Zhou et al., i M tri
2005 ' word / StTg
i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x() x) x3) x(4) x(5) x(6)
is-capital(w;) 1 1
endswith(w;, “e") 1 1 1
endswith(w;,“d"”) 1 1
endswith(w;,“ed”) 1 1
w; == *“aardvark”
w; == “hope” 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x() x) x3) x(4) x(5) x(6)
w; == “watched” 1
Wi, == “watched” 1
w;_; == *“watched” 1
Wi, == “watched” 1
w;_, == “watched” 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x() x(3) x(4) x(5) x(6)
wy == “I” 1
Wiy == 47 1
Wiy == “I” 1
Wiy == “I7 1
Wi, == “I" 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Table from Manning (2011)

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token  Unk.

Feats Acc. Acc. Acc.
3GRAMMEMM See text 248,798 52.07% 96.92% 88.99%
NAACL 2003  See text and [1] 460,552 55.31% 97.15% 88.61%
Replication  See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’  +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +(to, w_2), (to, w2) 730,178 56.23% 97.20% 89.03%

SWSHAPES +<t0,8_1>,<to,80>,<t0,8+1> 731,661 56.52% 97.25% 89.81%
SWSHAPESDS + distributional similarity 737,955 56.79% 97.28% 90.46%

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for CV

Edge detection (Canny)

Figures from http://opencv.org
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Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

Gaussian (DOG)

Fagere | v cad v tinw of wald spaae. e smetad wnage w rpvsndy comicdund aih Guannass e
Agere - Modct images of planar cbjocn are dhows in the POodece B Wt of wadlv P iBages Dowa e Ty KN Adjaior Gossdan iages 2w wlbirawd
apoow. Recogainon recadts bufom show awdel osclinessod 00 pooduce B Afforence-of Glsoolan inupges o0 Be righe. ANcr sach extnve. B¢ Cladan vuge v
mute hevs wnad for munbiag Sow m-samoiad s 2 facvn of 2. aad e precow wovanad .
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Figure from Lowe (1999) and Lowe (2004)



NON-LINEAR FEATURES



Nonlinear Features

aka. “nonlinear basis functions’”’

So far, input was always X = [Z1, ..., Zp|

Key Idea: let input be some function of x

0 . . M
— original input: X € R where M’ > M (usually)

— new input:

x' € RM'

— define X' = b(x) = [b1(x), b2(x), . . ., bpr (x)]
where b; : RM — Ris any function

Examples: (M = 1)
polynomial

radial basis function
sigmoid

log

Vie{l,...,. J}

bi(x) = exp ((.I“);IJ) )
1

bj(z) =

bij(z) = 2’

1 + exp(—w;z)
bi(x) = log(zx)

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:

Perceptron

Linear regression
Logistic regression



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

1.5-
o O o [ L] .. Y
1.0 - o 0, ° oo : Yy
'.. o° [ ]
0.5 - ':"
y °
0.0 - 1
—0.5 - .
: [ P :0 ..:o
~1.0 - w0 3 "
true “unknown” N
target function is 15 |
-6 —4 -2 0 2 4

y = tanh(x) + noise



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=1)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown”
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=2)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown”
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=3)

true “unknown’
target function is | |
y = tanh(x) + noise - 2



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=4)

true “unknown’
target function is | |
y = tanh(x) + noise - 2



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=5)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown”
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=6)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown”
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=7)

true “unknown” c .
target function is | |
y = tanh(x) + noise - 2



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=8)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown” c .
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=9)

1.0 -
0.5 -
0.0 -
-0.5 -

-1.0 -
true “unknown”
target function is
y = tanh(x) + noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.5 -

2.0 - s °

1.5 -

y

1.0 - x

0.5 -
true “unknown”
target function is
linear with o
negative slope
and gaussian ~0.5 - ‘ ‘ ‘
noise e N - ”



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=1)
2.0 -
1.5 -
Y 10

0.5 -

true “unknown”

target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function - Linear Regression (poly=2)
2.0 -
1.5 -
Y 10

0.5 -

true “unknown”

target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=3)

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

15 2.0 2.5



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

true “unknown”
target function is
linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function | Linear Regression (poly=8)

2.0 -

1.5 -

0.5 -

true “unknown”

target function is 0.0 -
linear with
negative slope
and gaussian
noise

-0.5 -

1.5 2.0 2.5




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=9)
2.0 -
1.5 -
y 1.0

0.5 -

true “unknown”

target function is 0.0 -

linear with

negative slope

. -0.5 -
and gaussian

. 1.5 2.0 25
noise




Foioms

0

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Over-fitting

w -

—©— Training
—O— Test

05t

(=
e

ERMS = \/2E(W*>/N



Polynomial Coefficients

M0 M1 M3 M9
0o (.19 (.82 .31 .35
0 1.27 794 232.37
0 -20.43 -0D321.83
03 17.37 SR
04 -231634.50
O BADDA2.26
O ~1061300,52
0, 104240018
05 557632.99
Oq 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=9)
2.0 -
1.5 -
y 1.0

0.5 -

true “unknown”

target function is 0.0 -

linear with

negative slope

. -0.5 -
and gaussian

. 1.5 2.0 25
noise




Example: Linear Regression

Same as before, but now

. - T
Goal: Learny =w' f(x) + b with N =100 points

where f(.) is a polynomial
basis function | Linear Regression (poly=9)

true “unknown”
target function is
linear with
negative slope
and gaussian
noise




REGULARIZATION



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

Example: Stock Prices

* Suppose we wish to predict
Google’s stock price at time t+1

* What features should we use? P 500 (1950.20161
(putting all computational concerns .
aside)

— Stock prices of all other stocks at
timest, t-1,t-2,...,t-Kk
— Mentions of Google with positive /

negative sentiment words in all |
newspapers and social media outlets -~

Do we believe that all of these
features are going to be useful?



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)



Regularization

Chalkboard

— L2, L1, Lo Regularization
— Example: Linear Regression



Regularization

Don’t Regularize the Bias (Intercept) Parameter!

* In our models so far, the bias / intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed x; = 1

* Regularizers always avoid penalizing this bias | intercept
parameter

* Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data

* It’s common to whiten each feature by subtracting its
mean and dividing by its variance

* Forregularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Regularization:

In\ = +18

Slide courtesy of William Cohen



Polynomial Coefficients

W

=

e
-
-

1042400.18
-537682.99
125201.43

-45.95
-91.53
7268

(.00}
(.00
(.01

none exp(18) huge
w 0.35 0.35 0.13
w 232.37 4.74 0.0
wh -5321.83 0.77 -0.06
wa 1856831 -31.97 -11.05
i | -231639.30 -3.89 -11.03
w? | 640042.26 £3.28 -0.02
wi | -106180).52 41.32 -[1.01

,

8

rd

N

Slide courtesy of William Cohen



Over Regularization:

Slide courtesy of William Cohen



Regularization Exercise




Example: Logistic Regression

Training
Data



Test
Data

Example: Logistic Regression
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error

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

0.10 |
107°

— train
—  test

10”7

107

1073

Example: Logistic Regression

1071 10t

1/lambda

103

10°

10’

10°
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Example: Logistic Regression

- Classijfication with Logistic Regression (lambda=1e-05)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)

95



Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07)
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error

Example: Logistic Regression

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

— train
—  test

010 | ] ] ] ] ] ] ] ] I~
107° 10”7 107 1073 10t 10! 103 10° 10’ 10°

1/lambda
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Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
e To be discussed later in the course...



1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

Nonlinear features are require no changes
to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors



Feature Engineering / Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* |dentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas



