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Reminders

Homework 6: PAC Learning [ Generative
Models

— Out: Wed, Mar 28

— Due: Wed, Apr 04 at 11:59pm
* Homework 7: HMMs

— Out: Wed, Apr 04

— Due: Mon, Apr 16 at 11:59pm




HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs

— Higher-order HMMs

Training HMMs
— (Supervised) Likelihood for HMM
— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm This Lecture
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm

Last Lecture



SUPERVISED LEARNING FOR
HMMS



Hidden Markov Model
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k

Assumption: y, = START z G

Generative Story:

For notational
convenience, we fold the

Y: ~ Multinomial(By, ,) V¢ initial probabilities C into
. . the transition matrix B by
X~ Multlnomlal(Ayt) vVt our assumption.

MO



Hidden Markov Model




Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models
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Supervised Learning for HMMs

Learning an s (3® 3
HMM g D" X )/ ())jtt

decomposes Lidilsd = P4 B> a /"7?(7‘@')’

into solving two

(Independent) [é \07? )’tl/f. I )+ /.7 f(’(é} ,A>I

Mixture Models &




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
* Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.
— McCallum: multinomial Naive Bayes for text

— With McCallum, IE using HMMs on CORA

13

Slide from William Cohen



Higher-order HMMs

* 15torder HMM (i.e. bigram HMM)

RYERR

e 2"d-order HMM (i.e. trlgram Hl\/\l\/\)




BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

2 +1+3=060f
us
\

only sek
my incoming
messages
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Great Ideas in ML: Message Passing

Count the soldiers

here's
of me

Belief:
Must be

I+I+ I= 6 of
us

\only sek
my incoming
messages

18



Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

e
..‘ ...’. o l‘\.‘
7
A‘__
:*"Q"";“
|

@ QO Belief:
I " Must be
@ 3 14 of us




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

i)

ﬁ @ Q O Belief:
I " Must be
3 14 of us

i wouldn't work correctly

with a 'loopy' (cyclic) graph  ~

q

@




THE FORWARD-BACKWARD
ALGORITHM



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a™, y"} L,
Sample 1 ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘




Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 *8*2* g% )

28



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

29



Forward-Backward Algorithm

ANANe




Forward-Backward Algorithm
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* Let’s show the possible values for each variable



Forward-Backward Algorithm

e N

L

* Let’s show the possible values for each variable



Forward-Backward Algorithm

N \/A

/\ﬁ?/\

* Let’s show the possible values for each variable
* One possible assignment

33



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
34



Forward-Backward Algorithm

vV n|la
v i1]/6|4
n|/ 8|4 |0.1
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v 3|5]|3
n 452
a 0.10.2/0.1

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...

35

END



Viterbi Algorithm: Most Probable Assignment

<9 A M \ /
%@‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

<) A M N\ /
\’)(5‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z2) * product weight of one path

37



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A 38



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

ﬁ\é//ﬂi A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/7) * total weigl%t of A 0



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of AR



Forward-Backward Algorithm: Finds Marginals

- = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products) v



Forward-Backward Algorithm: Finds Marginals

Ba(m) = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) v



Forward-Backward Algorithm: Finds Marginals

= total weight of these = total Weight of these
path preftgxes (@a+b+c) B path suffixes (X + Y +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
A Alret,n)

total weight of o/l paths through A
= o) Aref,n) By(n)

45



Forward-Backward Algorithm: Finds Marginals

A “belief that ¥, = v”’
S / “belief that Y, =n”

AN n /"
A(pref., v)

total weight of A

= o,(v) A(pref,v) B,(v)

46



Forward-Backward Algorithm: Finds Marginals

“belief that ¥, = v”’

AN “belief that ¥, =n"
B.(a)

“belief that ¥, =a”

sum=2
A(pret., a) (total weight

of all paths)
total weight of A
= a,(a) A(pref,a) B,(a)

47



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

48



Inference for HMMs

Whiteboard

— Derivation of Forward algorithm
— Forward-backward algorithm
— Viterbi algorithm



Derivation of Forward Algorithm

Definition: D({,(k,) 2 F(x,,,,.,xt,yt -.—lr.)

Derivation: Herein Ui : \/rnjs I
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Forward-Backward Algorithm
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Viterbi Algorithm

Vebwe : @, (k)2 max Xiyoy Xt Yoy ooy Yeur, Ye = k
r B o Pl Xe g Yo e )

ul%d,,(?o(u\tbv’_—’v bt(k);é ;'?n:;:.' P(’(uw--,xt:)’uw/)’e-uye‘k>

Asm Yo = START

(D Tuidnkee w,(STARD=1 W, ()=0 VktsarT

@ For £</,..,T:

For k=), k-
Wy (k)= je?\‘,‘f,,m F(X* ye = k) “’k-n(J)P(7¢=k\ )’e-.j)
N S CUADECTTORPAES
@ C’—\Mfo‘\’e Most Probeble Assipmmert EDw ‘("j]
éebnlgglm),l I s+
Ve = ben () ekpuiners”



Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its
corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

Mismatch between learning objective function and prediction objective

function

— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015
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MBR DECODING



Inference for HMMs

co¥
— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)

56



Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he (33) — argimin 43pr9(°|aB) [6(@7 y)]
Yy

argmin Y pe(y | )((g,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models

You should be able to...

1.

I

o o

—
o

Show that structured prediction problems yield high-computation inference
problems

Define the first order Markov assumption
Draw a Finite State Machine depicting a first order Markov assumption
Derive the MLE parameters of an HMM

Define the three key problems for an HMM: evaluation, decoding, and
marginal computation

Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

Interpret the forward-backward algorithm as a message passing algorithm
Implement supervised learning for an HMM

Implement the forward-backward algorithm for an HMM

Implement the Viterbi algorithm for an HMM

Implement a minimum Bayes risk decoder with Hamming loss for an HMM



