
Reinforcement 
Learning

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 25

April 11, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 7: HMMs
– Out: Wed, Apr 04
– Due: Mon, Apr 16 at 11:59pm

• Schedule Changes
– Lecture on Fri, Apr 13
– Recitation on Mon, Apr 23

2



Learning Paradigms

Whiteboard
– Supervised
• Regression
• Classification
• Binary Classification
• Structured Prediction

– Unsupervised
– Semi-supervised
– Online
– Active Learning
– Reinforcement Learning

3



REINFORCEMENT LEARNING

4



Eric Xing

Examples of Reinforcement Learning 

• How should a robot behave so as 
to optimize its “performance”? 
(Robotics)

• How to automate the motion of 
a helicopter? (Control Theory)

• How to make a good chess-playing 
program? (Artificial Intelligence)

5© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:

6

https://www.youtube.com/watch?v=VCdxqn0fcnE



Eric Xing

Robot in a room

• what’s the strategy to achieve max reward?
• what if the actions were NOT deterministic?

7© Eric Xing @ CMU, 2006-2011



Eric Xing

History of Reinforcement Learning
• Roots in the psychology of animal learning

(Thorndike,1911).

• Another independent thread was the problem of 
optimal control, and its solution using dynamic 
programming (Bellman, 1957).

• Idea of temporal difference learning (on-line 
method), e.g., playing board games (Samuel, 1959).

• A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

8© Eric Xing @ CMU, 2006-2011



Eric Xing

What is special about RL?
• RL is learning how to map states to actions, so as to 

maximize a numerical reward over time.

• Unlike other forms of learning, it is a multistage 
decision-making process (often Markovian).

• An RL agent must learn by trial-and-error. (Not 
entirely supervised, but interactive)

• Actions may affect not only the immediate reward 
but also subsequent rewards (Delayed effect). 

9© Eric Xing @ CMU, 2006-2011



Eric Xing

Elements of RL
• A policy

- A map from state space to action space.
- May be stochastic.

• A reward function
- It maps each state (or, state-action pair) to
a real number, called reward. 

• A value function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that 
state (or, state-action pair).

10© Eric Xing @ CMU, 2006-2011



Eric Xing

Policy

11© Eric Xing @ CMU, 2006-2011



Eric Xing

Reward for each step -2

12© Eric Xing @ CMU, 2006-2011



Eric Xing

Reward for each step: -0.1

13© Eric Xing @ CMU, 2006-2011



Eric Xing

The Precise Goal
• To find a policy that maximizes the Value function.
– transitions and rewards usually not available

• There are different approaches to achieve this goal in 
various situations.

• Value iteration and Policy iteration are two more 
classic approaches to this problem. But essentially 
both are dynamic programming.

• Q-learning is a more recent approaches to this 
problem. Essentially it is a temporal-difference 
method.

14© Eric Xing @ CMU, 2006-2011



MARKOV DECISION PROCESSES

15



Markov Decision Process

Whiteboard
– Components: states, actions, state transition 

probabilities, reward function
– Markovian assumption
– MDP Model
– MDP Goal: Infinite-horizon Discounted Reward
– deterministic vs. nondeterministic MDP
– deterministic vs. stochastic policy

16



Exploration vs. Exploitation

Whiteboard
– Explore vs. Exploit Tradeoff
– Ex: k-Armed Bandits
– Ex: Traversing a Maze

17



FIXED POINT ITERATION

18



Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.

19

1. Given objective function:
2. Compute derivative, set to 

zero (call this function f ).
3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓) ) ✓i = g(✓)

✓(t+1)
i = g(✓(t))



Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of 

equations
• It can also be applied to optimization.

20

1. Given objective function:
2. Compute derivative, set to 

zero (call this function f ).
3. Rearrange the equation s.t.

one of parameters appears on 
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each 

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



Fixed Point Iteration for Optimization
We can implement our 
example in a few lines of 
python.

21

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



Fixed Point Iteration for Optimization

22

$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x

3

3
+

3

2
x

2 + 2x

dJ(x)

dx

= f(x) = x

2 � 3x+ 2 = 0

) x =
x

2 + 2

3
= g(x)

x x

2 + 2

3



VALUE ITERATION

23



Definitions for Value Iteration

Whiteboard
– State trajectory
– Value function
– Bellman equations
– Optimal policy
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning

24


