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Q&A

: How do we deal with ties in k-Nearest
Neighbors (e.g. even k or equidistant points)?

: | would ask you all for a good solution!

- How do we define a distance function when
the features are categorical (e.g. weather
takes values {sunny, rainy, overcast})?

. Step 1: Convert from categorical attributes to
numeric features (e.g. binary)

Step 2: Select an appropriate distance function
(e.g. Hamming distance)



Reminders

 Homework 2: Decision Trees
— Out: Wed, Jan 24
— Due: Mon, Feb 5 at 11:59pm

* 10601 Notation Crib Sheet




K-NEAREST NEIGHBORS



k-Nearest Neighbors
Chalkboard:

— KNN for binary classification
— Distance functions

— Efficiency of KNN

— Inductive bias of KNN

— KNN Properties



KNN ON FISHER IRIS DATA



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
6.3
6.7

o O O

_ e = -

3.0
3.6
3.7
2.4
2.8
3-3
3.0

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set
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KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform"')
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KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 - | i I I I

16



5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform')

30



5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

15-

1.0 -
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3-Class classification (k = 110, weights = 'uniform"')
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3-Class classification (k = 120, weights = 'uniform"')
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KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform"')
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3-Class classification (k = 140, weights = 'uniform')
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform"')
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KNN ON GAUSSIAN DATA



KNN on Gaussian Data
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KNN on Gaussian Data

- Classification with KNN (k = 1, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 2, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 3, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 4, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 5, weights = ‘uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 9, weights = ‘uniform')
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KNN on Gaussian Data

‘uniform')

Is=

= 16, weight

(k

Classification with KNN

45



KNN on Gaussian Data

‘uniform')

Is=

= 25, weight

(k

Classification with KNN

46



KNN on Gaussian Data

‘uniform')

Is=

= 36, weight
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Classification with KNN

47



KNN on Gaussian Data

‘uniform')

Is=

49, weight

(k

Classification with KNN
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KNN on Gaussian Data

‘uniform')
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Classification with KNN
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KNN on Gaussian Data

‘uniform')
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KNN on Gaussian Data

‘uniform’)

ts
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KNN on Gaussian Data

‘uniform’)
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KNN on Gaussian Data

‘uniform’)
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KNN on Gaussian Data

‘uniform’)
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Classification with KNN
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KNN on Gaussian Data

‘uniform’)
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KNN on Gaussian Data

‘uniform’)

ts

= 225, weigh
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Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts

= 256, weigh
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Classification with KNN
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KNN on Gaussian Data

‘uniform’)
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Classification with KNN
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KNN on Gaussian Data

= 'uniform’)
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Classification with KNN
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KNN on Gaussian Data
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Classification with KNN
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KNN on Gaussian Data

‘uniform’)

ts
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Classification with KNN
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KNN on Gaussian Data

Classification with KNN (k = 600, weights = ‘uniform’)
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K-NEAREST NEIGHBORS



Questions

* How could k-Nearest Neighbors (KNN) be
applied to regression?

* Can we do better than majority vote? (e.g.
distance-weighted KNN)

* Where does the Cover & Hart (1967) Bayes
error rate bound come from?



KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate
it to feature scale [a la. CIML]

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

 State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new' k-NN learning algorithms capable of dealing
with even k



k-Nearest Neighbors

But how do we choose k?




MODEL SELECTION



Model Selection

WARNING:

* |[n some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.



Model Selection

Statistics

Def: a model defines the data
generation process (i.e. a set or
family of parametric probability
distributions)

Def: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning (aka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: Decision Tree

model = set of all possible
trees, possibly restricted by
some hyperparameters (e.g.
max depth)

parameters = structure of a
specific decision tree

learning algorithm = 1D3,
CART, etc.

hyperparameters = max-
depth, threshold for splitting
criterion, etc.

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible
nearest neighbors classifiers

parameters = none
(KNN is an instance-based or
non-parametric method)

learning algorithm = for naive
setting, just storing the data

hyperparameters = k, the
number of neighbors to
consider

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: Perceptron

model = set of all linear
separators

parameters = vector of
weights (one for each
feature)

learning algorithm = mistake
based updates to the
parameters

hyperparameters = none
(unless using some variant
such as averaged perceptron)

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Statistics
Def: a model defines the data * Def: (loosely) a model defines the

Machine Learning

generation prg

pace over which

family of para]l  If “Iearnlng” is all about  forms its search

distributions) picking the best arameters are the
Def: model paf PArameters how do We fes or structure
values that gi pick the best he 'ae?]m[;gghaggg"'thm
particular pro - hyperparameters? ’
istribution in * : :
ing algorithm

: . , , , erines e -driven search
Def: learni ka. estimation) is over the hyp& \esis space (i.e.
the pro finding the search for goo ameters)
parame that best fit the data

* Def: hyperparameters are the

Def: hyperparameters are the tunable aspects of the model, that

parameters of a prior

the learning algorithm does not

distribution over parameters select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose
the “best” model from among a set of candidates
— Def: hyperparameter optimization is the process by
which we choose the “best” hyperparameters from
among a set of candidates (could be called a special
case of model selection)

* Both assume access to a function capable of
measuring the quality of a model

* Both are typically done “outside” the main training
algorithm - typically training is treated as a black
box



Example of Hyperparameter Opt.
Chalkboard:

— Special cases of k-Nearest Neighbors
— Choosing k with validation data
— Choosing k with cross-validation



Cross-Validation

Cross validation is a method of estimating loss on held out data
Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

. Algorithm:

Fold 1 Divide data into folds (e.g. 4)

1. Train on folds {1,2,3} and
predict on {4}

Fold p) 2. Train on folds {1,2,4} and
predict on {3}

3. Train on folds {1,3,4} and
Fold 3 pre.dlct on {2}
) 4. Train on folds {2,3,4} and
predict on {1}

Concatenate all the predictions

] Fold 4 and evaluate loss (almost
equivalent to averaging loss
over the folds)

76



Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter

optimization: (to talk about later)
e Grid search
e Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:
— Model selection [ hyperparameter optimization
is just another form of learning



Model Selection Learning Objectives

You should be able to...

* Plan an experiment that uses training, validation, and
test datasets to predict the performance of a
classifier on unseen data (without cheating)

 Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test
error, and (5) true error

* For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

* Define "instance-based learning' or "nonparametric
methods"



