

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models

Matt Gormley Lecture 22 April 2, 2018

Reminders

- Homework 6: PAC Learning / Generative Models
 - Out: Wed, Mar 28
 - Due: Wed, Apr 04 at 11:59pm
- Homework 7: HMMs
 - Out: Wed, Apr 04
 - Due: Mon, Apr 16 at 11:59pm

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

Whiteboard

- Contrast: To model p(x) or not to model p(x)?

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes

solid: NB dashed: LR

Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled -> Closed form solution for MLE

Logistic Regression:

Parameters are coupled \rightarrow No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities \rightarrow Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

MOTIVATION: STRUCTURED PREDICTION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Sample 1:	n	v flies	p like	an	n }	$y^{(1)}$ $x^{(1)}$
Sample 2:	n	n	like	d	n }	$y^{(2)}$ $x^{(2)}$
Sample 3:	n	fly	with	n	n } vings	$y^{(3)}$ $x^{(3)}$
Sample 4:	with	n	you	will	v }	$y^{(4)}$ $x^{(4)}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Application:

Word Alignment / Phrase Extraction

Variables (boolean):

For each (Chinese phrase, English phrase) pair, are they linked?

Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)

Application:

Congressional Voting

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard (y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

Structured Prediction

Preview of challenges to come...

Consider the task of finding the most probable assignment to the output

Classification
$$\hat{y} = \operatorname*{argmax}_{y} p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$
 where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

Machine Learning

BACKGROUND

Background

Whiteboard

- Chain Rule of Probability
- Conditional Independence

Background: Chain Rule of Probability

For random variables A and B:

$$P(A,B) = P(A|B)P(B)$$

For random variables X_1, X_2, X_3, X_4 :

$$P(X_1, X_2, X_3, X_4) = P(X_1 | X_2, X_3, X_4)$$

$$P(X_2 | X_3, X_4)$$

$$P(X_3 | X_4)$$

$$P(X_4)$$

Background: Conditional Independence

Random variables A and B are conditionally independent given C if:

$$P(A,B|C) = P(A|C)P(B|C)$$
 (1)

or equivalently:

$$P(A|B,C) = P(A|C) \tag{2}$$

We write this as:

$$A \perp \!\!\! \perp \!\!\! \perp \!\!\! B | C$$

Later we will also write: I < A, $\{C\}$, B >

HIDDEN MARKOV MODEL (HMM)

HMM Outline

Motivation

Time Series Data

Hidden Markov Model (HMM)

- Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
- Background: Markov Models
- From Mixture Model to HMM
- History of HMMs
- Higher-order HMMs

Training HMMs

- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm

- Three Inference Problems for HMM
- Great Ideas in ML: Message Passing
- Example: Forward-Backward on 3-word Sentence
- Derivation of Forward Algorithm
- Forward-Backward Algorithm
- Viterbi algorithm

Markov Models

Whiteboard

- Example: Squirrel Hill Tunnel Closures[courtesy of Roni Rosenfeld]
- First-order Markov assumption
- Conditional independence assumptions

Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (travel time).

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .1 * .03 * ...)$$

A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$

From Mixture Model to HMM

From Mixture Model to HMM

SUPERVISED LEARNING FOR HMMS

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \text{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

Joint Distribution:

$$y_0 = \mathsf{START}$$

$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

$$= \prod_{t=1}^{I} A_{y_t, x_t} B_{y_{t-1}, y_t}$$

Training HMMs

Whiteboard

- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM