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Q&A
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Q: How do we deal with ties in k-Nearest 
Neighbors (e.g. even k or equidistant points)?

A: I would ask you all for a good solution!

Q: How do we define a distance function when 
the features are categorical (e.g. weather 
takes values {sunny, rainy, overcast})?

A: Step 1: Convert from categorical attributes to 
numeric features (e.g. binary)
Step 2: Select an appropriate distance function 
(e.g. Hamming distance)



Reminders

• Homework 2: Decision Trees
– Out: Wed, Jan 24
– Due: Mon, Feb 5 at 11:59pm

• 10601 Notation Crib Sheet
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K-NEAREST NEIGHBORS
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k-Nearest Neighbors

Chalkboard:
– KNN for binary classification
– Distance functions
– Efficiency of KNN
– Inductive bias of KNN
– KNN Properties
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KNN ON FISHER IRIS DATA
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Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset
Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris 
virginica (1), Iris versicolor (2) collected by 
Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Nearest Neighbor



KNN on Fisher Iris Data
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Special Case: Majority Vote



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Nearest Neighbor



KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data
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Special Case: Majority Vote



KNN ON GAUSSIAN DATA
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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KNN on Gaussian Data
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K-NEAREST NEIGHBORS
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Questions

• How could k-Nearest Neighbors (KNN) be 
applied to regression?

• Can we do better than majority vote? (e.g. 
distance-weighted KNN)

• Where does the Cover & Hart (1967) Bayes 
error rate bound come from?
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KNN Learning Objectives
You should be able to…
• Describe a dataset as points in a high dimensional space 

[CIML]
• Implement k-Nearest Neighbors with O(N) prediction
• Describe the inductive bias of a k-NN classifier and relate 

it to feature scale [a la. CIML]
• Sketch the decision boundary for a learning algorithm 

(compare k-NN and DT)
• State Cover & Hart (1967)'s large sample analysis of a 

nearest neighbor classifier
• Invent "new" k-NN learning algorithms capable of dealing 

with even k
• Explain computational and geometric examples of the 

curse of dimensionality
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k-Nearest Neighbors
But how do we choose k?
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MODEL SELECTION

67



Model Selection

WARNING: 
• In some sense, our discussion of model 

selection is premature. 
• The models we have considered thus far are 

fairly simple.
• The models and the many decisions available 

to the data scientist wielding them will grow 
to be much more complex than what we’ve 
seen so far.
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Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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• model = set of all possible 
trees, possibly restricted by 
some hyperparameters (e.g. 
max depth)

• parameters = structure of a 
specific decision tree

• learning algorithm = ID3, 
CART, etc.

• hyperparameters = max-
depth, threshold for splitting 
criterion, etc.

Example: Decision Tree



Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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• model = set of all possible 
nearest neighbors classifiers

• parameters = none 
(KNN is an instance-based or 
non-parametric method)

• learning algorithm = for naïve 
setting, just storing the data

• hyperparameters = k, the 
number of neighbors to 
consider

Example: k-Nearest Neighbors



Model Selection

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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• model = set of all linear 
separators

• parameters = vector of 
weights (one for each 
feature)

• learning algorithm = mistake 
based updates to the 
parameters

• hyperparameters = none 
(unless using some variant 
such as averaged perceptron)

Example: Perceptron



Model Selection

Statistics
• Def: a model defines the data 

generation process (i.e. a set or 
family of parametric probability 
distributions)

• Def: model parameters are the 
values that give rise to a 
particular probability 
distribution in the model family

• Def: learning (aka. estimation) is 
the process of finding the 
parameters that best fit the data

• Def: hyperparameters are the 
parameters of a prior 
distribution over parameters

Machine Learning
• Def: (loosely) a model defines the 

hypothesis space over which 
learning performs its search

• Def: model parameters are the 
numeric values or structure 
selected by the learning algorithm 
that give rise to a hypothesis

• Def: the learning algorithm 
defines the data-driven search 
over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the 
tunable aspects of the model, that 
the learning algorithm does not
select
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If “learning” is all about 
picking the best 

parameters how do we 
pick the best 

hyperparameters?



Model Selection
• Two very similar definitions:
– Def: model selection is the process by which we choose 

the “best” model from among a set of candidates
– Def: hyperparameter optimization is the process by 

which we choose the “best” hyperparameters from 
among a set of candidates (could be called a special 
case of model selection) 

• Both assume access to a function capable of 
measuring the quality of a model

• Both are typically done “outside” the main training 
algorithm --- typically training is treated as a black 
box
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Example of Hyperparameter Opt.

Chalkboard:
– Special cases of k-Nearest Neighbors
– Choosing k with validation data
– Choosing k with cross-validation
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Cross-Validation
Cross validation is a method of estimating loss on held out data

Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many! 
(Error is more stable. Slower computation.)
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D = y(1)

y(2)

y(N)

x(1)

x(2)

x(N)

Fold 1

Fold 2

Fold 3

Fold 4

Algorithm: 
Divide data into folds (e.g. 4)
1. Train on folds {1,2,3} and 

predict on {4}
2. Train on folds {1,2,4} and 

predict on {3}
3. Train on folds {1,3,4} and 

predict on {2}
4. Train on folds {2,3,4} and 

predict on {1}
Concatenate all the predictions 
and evaluate loss (almost
equivalent to averaging loss 
over the folds)



Model Selection

WARNING (again):
– This section is only scratching the surface!
– Lots of methods for hyperparameter

optimization: (to talk about later)
• Grid search
• Random search
• Bayesian optimization
• Graduate-student descent
• …

Main Takeaway: 
– Model selection / hyperparameter optimization 

is just another form of learning
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Model Selection Learning Objectives
You should be able to…
• Plan an experiment that uses training, validation, and 

test datasets to predict the performance of a 
classifier on unseen data (without cheating)

• Explain the difference between (1) training error, (2) 
validation error, (3) cross-validation error, (4) test 
error, and (5) true error

• For a given learning technique, identify the model, 
learning algorithm, parameters, and hyperparamters

• Define "instance-based learning" or "nonparametric 
methods"

• Select an appropriate algorithm for optimizing (aka. 
learning) hyperparameters
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