
Kernels
+

K-Means

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 29

April 25, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Reinforcement Learning
– Out: Tue, Apr 17
– Due: Fri, Apr 27 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Fri, Apr 27
– Due: Fri, May 4 at 11:59pm

2

SVM

3

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

4

• Instead of minimizing the primal, we can maximize the
dual problem

• For the SVM, these two problems give the same
answer (i.e. the minimum of one is the maximum of the
other)

• Definition: support vectors are those points x(i) for
which α(i) ≠ 0

SVM EXTENSIONS

5

Soft-Margin SVM

6

Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

• Question: If the dataset is
not linearly separable, can
we still use an SVM?

• Answer: Not the hard-
margin version. It will never
find a feasible solution.

In the soft-margin version,
we add “slack variables”
that allow some points to
violate the large-margin
constraints.

The constant C dictates
how large we should allow
the slack variables to be

Soft-Margin SVM

7

Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Soft-Margin SVM

8
We can also work with the dual of the soft-margin SVM

Multiclass SVMs
The SVM is inherently a binary classification method,
but can be extended to handle K-class classification in
many ways.
1. one-vs-rest:
– build K binary classifiers
– train the kth classifier to predict whether an instance

has label k or something else
– predict the class with largest score

2. one-vs-one:
– build (K choose 2) binary classifiers
– train one classifier for distinguishing between each pair

of labels
– predict the class with the most “votes” from any given

classifier

10

Learning Objectives
Support Vector Machines

You should be able to…
1. Motivate the learning of a decision boundary with large margin
2. Compare the decision boundary learned by SVM with that of

Perceptron
3. Distinguish unconstrained and constrained optimization
4. Compare linear and quadratic mathematical programs
5. Derive the hard-margin SVM primal formulation
6. Derive the Lagrangian dual for a hard-margin SVM
7. Describe the mathematical properties of support vectors and provide

an intuitive explanation of their role
8. Draw a picture of the weight vector, bias, decision boundary, training

examples, support vectors, and margin of an SVM
9. Employ slack variables to obtain the soft-margin SVM
10. Implement an SVM learner using a black-box quadratic programming

(QP) solver

11

KERNELS

12

Kernels: Motivation

Most real-world problems exhibit data that is
not linearly separable.

13

Q: When your data is not linearly separable,
how can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Example: pixel representation for Facial Recognition:

Kernels: Motivation

• Motivation #1: Inefficient Features
– Non-linearly separable data requires high

dimensional representation
– Might be prohibitively expensive to compute or

store

• Motivation #2: Memory-based Methods
– k-Nearest Neighbors (KNN) for facial recognition

allows a distance metric between images -- no
need to worry about linearity restriction at all

14

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

16

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

17

• Suppose we do some
feature engineering

• Our feature function is ɸ
• We apply ɸ to each

input vector x

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

18

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

19

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

20

Kernel Methods

21

Q: These are just non-linear features, right?
A: Yes, but…

Q: Can’t we just compute the feature
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either

be prohibitively expensive to compute or
infinite length vectors

Example: Polynomial Kernel

22
Slide from Nina Balcan

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space
Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z)

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z)

Kernel Examples

25

Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input
space

Polynomial (v1) All polynomials of degree
d

Polynomial (v2) All polynomials up to
degree d

Gaussian Infinite dimensional space

Hyperbolic
Tangent
(Sigmoid)
Kernel

(With SVM, this is
equivalent to a 2-layer
neural network)

RBF Kernel Example

26
RBF Kernel:

RBF Kernel Example

27
RBF Kernel:

RBF Kernel Example

28
RBF Kernel:

RBF Kernel Example

29
RBF Kernel:

RBF Kernel Example

30
RBF Kernel:

RBF Kernel Example

31
RBF Kernel:

RBF Kernel Example

32
RBF Kernel:

RBF Kernel Example

33
RBF Kernel:

RBF Kernel Example

34
RBF Kernel:

RBF Kernel Example

35
RBF Kernel:

RBF Kernel Example

36
RBF Kernel:

RBF Kernel Example

37
RBF Kernel:

RBF Kernel Example

38
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

39
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

40
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

41
RBF Kernel:

KNN vs. SVM

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

42

SVM + Kernels: Takeaways
• Maximizing the margin of a linear separator is a good

training criteria
• Support Vector Machines (SVMs) learn a max-margin

linear classifier
• The SVM optimization problem can be solved with

black-box Quadratic Programming (QP) solvers
• Learned decision boundary is defined by its support

vectors
• Kernel methods allow us to work in a transformed

feature space without explicitly representing that
space

• The kernel-trick can be applied to SVMs, as well as
many other algorithms

45

Learning Objectives
Kernels

You should be able to…
1. Employ the kernel trick in common learning

algorithms
2. Explain why the use of a kernel produces only

an implicit representation of the transformed
feature space

3. Use the "kernel trick" to obtain a
computational complexity advantage over
explicit feature transformation

4. Sketch the decision boundaries of a linear
classifier with an RBF kernel

46

K-MEANS

47

K-Means Outline
• Clustering: Motivation / Applications
• Optimization Background

– Coordinate Descent
– Block Coordinate Descent

• Clustering
– Inputs and Outputs
– Objective-based Clustering

• K-Means
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method

• K-Means Initialization
– Random
– Farthest Point
– K-Means++

48

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar
datapoints.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan

Optimization Background

Whiteboard:
– Coordinate Descent
– Block Coordinate Descent

52

Clustering

Question: Which of these partitions is “better”?

53

Clustering

Whiteboard:
– Inputs and Outputs
– Objective-based Clustering

54

K-Means

Whiteboard:
– K-Means Objective
– Computational Complexity
– K-Means Algorithm / Lloyd’s Method

55

K-Means Initialization

Whiteboard:
– Random
– Furthest Traversal
– K-Means++

56

Example: Given a set of datapoints

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Select initial centers at random

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Get a good quality solution in this example.

Slide courtesy of Nina Balcan

Lloyd’s method: Performance

It always converges, but it may converge at a local optimum that is
different from the global optimum, and in fact could be arbitrarily
worse in terms of its score.

Slide courtesy of Nina Balcan

Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and
every center is the mean value of its points.

Slide courtesy of Nina Balcan

Lloyd’s method: Performance

.It is arbitrarily worse than optimum solution….

Slide courtesy of Nina Balcan

Lloyd’s method: Performance

This bad performance, can happen
even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan

Lloyd’s method: Performance

This bad performance, can
happen even with well
separated Gaussian clusters.

Some Gaussian are
combined…..

Slide courtesy of Nina Balcan

Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block

coordinate descent
2. Define an objective function that gives rise to a "good"

clustering
3. Apply block coordinate descent to an objective function

preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the nonconvexity of the K-Means objective

function with the (possibly) poor performance of
random initialization

71

