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Reminders

• Homework 4: Logistic Regression

– Out: Fri, Feb 15

– Due: Fri, Mar 1 at 11:59pm

• Midterm Exam 1

– Thu, Feb 21, 6:30pm – 8:00pm

• Today’s In-Class Poll

– http://p10.mlcourse.org

• Reading on Probabilistic Learning is reused
later in the course for MLE/MAP
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Outline

• Midterm Exam Logistics
• Sample Questions
• Classification and Regression: 

The Big Picture
• Q&A
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MIDTERM EXAM LOGISTICS
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Midterm Exam
• Time / Location

– Time: Evening Exam
Thu, Feb. 21 at 6:30pm – 8:00pm

– Room: We will contact each student individually with your room 
assignment. The rooms are not based on section. 

– Seats: There will be assigned seats. Please arrive early. 
– Please watch Piazza carefully for announcements regarding room / seat 

assignments.

• Logistics
– Covered material: Lecture 1 – Lecture 8
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Midterm Exam

• How to Prepare
– Attend the midterm review lecture

(right now!)
– Review prior year’s exam and solutions

(we’ll post them)
– Review this year’s homework problems
– Consider whether you have achieved the 

“learning objectives” for each lecture / section

7



Midterm Exam
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Midterm
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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SAMPLE QUESTIONS
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Sample Questions
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10-601: Machine Learning Page 4 of 16 2/29/2016

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your
answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.

(b) [2 pts.] T or F: Naive Bayes can only be used with MAP estimates, and not MLE
estimates.

1.4 Probability

Assume we have a sample space ⌦. Answer each question with T or F. No justification
is required.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

(b) [1 pts.] T or F: P (A|B) / P (A)P (B|A)
P (A|B)

. (The sign ‘/’ means ‘is proportional to’)

(c) [1 pts.] T or F: P (A [ B)  P (A).

(d) [1 pts.] T or F: P (A \ B) � P (A).
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Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classifi-
cation task. We assign the class of the test point to be the class of the majority of the
k nearest neighbors. A point can be its own neighbor.

Figure 5

3. [2 pts] What value of k minimizes leave-one-out cross-validation error for the dataset
shown in Figure 5? What is the resulting error?

4. [2 pts] Sketch the 1-nearest neighbor boundary over Figure 5.

5. [2 pts] What value of k minimizes the training set error for the dataset shown in
Figure 5? What is the resulting training error?

10-701 Machine Learning Midterm Exam - Page 7 of 17 11/02/2016

4 K-NN [12 pts]

In this problem, you will be tested on your knowledge of K-Nearest Neighbors (K-NN), where
k indicates the number of nearest neighbors.

1. [3 pts] For K-NN in general, are there any cons of using very large k values? Select
one. Briefly justify your answer.

(a) Yes (b) No

2. [3 pts] For K-NN in general, are there any cons of using very small k values? Select
one. Briefly justify your answer.

(a) Yes (b) No



Sample Questions
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4 SVM, Perceptron and Kernels [20 pts. + 4 Extra Credit]

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D(1) and D(2) where D(1) = {(x(1)
1 , y

(1)
1 ), ..., (x(1)

n , y
(1)
n )}

and D(2) = {(x(2)
1 , y

(2)
1 ), ..., (x(2)

m , y
(2)
m )} such that x(1)

i 2 Rd1 , x(2)
i 2 Rd2 . Suppose d1 > d2

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D(1) than on dataset D(2).

(b) [2 pts.] Suppose �(x) is an arbitrary feature mapping from input x 2 X to �(x) 2 RN

and let K(x, z) = �(x) · �(z). Then K(x, z) will always be a valid kernel function.

(c) [2 pts.] Given the same training data, in which the points are linearly separable, the
margin of the decision boundary produced by SVM will always be greater than or equal
to the margin of the decision boundary produced by Perceptron.

4.2 Multiple Choice

(a) [3 pt.] If the data is linearly separable, SVM minimizes kwk2 subject to the constraints
8i, yiw · xi � 1. In the linearly separable case, which of the following may happen to the
decision boundary if one of the training samples is removed? Circle all that apply.

• Shifts toward the point removed

• Shifts away from the point removed

• Does not change

(b) [3 pt.] Recall that when the data are not linearly separable, SVM minimizes kwk2 +
C
P

i ⇠i subject to the constraint that 8i, yiw · xi � 1 � ⇠i and ⇠i � 0. Which of the
following may happen to the size of the margin if the tradeo↵ parameter C is increased?
Circle all that apply.

• Increases

• Decreases

• Remains the same
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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(a) Adding one outlier to the

original data set.

(b) Adding two outliers to the original data

set.

(c) Adding three outliers to the original data

set. Two on one side and one on the other

side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and

adding four points that lie on the trajectory

of the original regression line.

Figure 3: New data set Snew.

Dataset
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Matching Game

Goal: Match the Algorithm to its Update Rule
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1. SGD for Logistic Regression

2. Least Mean Squares

3. Perceptron

4.

5.

6.

�k � �k +
1

1 + exp �(h�(x(i)) � y(i))

�k � �k + (h�(x(i)) � y(i))

�k � �k + �(h�(x(i)) � y(i))x(i)
k

h�(x) = p(y|x)

h�(x) = �T x

h�(x) = sign(�T x)

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F. 1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6



Q&A
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MULTINOMIAL LOGISTIC 
REGRESSION
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Multinomial Logistic Regression
Chalkboard
– Background: Multinomial distribution
– Definition: Multi-class classification
– Geometric intuitions
– Multinomial logistic regression model 
– Generative story
– Reduction to binary logistic regression
– Partial derivatives and gradients
– Applying Gradient Descent and SGD
– Implementation w/ sparse features
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Debug that Program!

In-Class Exercise: Think-Pair-Share
Debug the following program which is (incorrectly) 
attempting to run SGD for multinomial logistic regression

31

Buggy Program:
while not converged:

for i in shuffle([1,…,N]):
for k in [1,…,K]:

theta[k] = theta[k] - lambda * grad(x[i], y[i], 
theta, k)

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative 

log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k]. 

lambda is the learning rate. N = # of examples. K = # of output classes. M = # of 

features. theta is a K by M matrix.



FEATURE ENGINEERING
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Handcrafted Features
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NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
exp(Θy�f( ))

born-in



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words)

embeddin
g

missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston, 
2008

Socher, 2011

Convolutional Neural Networks 
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder 
(Socher 2011)

The [movie] showed [wars]

RAE



Where do features come from?

38

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom, 
2013

string
embeddings

Collobert & Weston, 
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP



Where do features come from?

39

word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston, 
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom, 
2013

Hermann et al.
2014

word embedding 
features

Turian et al. 
2010

Koo et al. 
2008

Refine embedding

features with

semantic/syntactic info



Where do features come from?

40

word
embeddings

tree
embeddings

word embedding 
featureshand-crafted

features

best of both 
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston, 
2008

Socher, 2011

Socher et al.,
2013

Turian et al. 
2010

Koo et al. 
2008

Hermann et al.
2014

Hermann & Blunsom, 
2013



Feature Engineering for NLP

Suppose you build a logistic regression model 
to predict a part-of-speech (POS) tag for each 
word in a sentence.

What features should you use?

41
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb



Per-word Features:

Feature Engineering for NLP
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is-capital(wi)

endswith(wi,“e”)

endswith(wi,“d”)

endswith(wi,“ed”)

wi == “aardvark”

wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)
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Feature Engineering for NLP
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…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)
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Feature Engineering for NLP
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…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)
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and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments.

Set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +⟨t0, w−2⟩, ⟨t0, w2⟩ 730,178 56.23% 97.20% 89.03%
5wShapes +⟨t0, s−1⟩, ⟨t0, s0⟩, ⟨t0, s+1⟩ 731,661 56.52% 97.25% 89.81%
5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates ⟨t0, w−1⟩, ⟨t0, w0⟩, ⟨t0, w+1⟩,
⟨t0, t−1⟩, ⟨t0, t−2, t−1⟩ and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates ⟨t0, t+1⟩,
⟨t0, t+1, t+2⟩, ⟨t0, t−1, t+1⟩, ⟨t0, t−1, w0⟩, ⟨t0, t+1, w0⟩, ⟨t0, w−1, w0⟩, ⟨t0, w0, w+1⟩
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little by
adding features. 5w adds the words two to the left and right as features, and
5wShapes also adds word shape features that we have described for named en-

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!

Table from Manning (2011)



Feature Engineering for CV
Edge detection (Canny)
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Figures from http://opencv.org

Corner Detection (Harris)
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Scale Invariant Feature Transform (SIFT)

51
Figure from Lowe (1999) and Lowe (2004)



NON-LINEAR FEATURES

53



Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define 

• Examples: (M = 1)

55

For a linear model: 
still a linear function 
of b(x) even though a 
nonlinear function of 
x
Examples:
- Perceptron
- Linear regression
- Logistic regression
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Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen



Polynomial Coefficients   

Slide courtesy of William Cohen



Example: Linear Regression

78x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise



Example: Linear Regression

79x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

Same as before, but now 
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Overfitting
Definition: The problem of overfitting is when 
the model captures the noise in the training data 
instead of the underlying structure 

Overfitting can occur in all the models we’ve seen 
so far: 
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)
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Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict 

Google’s stock price at time t+1 
• What features should we use?

(putting all computational concerns 
aside)
– Stock prices of all other stocks at 

times t, t-1, t-2, …, t - k
– Mentions of Google with positive / 

negative sentiment words in all 
newspapers and social media outlets

• Do we believe that all of these 
features are going to be useful?
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Motivation: Regularization

• Occam’s Razor: prefer the simplest 
hypothesis

• What does it mean for a hypothesis (or 
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features 

(shrinkage)
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Regularization

Chalkboard
– L2, L1, L0 Regularization
– Example: Linear Regression
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Regularization
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Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by !" -- that is, the parameter for which 
we fixed #" = 1

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its 

mean and dividing by its variance
• For regularization, this helps all the features be penalized 

in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



Regularization: 
+

Slide courtesy of William Cohen



Polynomial Coefficients   

none exp(18) huge

Slide courtesy of William Cohen



Over Regularization: 

Slide courtesy of William Cohen



Regularization Exercise
In-class Exercise
1. Plot train error vs. # features (cartoon)
2. Plot test error vs. # features (cartoon)
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Example: Logistic Regression
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Example: Logistic Regression
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Regularization as MAP

• L1 and L2 regularization can be interpreted 
as maximum a-posteriori (MAP) estimation 
of the parameters

• To be discussed later in the course…
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Takeaways

1. Nonlinear basis functions allow linear 
models (e.g. Linear Regression, Logistic 
Regression) to capture nonlinear aspects of 
the original input

2. Nonlinear features are require no changes 
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are 

equivalent for appropriately chosen priors
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Feature Engineering / Regularization 
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and 

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to 

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly 

separable dataset in higher dimensions
• Describe feature engineering in common application 

areas
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