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Reminders

• Homework 8: Reinforcement Learning
– Out: Tue, Apr 17
– Due: Fri, Apr 27 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Fri, Apr 27
– Due: Fri, May 4 at 11:59pm
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SVM
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Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)
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• Instead of minimizing the primal, we can maximize the 
dual problem

• For the SVM, these two problems give the same 
answer (i.e. the minimum of one is the maximum of the 
other)

• Definition: support vectors are those points x(i) for 
which α(i) ≠ 0



SVM EXTENSIONS
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Soft-Margin SVM
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Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

• Question: If the dataset is 
not linearly separable, can 
we still use an SVM?

• Answer: Not the hard-
margin version. It will never 
find a feasible solution.

In the soft-margin version, 
we add “slack variables” 
that allow some points to 
violate the large-margin 
constraints.

The constant C dictates 
how large we should allow 
the slack variables to be



Soft-Margin SVM
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Hard-margin SVM (Primal)

Soft-margin SVM (Primal)



Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Soft-Margin SVM
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We can also work with the dual of the soft-margin SVM



Multiclass SVMs
The SVM is inherently a binary classification method, 
but can be extended to handle K-class classification in 
many ways.
1. one-vs-rest: 
– build K binary classifiers
– train the kth classifier to predict whether an instance 

has label k or something else
– predict the class with largest score

2. one-vs-one:
– build (K choose 2) binary classifiers
– train one classifier for distinguishing between each pair 

of labels
– predict the class with the most “votes” from any given 

classifier
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Learning Objectives
Support Vector Machines

You should be able to…
1. Motivate the learning of a decision boundary with large margin
2. Compare the decision boundary learned by SVM with that of 

Perceptron
3. Distinguish unconstrained and constrained optimization
4. Compare linear and quadratic mathematical programs
5. Derive the hard-margin SVM primal formulation
6. Derive the Lagrangian dual for a hard-margin SVM
7. Describe the mathematical properties of support vectors and provide 

an intuitive explanation of their role
8. Draw a picture of the weight vector, bias, decision boundary, training 

examples, support vectors, and margin of an SVM
9. Employ slack variables to obtain the soft-margin SVM
10. Implement an SVM learner using a black-box quadratic programming 

(QP) solver
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KERNELS
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Kernels: Motivation

Most real-world problems exhibit data that is 
not linearly separable.
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Q: When your data is not linearly separable, 
how can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Example: pixel representation for Facial Recognition:



Kernels: Motivation

• Motivation #1: Inefficient Features
– Non-linearly separable data requires high 

dimensional representation
– Might be prohibitively expensive to compute or 

store

• Motivation #2: Memory-based Methods
– k-Nearest Neighbors (KNN) for facial recognition 

allows a distance metric between images -- no 
need to worry about linearity restriction at all
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Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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• Suppose we do some 
feature engineering

• Our feature function is ɸ
• We apply ɸ to each 

input vector x



Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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We could replace the dot product of the two feature vectors 
in the transformed space with a function k(x,z)



Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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We could replace the dot product of the two feature vectors 
in the transformed space with a function k(x,z)



Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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Kernel Methods
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Q: These are just non-linear features, right?
A: Yes, but…

Q: Can’t we just compute the feature 
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either 

be prohibitively expensive to compute or 
infinite length vectors



Example: Polynomial Kernel
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Slide from Nina Balcan

Example 

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to  

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2) 
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Kernel Examples
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Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input 
space

Polynomial (v1) All polynomials of degree 
d

Polynomial (v2) All polynomials up to 
degree d

Gaussian Infinite dimensional space

Hyperbolic
Tangent 
(Sigmoid) 
Kernel

(With SVM, this is 
equivalent to a 2-layer 
neural network)



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example

29
RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example

32
RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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SVM + Kernels: Takeaways
• Maximizing the margin of a linear separator is a good 

training criteria
• Support Vector Machines (SVMs) learn a max-margin 

linear classifier
• The SVM optimization problem can be solved with 

black-box Quadratic Programming (QP) solvers
• Learned decision boundary is defined by its support 

vectors
• Kernel methods allow us to work in a transformed 

feature space without explicitly representing that 
space

• The kernel-trick can be applied to SVMs, as well as 
many other algorithms
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Learning Objectives
Kernels

You should be able to…
1. Employ the kernel trick in common learning 

algorithms
2. Explain why the use of a kernel produces only 

an implicit representation of the transformed 
feature space

3. Use the "kernel trick" to obtain a 
computational complexity advantage over 
explicit feature transformation

4. Sketch the decision boundaries of a linear 
classifier with an RBF kernel
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K-MEANS
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K-Means Outline
• Clustering: Motivation / Applications
• Optimization Background

– Coordinate Descent
– Block Coordinate Descent

• Clustering
– Inputs and Outputs
– Objective-based Clustering

• K-Means
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method

• K-Means Initialization
– Random
– Farthest Point
– K-Means++
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar 
datapoints.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g., 
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan



• Cluster news articles or web pages or search results by topic.

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression 
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan



• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan



Optimization Background

Whiteboard:
– Coordinate Descent
– Block Coordinate Descent
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Clustering

Question: Which of these partitions is “better”?
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Clustering

Whiteboard:
– Inputs and Outputs
– Objective-based Clustering
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K-Means

Whiteboard:
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method
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K-Means Initialization

Whiteboard:
– Random
– Furthest Traversal
– K-Means++
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Example: Given a set of datapoints

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Select initial centers at random

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Get a good  quality solution in this example.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

It always converges, but it may converge at a local optimum that is 
different from the global optimum, and in fact could be arbitrarily 
worse in terms of its score.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and 
every center is the mean value of its points.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

.It is arbitrarily worse than optimum solution….

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

This bad performance, can happen 
even with well separated Gaussian 
clusters.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

This bad performance, can 
happen even with well 
separated Gaussian clusters.

Some Gaussian are 
combined…..

Slide courtesy of Nina Balcan



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block 

coordinate descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest 
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the nonconvexity of the K-Means objective 

function with the (possibly) poor performance of 
random initialization

71


