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Q&A
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Q: I can’t read the chalkboard, can you write 
larger?

A: Sure. Just raise your hand and let me know 
if you can’t read something.

Q: I’m concerned that you won’t be able to read my 
solution in the homework template because it’s so tiny, 
can I use my own template?

A: No. However, we do all of our grading online 
and can zoom in to view your solution! Make it 
as small as you need to.



Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan 24
– Due: Mon, Feb 5 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Feb 5 
– Due: Mon, Feb 12 at 11:59pm
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…possibly 
delayed 

by two days



ANALYSIS OF PERCEPTRON
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Geometric Margin
Definition: The margin of example ! w.r.t. a linear sep." is the 
distance from !	to the plane " ⋅ ! = 0 (or the negative if on wrong side)
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Margin of negative example !(

Slide from Nina Balcan



Geometric Margin

Definition: The margin )* of a set of examples + wrt a linear 
separator " is the smallest margin over points ! ∈ +.
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Definition: The margin of example ! w.r.t. a linear sep." is the 
distance from !	to the plane " ⋅ ! = 0 (or the negative if on wrong side)

Slide from Nina Balcan
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Definition: The margin ) of a set of examples + is the maximum )*
over all linear separators ".

Geometric Margin

Definition: The margin )* of a set of examples + wrt a linear 
separator " is the smallest margin over points ! ∈ +.

Definition: The margin of example ! w.r.t. a linear sep." is the 
distance from !	to the plane " ⋅ ! = 0 (or the negative if on wrong side)

Slide from Nina Balcan



Linear Separability
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Def: For a binary classification problem, a set of examples +
is linearly separable if there exists a linear decision boundary 
that can separate the points
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Analysis: Perceptron

9
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.
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Analysis: Perceptron
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Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
Guarantee: If data has margin � and all points inside a ball of
radius R, then Perceptron makes � (R/�)2 mistakes.
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��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



Analysis: Perceptron
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Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {( (i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k



Analysis: Perceptron
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {( (i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · (i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PĊėĈĊĕęėĔē(D = {( (1), y(1)), ( (2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · (i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i) (i) � Update parameters
6: k � k + 1
7: return �



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i) (i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · (i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since || || � || || � · and ||��|| = 1

Cauchy-Schwartz inequality



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i) (i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2|| (i)||2 + 2y(i)(�(k) · (i))

� ||�(k)||2 + (y(i))2|| (i)||2

since kth mistake � y(i)(�(k) · (i)) � 0

= ||�(k)||2 + R2

since (y(i))2|| (i)||2 = || (i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes 
must be less than this



Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the 

points (hypothetically) into a higher dimensional space, we can 
achieve a similar bound on the number of mistakes made on 
one pass through the sequence of examples
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LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

∥vk+1∥2 = ∥vk∥2 + 2yi (vk · xi ) + ∥xi∥2 ≤ ∥vk∥2 + R2.

Therefore, ∥vk+1∥2 ≤ kR2.
Combining, gives

√
kR ≥ ∥vk+1∥ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ )2 proving the theorem. ✷

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let ⟨(x1, y1), . . . , (xm, ym)⟩bea sequenceof labeled exampleswith∥xi∥ ≤ R.
Let u be any vector with ∥u∥ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi )},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi )/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.



Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is 

made, add / subtract the features
• Perceptron will converge if the data are linearly 

separable, it will not converge if the data are 
linearly inseparable

• For linearly separable and inseparable data, we 
can bound the number of mistakes (geometric 
argument)

• Extensions support nonlinear separators and 
structured prediction
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Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and 

batch learning
• Implement the perceptron algorithm for binary 

classification [CIML]
• Determine whether the perceptron algorithm will 

converge based on properties of the dataset, and 
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the 
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

20



LINEAR REGRESSION
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Linear Regression Outline
• Regression Problems

– Definition
– Linear functions
– Residuals
– Notation trick: fold in the intercept

• Linear Regression as Function Approximation
– Objective function: Mean squared error
– Hypothesis space: Linear Functions

• Optimization for Linear Regression
– Normal Equations (Closed-form solution)

• Computational complexity
• Stability

– SGD for Linear Regression
• Partial derivatives
• Update rule

– Gradient Descent for Linear Regression
• Probabilistic Interpretation of Linear Regression

– Generative vs. Discriminative
– Conditional Likelihood
– Background: Gaussian Distribution
– Case #1: 1D Linear Regression
– Case #2: Multiple Linear Regression
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Regression Problems

Whiteboard
– Definition
– Linear functions
– Residuals
– Notation trick: fold in the intercept
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Linear Regression as Function 
Approximation

Whiteboard
– Objective function: Mean squared error
– Hypothesis space: Linear Functions
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OPTIMIZATION FOR ML
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Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the 

true goal 
(e.g. likelihood vs generalization error)

– Precision might not matter 
(e.g. data is noisy, so optimal up to 1e-16 might 
not help)

– Stopping early can help generalization error
(i.e. “early stopping” is a technique for 
regularization – discussed more next time)

29
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Topographical Maps
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Topographical Maps



Calculus

In-Class Exercise
Plot three functions:

32

Answer Here:



Optimization for ML

Whiteboard
– Unconstrained optimization
– Convex, concave, nonconvex
– Derivatives
– Zero derivatives
– Gradient and Hessian
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Convexity
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There is only one local optimum if the function is convex

Slide adapted from William Cohen



OPTIMIZATION FOR 
LINEAR REGRESSION
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Optimization for Linear Regression

Whiteboard
– Closed-form (Normal Equations)
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