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Reminders

Homework 6: PAC Learning [ Generative
Models

— Out: Wed, Mar 28

— Due: Wed, Apr 04 at 11:59pm
* Homework 7: HMMs

— Out: Wed, Apr 04

— Due: Mon, Apr 16 at 11:59pm




DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(x,y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Whiteboard
— Contrast: To model p(x) or not to model p(x)?



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more
efficient learner (requires fewer samples) than Logistic
Regression
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Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.

Slide courtesy of William Cohen



Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities = Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X =(X;, X5 ., Xp)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X =(X;, Xy ..., X)
— Predict a structure: Y=05,V V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting
* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a™, y"} L,
Sample 1 ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘




Dataset for Supervised
Handwriting Recognition
Data: D = {5’3(”>7 y(m}fr]:[:l
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Figures from (Chatzis & Demiris, 201



Dataset for Supervised
Phoneme (Speech) Recognition

Data: D = {z™, ¢y

Sample 1
0000000000 b
v - I
b -

Figures from (Jansen & Niyogi, 2013)



Wor! Alignment / Phrase Extraction

* Variables (boolean):
— For each (Chinese phrase,
English phrase) pair,
are they linked?

B # 3 E
P

0 1 2 3 4 5
In the past two years

* Interactions:
— Word fertilities
— Few “jumps” (discontinuities)
— Syntactic reorderings

— “ITG contraint” on alignment

— Phrases are disjoint (?)
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Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions:

— Words used by
representative and their
vote

— Pairs of representatives
and their local context




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting
* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent [abeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
l[atent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
l[atent variables in
mind

z is not observed at
train or test time
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit a latent [abeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

|

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

24



Structured Prediction




Machine Learning




Machine Learning
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BACKGROUND



Background

Whiteboard
— Chain Rule of Probability
— Conditional Independence



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

All B|C Later we will also
write: I<A4, {C}, B>



HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs

— Higher-order HMMs

Training HMMs
— (Supervised) Likelihood for HMM
— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)
Forward-Backward Algorithm
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,5,5,0,C,2m,3m, 18m,9m,27m) =  (.8*.2%.1% 03%*...)
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [ travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m,3m, 18m,9m,27m) = (.8 *.08*.2*.7%.03%*...)
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From Mixture Model to HMM

O OO OO
“Naive Bayes”: P(X,Y)= HP Xi|Yy)p(Yr)

Rars

P(Y1) HPXtm Hthm !
t:1 t=2




From Mixture Model to HMM

“Naive Bayes”: P(X,Y)= HP Xi|Yy)p(Yr)

e

T
P(X,Y|Yo) = | [ P(X:|Y2)p(Y:]Yiz1)
t=1




SUPERVISED LEARNING FOR
HMMS



Hidden Markov Model
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k

Assumption: y, = START z G

Generative Story:

For notational
convenience, we fold the

Y: ~ Multinomial(By, ,) V¢ initial probabilities C into
. . the transition matrix B by
X~ Multlnomlal(Ayt) vVt our assumption.

MO



Hidden Markov Model




Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



