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Reminders

* Homework 7: HMMs

— Out: Wed, Apr 04

— Due: Mon, Apr 16 at 11:59pm
* Schedule Changes

— Lecture on Fri, Apr 13
— Recitation on Mon, Apr 23




Learning Paradigms

Whiteboard

— Supervised
* Regression
* Classification
* Binary Classification
* Structured Prediction

— Unsupervised

— Semi-supervised

— Online

— Active Learning

— Reinforcement Learning



REINFORCEMENT LEARNING



Examples of Reinforcement Learning

» How should a robot behave so as C@!,@;\'Jﬁé)
m ®

to optimize its “performance’”? m i
(Robotics) LW |

Y T

* How to automate the motion of e .
a helicopter? (Control Theory) '

* How to make a good chess-playing -
program? (Artificial Intelligence)  G=_
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Autonomous Helicopter

Video:



Robotin a room

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP '
10% move LEFT

10% move RIGHT

« reward +1 at [4,3], -1 at [4,2]

« reward -0.04 for each step
* what’s the strategy to achieve max reward?
 what if the actions were NOT deterministic?
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History of Reinforcement Learning

* Roots in the psychology of animal learning
(Thorndike,1911).

* Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

* ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

* A major breakthrough was the discovery of Q-
learning (Watkins, 1989).
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What is special about RL?

RL is learning how to map states to actions, so as to
maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate reward
but also subsequent rewards (Delayed effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).
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Reward for each step -2

Eric Xing © Eric Xing @ CMU, 2006-2011



Reward for each step: -0.1
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The Precise Goal

* To find a policy that maximizes the Value function.
— transitions and rewards usually not available

* There are different approaches to achieve this goal in
various situations.

* Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

* Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.
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MARKOV DECISION PROCESSES



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy



Exploration vs. Exploitation

Whiteboard

— Explore vs. Exploit Tradeoff
— Ex: k-Armed Bandits
— Ex: Traversing a Maze



FIXED POINT ITERATION



Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* [t canalso be applied to optimization.
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Given objective function:

Compute derivative, set to
zero (call this function f).

Rearrange the equation s.t.
one of parameters appears on
the LHS.

Initialize the parameters.

Foriin {/,...,K}, update each
parameter and increment

Repeat #5 until convergence



Fixed Point Iteration for Optimization

Fixed point iteration is a general tool for solving systems of

equations

It can also be applied to optimization.
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Given objective function:

Compute derivative, set to
zero (call this function f).

Rearrange the equation s.t.
one of parameters appears on
the LHS.

Initialize the parameters.

Foriin {/,...,K}, update each
parameter and increment

Repeat #5 until convergence



Fixed Point Iteration for Optimization
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We can implement our

example in a few lines of
python.
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Fixed Point Iteration for Optimization

$ python fixed-point-iteration.py

i= 0 x=0.0000 f(x)=2.0000

1= 1 x=0.6667 f(x)=0.4444

i= 2 x=0.8148 £(x)=0.2195

i= 3 x=0.8880 f(x)=0.1246

i= 4 x=0.9295 £(x)=0.0755

3 3 i= 5 x=0.9547 £(x)=0.0474

- 2 1= 6 x=0.9705 f(x)=0.0304
(z) =5 + 52" +22 i= 7 x=0.9806 f(x)=0.0198
e i= 8 x=0.9872 f(xg=®.®13®
_ 2 _ i= 9 x=0.9915 £(x)=0.0086

a1 =flz)=2"-3z+2=0 =10 x=0.9944 f(x)=0.0057
> i=11 x=0.9963 £(x)=0.0038
I e () =12 x=0.9975 f(x)=0.0025
— 3 9 =13 x=0.9983 f(x)=0.0017

; i=14 x=0.9989 £(x)=0.0011
T+ 2 i=15 x=0.9993 f(x)=0.0007
<3 i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 £(x)=0.0003

=18 x=0.9998 f(x)=0.0002

=19 x=0.9999 f(x)=0.0001

=20 x=0.9999 f(x)=0.0001



VALUE ITERATION



Definitions for Value Iteration

Whiteboard

— State trajectory

— Value function

— Bellman equations

— Optimal policy

— Optimal value function

— Computing the optimal policy
— Ex: Path Planning



