ML
MACHINE LEARNING DEPARTMENT

10-601 Introduction to Machine Learning

Machine Learning Department

School of Computer Science
Carnegie Mellon University

Hidden Markov Models

Matt Gormley
Lecture 23
April 4, 2018

Reminders

- Homework 6: PAC Learning / Generative Models
- Out: Wed, Mar 28
- Due: Wed, Apr 04 at 11:59pm
- Homework 7: HMMs
- Out: Wed, Apr 04
- Due: Mon, Apr 16 at 11:59pm

HMM Outline

- Motivation
- Time Series Data
- Hidden Markov Model (HMM)
- Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
- Background: Markov Models
- From Mixture Model to HMM
- History of HMMs
- Higher-order HMMs
- Training HMMs
- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)
- Forward-Backward Algorithm

SUPERVISED LEARNING FOR HMMS

Hidden Markov Model

HMM Parameters:

Emission matrix, A, where $P\left(X_{t}=k \mid Y_{t}=j\right)=A_{j, k}, \forall t, k$
Transition matrix, B, where $P\left(Y_{t}=k \mid Y_{t-1}=j\right)=B_{j, k}, \forall t, k$ Initial probs, C, where $P\left(Y_{1}=k\right)=C_{k}, \forall k$

| O | .8 | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S | .1 | | |
| C | .1 | | |
| O | O | S | C |
| O | .9 | .08 | .02 |
| S | .2 | .7 | .1 |
| C | .9 | 0 | .1 |

Hidden Markov Model

HMM Parameters:

Emission matrix, A, where $P\left(X_{t}=k \mid Y_{t}=j\right)=A_{j, k}, \forall t, k$
Transition matrix, B, where $P\left(Y_{t}=k \mid Y_{t-1}=j\right)=B_{j, k}, \forall t, k$
Assumption: $y_{0}=$ START
Generative Story:
$Y_{t} \sim \operatorname{Multinomial}\left(\mathbf{B}_{Y_{t-1}}\right) \forall t$
$X_{t} \sim \operatorname{Multinomial}\left(\mathbf{A}_{Y_{t}}\right) \forall t$

For notational convenience, we fold the initial probabilities C into the transition matrix \mathbf{B} by our assumption.

Hidden Markov Model

Joint Distribution:

$$
y_{0}=\operatorname{START}
$$

$$
\begin{aligned}
p\left(\mathbf{x}, \mathbf{y} \mid y_{0}\right) & =\prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right) p\left(y_{t} \mid y_{t-1}\right) \\
& =\prod_{t=1}^{T} A_{y_{t}, x_{t}} B_{y_{t-1}, y_{t}}
\end{aligned}
$$

Training HMMs

Whiteboard

- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Supervised Learning for HMM

Learning an HMM decomposes into solving two (independent) Mixture Models
Y_{t}

Data.

$$
D=\left\{\left(\vec{x}^{(i)}, \vec{y}^{(i)}\right)\right\}_{i=1}^{N}
$$

$$
\begin{aligned}
& \vec{x}=\left[x_{1}, \ldots, x_{T}\right]^{\top} \\
& \vec{y}=\left[y_{1}, \ldots, y_{T}\right]^{T}
\end{aligned}
$$

Likelihood:

$$
\begin{aligned}
l(A, B, C) & =\sum_{i=1}^{N} \log p\left(\vec{x}^{(i)}, y^{(i)} \mid A, B, C\right) \\
& =\sum_{i=1}^{N}[\underbrace{\log p\left(y_{i}^{(i)} \mid C\right)}_{\text {inititial }}+\underbrace{\left(\sum_{t=2}^{T} \log p\left(y_{t}^{(i)} \mid y_{t-1}^{(i)} B\right)\right.}_{\text {transition }} \cdot \underbrace{\left(\sum_{t=1}^{T} \log p\left(x_{t}^{(i)} \mid y_{t}^{(i)}, A\right)\right)}_{\text {emission }}]
\end{aligned}
$$

MLE:

$$
\begin{aligned}
& \hat{A}, \hat{B}, \hat{C}=\underset{A, B C}{\operatorname{argmax}} \ell(A, B, C) \\
& \Rightarrow \hat{C}=\underset{A_{A}, B, C}{\operatorname{argmax}} \sum_{i=1}^{N} \log p\left(y_{i}^{(i)} \mid C\right) \\
& \hat{B}=\underset{B}{\operatorname{argmax}} \sum_{i=1}^{N} \sum_{t=2}^{T} \log p\left(y_{t}{ }^{i} \mid y_{t-1}^{(i)}, B\right) \\
& \hat{A}=\operatorname{argmax}_{A} \sum_{i=1}^{N} \sum_{t=1}^{T} \log p\left(x_{t}^{(i)} \mid y_{t}^{(i)}, A\right) \\
& \hat{C}_{k}=\frac{\#\left(y_{1}^{(i)}=k\right)}{N} \quad \forall i, k \\
& \hat{\beta}_{j k}=\frac{\#\left(y_{t}^{(1)}=k \text { and } y_{t-1}^{(1)}=j\right)}{\#\left(y_{t-1}^{(1)}=j\right)} \quad \forall i, t>1, j, k \\
& \hat{A}_{j k}=\frac{ \pm\left(x_{t}^{(0)}=k \text { ad } y_{t}^{(0)}=j\right)}{\#\left(y_{t}^{(1)}=j\right)} \quad \forall i, t, k
\end{aligned}
$$

Supervised Learning for HMM

Learning an HMM decomposes into solving two (independent) Mixture Models

Y_{t}
X_{t}
X_{t}

$D=\left\{\left(\vec{x}^{(i)}, \vec{y}^{(i)}\right)\right\}_{i=1}^{N}$
Likelihood:

$$
\begin{aligned}
l(A, B) & =\sum_{i=1}^{N} \log p\left(\vec{x}^{(i)}, y^{(i)}\right) \\
& =\sum_{i=1}^{N}\left[\sum_{t=1}^{T} \log p\left(y_{t}^{(i)} \mid y_{t=1}^{(i)}, B\right)+\log p\left(x_{t}^{(i)} y_{t}^{(i)}, A\right)\right]
\end{aligned}
$$

ME: $\quad \hat{A}, \hat{B}=\operatorname{arguax} \quad \ell(A, B)$

$$
\begin{array}{ll}
\hat{A}=\operatorname{argm} x & \sum_{i=1}^{N}\left[\sum_{t=1}^{I} \log p\left(x_{t}^{(i)} l_{y \in}^{(1)}, A\right)\right] \\
\hat{B}=\operatorname{agmax} & \sum_{i=1}^{N}\left[\sum_{t=1}^{T} \log p\left(y_{t}^{(0)} \mid y_{t=1}^{(1)}, B\right)\right]
\end{array}
$$

t can solve in closed form to yet...

$$
\begin{aligned}
& \hat{\beta}_{j k}=\frac{\#\left(y_{t}^{(1)}=k \text { ad } y_{t-1}^{(1)}=j\right)}{\#\left(y_{t-1}^{(1)}=j\right)} \\
& \hat{A}_{j k}=\frac{\#\left(x_{t}^{(1)}=k \text { ad } y_{t}^{(1)}=j\right)}{\#\left(y_{t}^{(1)}=j\right)}
\end{aligned}
$$

HMMs: History

- Markov chains: Andrey Markov (1906)
- Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
- Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
- Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
- McCallum: multinomial Naïve Bayes for text
- With McCallum, IE using HMMs on CORA

Higher-order HMMs

- $1^{\text {st-order }}$ HMM (i.e. bigram HMM)

- $2^{\text {nd }}$-order HMM (i.e. trigram HMM)

- $3^{\text {rd }}$-order HMM

BACKGROUND: MESSAGE PASSING

Great Ideas in ML: Message Passing

Count the soldiers
there's
1 of me

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Count the soldiers

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

THE FORWARD-BACKWARD ALGORITHM

Inference for HMMs

Whiteboard

- Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\quad \mathcal{D}=\left\{\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)}\right\}_{n=1}^{N}$

Sample 1:	(1)	(v)	(P)	(d)	(1)	\} $y^{(1)}$
	(ime)	(iies)	(ike)	(a)	(ror)	\} $x^{(1)}$
Sample 2:	(n)	(1)	\bigcirc	(d)	(1)	\} $y^{(2)}$
	(ime)	(iies)	(ike)	(an)	(rom)	\} $x^{(2)}$
Sample 3:		©	(P)	(1)	(1)	\} $y^{(3)}$
	(iies	(II)	(with)	(16ii)	(ing)] $x^{(3)}$
Sample 4:	(D)	n	n		(v)	
	with	ime	(\%)	(vii)	(se)] $x^{(4)}$

Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the sentence/tags with an assumption of dependence between adjacent tags.
$p(\mathrm{n}, \mathrm{v}, \mathrm{p}, \mathrm{d}, \mathrm{n}$, time, flies, like, an, arrow $)=(.3 * .8 * .2 * .5 * \ldots)$

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

- Let's show the possible values for each variable

Forward-Backward Algorithm

- Let's show the possible values for each variable

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Viterbi Algorithm: Most Probable Assignment

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product of 7 numbers
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest prodúct

Viterbi Algorithm: Most Probable Assignment

- So $p(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{a}\right)$
$=(1 / \mathrm{Z}) *$ total weight of all paths through a

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{n}\right)$ $=(1 / \mathrm{Z}) *$ total weight of all paths through n

Forward-Backward Algorithm: Finds Marginals

- So $p(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{v}\right)$ $=(1 / \mathrm{Z}) *$ total weight of all paths through $/ \mathrm{v}$

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{n}\right)$
$=(1 / \mathrm{Z}) *$ total weight of all paths through n

Forward-Backward Algorithm: Finds Marginals

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

Product gives $a x+a y+a z+b x+b y+b z+c x+c y+c z=$ total weight of paths

Forward-Backward Algorithm: Finds Marginals

Oops! The weight of a path through a state also includes a weight at that state.

So $\alpha(\mathrm{n}) \cdot \beta(\mathrm{n})$ isn't enough.
The extra weight is the opinion of the emission probability at this variable.

"belief that $Y_{2}=\mathbf{n} "$

\square

Forward-Backward Algorithm: Finds Marginals

"belief that $Y_{2}=\mathrm{v}$ "
"belief that $Y_{2}=\mathrm{n}$ "
total weight of all paths through v
$=\alpha_{2}(\mathrm{v}) \mathrm{A}($ pref., v$) \beta_{2}(\mathrm{v})$

Forward-Backward Algorithm: Finds Marginals

"belief that $Y_{2}=\mathrm{v} "$
"belief that $Y_{2}=\mathbf{n} "$
"belief that $Y_{2}=\mathrm{a}$ "
sum = Z
(total weight of all paths)
total weight of all paths through a

$$
=\alpha_{2}(\mathrm{a}) \mathrm{A}(\text { pref. }, \mathrm{a}) \beta_{2}(\mathrm{a})
$$

Forward-Backward Algorithm

Inference for HMMs

Whiteboard

- Derivation of Forward algorithm
- Forward-backward algorithm
- Viterbi algorithm

Derivation of Forward Algorithm
Definition: $\alpha_{t}(k) \triangleq p\left(x_{1}, \ldots, x_{t}, y_{t}=k\right)$
Derivation:

$$
\begin{aligned}
& \alpha_{T}(\text { END })=p\left(x_{1}, \ldots, x_{T}, y_{T}=E N D\right) \\
& =p\left(x_{1}, \ldots, x_{T} \mid \underline{y_{T}}\right) p\left(\underline{y_{T}}\right) A \quad \leftarrow b_{y} \text { def } f \text { joint } \\
& =p\left(x_{T} \mid y_{T}\right) p\left(x_{1}, \ldots, x_{T-1} \mid y_{T}\right) p\left(y_{T}\right) \leftarrow \text { by cant. index. of HMM } \\
& =p\left(x_{T} \mid y_{T}\right) p\left(x_{1}, \ldots, x_{T-1}, y_{T}\right) \leftarrow p\left(x_{T} \mid y_{T}\right) \leftarrow p\left(x_{1}\right. \text { def. \&f joint } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1}, y_{T-1}, y_{T}\right) \text { Thy def. of marginal } \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} p\left(x_{1}, \ldots, x_{T-1}, y_{T} \mid y_{T-1}\right) p\left(y_{T-1}\right) \leftarrow \text { by db. of joint }
\end{aligned}
$$

$$
\begin{aligned}
& =p\left(x_{T} \mid y_{\Gamma}\right) \sum_{y_{T-1}} \sqrt{p\left(x_{1}, \ldots, x_{T-1}, y_{T-1}\right)} p\left(y_{T} \mid y_{T-1}\right) \leftarrow \text { by def. } a_{\text {joint }} \\
& =p\left(x_{T} \mid y_{T}\right) \sum_{y_{T-1}} \alpha_{T-1}\left(y_{T-1}\right) p\left(y_{T} \mid y_{T-1}\right) \leftarrow \text { by def. of } \alpha_{t}(k)
\end{aligned}
$$

Forward-Backward Algorithm
Define:

$$
\begin{aligned}
& \alpha_{t}(k) \triangleq p\left(x_{1}, \ldots, x_{t}, y_{t}=k\right) \\
& \beta_{t}(k) \triangleq p\left(x_{t+1}, \ldots, x_{T} \mid y_{t}=k\right)
\end{aligned}
$$

Assure

$$
\begin{aligned}
& y_{0}=\operatorname{START} \\
& y_{T+1}=E N D
\end{aligned}
$$

(1) Initialize

$$
\begin{array}{lll}
\alpha_{0}(\operatorname{START})=1 & \alpha_{0}(k)=0 & \forall k \neq \operatorname{START} \\
\beta_{T+1}(E N D)=1 & \beta_{T+1}(k)=0 & \forall k \neq E N D
\end{array}
$$

(2) For $t=1, \ldots, T$
the alphas include the emission probabilities
For $k=1, \ldots, k$: so we dart multiply them in separately

$$
\begin{aligned}
& k=1, \ldots, k: \\
& \alpha_{t}(k)=p\left(x_{t} \mid y_{t}=k\right) \sum_{j=1}^{k} \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
$$

(3) For $t=T, \ldots, T$:

For $k=1, \ldots, k$:

$$
\beta_{t}(k)=\sum_{j=1}^{k} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

(4) Compute $p(\vec{x})=\alpha_{T+1}$ (END)
[Evaluation]
(5) Compute $p\left(y_{t}=k \mid \vec{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\vec{x})}$ [Marginals]

Viterbi Algorithm
Define: $\omega_{t}(k) \triangleq \max _{y_{1}, \ldots, y_{t-1}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)$
"backpoinks" $\longrightarrow b_{t}(k) \triangleq \underset{y_{1}, \ldots, y_{t-1}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)$
Assume $y_{0}=$ START
(1) Initialize $\omega_{0}(S T A R T)=1 \quad \omega_{0}(k)=0 \quad \forall k \neq S T A R T$
(2) For $t=1, \ldots, T$:

$$
\begin{aligned}
\text { For } & k=1, \ldots, k: \\
\qquad \omega_{t}(k) & =\max _{j \in\{1, \ldots, k\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{k-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right) \\
b_{t}(k) & =\operatorname{argmax}_{j \in\{1, \ldots, k\}}^{\operatorname{argmax}} p\left(x_{t} \mid y_{t}=k\right) \omega_{k-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
$$

(3) Compute Most Probable Assignment

$$
\left.\begin{array}{l}
\hat{y}_{T}=b_{T+1}(E N D) \\
\text { For } t=T-1, \ldots, 1 \\
\qquad \hat{y}_{t}=b_{t+1}\left(\hat{y}_{t+1}\right)
\end{array}\right] \text { "billow the } 1 \text { "inter" }
$$

Inference in HMMs

What is the computational complexity of inference for HMMs ?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, $\mathrm{O}\left(\mathrm{K}^{\top}\right)$
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, $\mathrm{O}\left(\mathrm{T}^{*} \mathrm{~K}^{2}\right)$
- Thanks to dynamic programming!

Shortcomings of Hidden Markov Models

- HMM models capture dependences between each state and only its corresponding observation
- NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
- HMM learns a joint distribution of states and observations $P(\mathbf{Y}, \mathbf{X})$, but in a prediction task, we need the conditional probability $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})$

MBR DECODING

Inference for HMMs

- Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function $l\left(y^{\prime}, \boldsymbol{y}\right)$ and are asked for a single tagging
- How should we choose just one from our probability distribution $p(\boldsymbol{y} \mid \boldsymbol{x})$?
- A minimum Bayes risk (MBR) decoder $h(\boldsymbol{x})$ returns the variable assignment with minimum expected loss under the model's distribution

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})] \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) \ell(\hat{\boldsymbol{y}}, \boldsymbol{y})
\end{aligned}
$$

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})
$$

The MBR decoder is:

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})(1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})) \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})
\end{aligned}
$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:

The Hamming loss corresponds to accuracy and returns the number of incorrect variable assignments:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i=1}^{V}\left(1-\mathbb{I}\left(\hat{y}_{i}, y_{i}\right)\right)
$$

The MBR decoder is:

$$
\hat{y}_{i}=h_{\boldsymbol{\theta}}(\boldsymbol{x})_{i}=\underset{\hat{y}_{i}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}\left(\hat{y}_{i} \mid \boldsymbol{x}\right)
$$

This decomposes across variables and requires the variable marginals.

Learning Objectives

Hidden Markov Models

You should be able to...

1. Show that structured prediction problems yield high-computation inference problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
6. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
