
Hidden Markov Models

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 23

April 4, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 6: PAC Learning / Generative
Models

– Out: Wed, Mar 28

– Due: Wed, Apr 04 at 11:59pm

• Homework 7: HMMs

– Out: Wed, Apr 04

– Due: Mon, Apr 16 at 11:59pm

2

HMM Outline
• Motivation

– Time Series Data
• Hidden Markov Model (HMM)

– Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

– Background: Markov Models
– From Mixture Model to HMM
– History of HMMs
– Higher-order HMMs

• Training HMMs
– (Supervised) Likelihood for HMM
– Maximum Likelihood Estimation (MLE) for HMM
– EM for HMM (aka. Baum-Welch algorithm)

• Forward-Backward Algorithm
– Three Inference Problems for HMM
– Great Ideas in ML: Message Passing
– Example: Forward-Backward on 3-word Sentence
– Derivation of Forward Algorithm
– Forward-Backward Algorithm
– Viterbi algorithm

3

This Lecture

Last Lecture

SUPERVISED LEARNING FOR
HMMS

4

HMM Parameters:

Hidden Markov Model

6

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O .8
S .1
C .1

HMM Parameters:

Assumption:

Generative Story:

Hidden Markov Model

7X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational

convenience, we fold the
initial probabilities C into
the transition matrix B by

our assumption.

Joint Distribution:

Hidden Markov Model

8X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START

Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM

9

Supervised Learning for HMMs
Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

10

Yt Yt+1

Xt

Yt

Supervised Learning for HMMs
Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

11

Yt Yt+1

Xt

Yt

HMMs: History

• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion

• Used in Shannon’s work on information theory (1948)

• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.

• Late 80’s and 90’s: David Haussler (major player in

learning theory in 80’s) began to use HMMs for

modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum

– Freitag thesis with Tom Mitchell on IE from Web

using logic programs, grammar induction, etc.

– McCallum: multinomial Naïve Bayes for text

– With McCallum, IE using HMMs on CORA

• …

13
Slide from William Cohen

Higher-order HMMs

• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

14

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

BACKGROUND: MESSAGE PASSING

15

Great Ideas in ML: Message Passing

3
behind
you

2
behind
you

1
behind
you

4
behind
you

5
behind
you

1
before
you

2
before
you

there's
1 of me

3
before
you

4
before
you

5
before
you

Count the soldiers

16
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

3
behind
you

2
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of
us

only see
my incoming
messages

2 31

Count the soldiers

17
adapted from MacKay (2003) textbook

2
before
you

Great Ideas in ML: Message Passing

4
behind
you

1 before
you

there's
1 of me

only see
my incoming
messages

Count the soldiers

18
adapted from MacKay (2003) textbook

Belief:
Must be
2 + 1 + 3 = 6 of
us
2 31

Belief:
Must be
1 + 1 + 4 = 6 of
us

1 41

Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of tree

19
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of tree

20
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of tree

21
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of tree

22
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of tree

7 here

3 here

3 here

Belief:
Must be
14 of us

23
adapted from MacKay (2003) textbook

THE FORWARD-BACKWARD
ALGORITHM

24

Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

25

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

26

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

time flies like an arrow

n v p d n<START>

Hidden Markov Model

28

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * …)

X3X2X1

Y2 Y3Y1

29

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Forward-Backward Algorithm

30

Y2 Y3Y1

X3X2X1
find preferred tags

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

31

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

32

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

33

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

34

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

35

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
fin

d
p

re
f.

ta
g

s
…

v 3 5 3
n 4 5 2
a 0.1 0.2 0.1

v n a
v 1 6 4
n 8 4 0.1
a 0.1 8 0

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

36

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(a,END)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

37

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path

B(a,END)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

38

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

39

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

40

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

41

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

42

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

43

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals

44

b2(n)
(a + b + c) (x + y + z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

45

total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path
through a state also

includes a weight at that
state.

So α(n)·β(n) isn’t enough.

The extra weight is the
opinion of the emission

probability at this variable.

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

46

total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)

n

v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

47

total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide
by Z=0.5

to get
marginal

probs

X3X2X1

Y2 Y3Y1

48

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Inference for HMMs

Whiteboard
– Derivation of Forward algorithm
– Forward-backward algorithm
– Viterbi algorithm

49

Derivation of Forward Algorithm

50

Derivation:

Definition:

Forward-Backward Algorithm

51

Viterbi Algorithm

52

Inference in HMMs

What is the computational complexity of
inference for HMMs?

• The naïve (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

53

Shortcomings of
Hidden Markov Models

• HMM models capture dependences between each state and only its
corresponding observation

– NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

• Mismatch between learning objective function and prediction objective
function

– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 54

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START

MBR DECODING

55

Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of

hidden states, given a sequence of observations
(Viterbi decoding is a special case)

56

Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are

asked for a single tagging
• How should we choose just one from our probability

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns

the variable assignment with minimum expected loss
under the model’s distribution

57

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

The 0-1 loss function returns 1 only if the two assignments
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

58

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin

ŷ

X

y

p✓(y | x)(1� I(ˆy,y))

= argmax

ŷ
p✓(ˆy | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

The Hamming loss corresponds to accuracy and returns the number
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

59

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax

ŷi

p✓(ŷi | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

60

