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Reminders

• Homework 6: PAC Learning / Generative
Models

– Out: Wed, Mar 28

– Due: Wed, Apr 04 at 11:59pm

• Homework 7: HMMs

– Out: Wed, Apr 04

– Due: Mon, Apr 16 at 11:59pm
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HMM Outline
• Motivation

– Time Series Data
• Hidden Markov Model (HMM)

– Example: Squirrel Hill Tunnel Closures 
[courtesy of Roni Rosenfeld]

– Background: Markov Models
– From Mixture Model to HMM
– History of HMMs
– Higher-order HMMs

• Training HMMs
– (Supervised) Likelihood for HMM
– Maximum Likelihood Estimation (MLE) for HMM
– EM for HMM (aka. Baum-Welch algorithm)

• Forward-Backward Algorithm
– Three Inference Problems for HMM
– Great Ideas in ML: Message Passing
– Example: Forward-Backward on 3-word Sentence
– Derivation of Forward Algorithm
– Forward-Backward Algorithm
– Viterbi algorithm
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SUPERVISED LEARNING FOR 
HMMS
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HMM Parameters:

Hidden Markov Model
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HMM Parameters:

Assumption:

Generative Story: 

Hidden Markov Model
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y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Joint Distribution: 

Hidden Markov Model
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Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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HMMs: History

• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion

• Used in Shannon’s work on information theory (1948)

• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.

• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 

modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum

– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.

– McCallum:  multinomial Naïve Bayes for text

– With McCallum, IE using HMMs on CORA

• …
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Higher-order HMMs

• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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BACKGROUND: MESSAGE PASSING

15



Great Ideas in ML: Message Passing
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adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 
behind 
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there's
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Belief:
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my incoming
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2 31

Count the soldiers
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adapted from MacKay (2003) textbook
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Great Ideas in ML: Message Passing

4 
behind 
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there's
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only see
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Count the soldiers
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adapted from MacKay (2003) textbook

Belief:
Must be
2 + 1 + 3 = 6 of 
us
2 31

Belief:
Must be
1 + 1 + 4 = 6 of 
us

1 41



Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree

19
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us
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adapted from MacKay (2003) textbook



THE FORWARD-BACKWARD 
ALGORITHM
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Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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time flies like an arrow

n v p d n<START>

Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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• One possible assignment
• And what the 7 factors think of it …



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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Y2 Y3Y1

X3X2X1
find preferred tags
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Y2 Y3Y1

X3X2X1
find preferred tags
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm



Y2 Y3Y1

X3X2X1
find preferred tags
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Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product
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Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

39

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

X3X2X1
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags
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path prefixes
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Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Y2 Y3Y1

X3X2X1
find preferred tags
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.
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Forward-Backward Algorithm: Finds Marginals
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×
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“belief that Y2 = v”
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a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
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a 0.4

v 0.2
n 0
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divide 
by Z=0.5 

to get 
marginal 

probs



X3X2X1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Inference for HMMs

Whiteboard
– Derivation of Forward algorithm
– Forward-backward algorithm
– Viterbi algorithm
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Derivation of Forward Algorithm
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Derivation:

Definition:



Forward-Backward Algorithm
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Viterbi Algorithm
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Inference in HMMs

What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!
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Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  

– NLP example: In a sentence segmentation task, each segmental state may depend 
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function

– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 54
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MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution
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The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:
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The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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