10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Naive Bayes

Matt Gormley
Lecture 21
March 28, 2018



Reminders

Homework 6: PAC Learning [ Generative
Models

— Out: Wed, Mar 28
— Due: Wed, Apr 04 at 11:59pm




NAIVE BAYES



Naive Bayes Outline

Real-world Dataset
— Economist vs. Onion articles

— Document = bag-of-words = binary
feature vector

Naive Bayes: Model
— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without
NB assumption

Naive Bayes: Learning from Data
— Data likelihood
— MLE for Naive Bayes
— MAP for Naive Bayes

Visualizing Gaussian Naive Bayes



Fake News Detector

Today’s Goal: To define a generative model of emails
of two different classes (e.g. real vs. fake news)

The Economist

The Onion

La paralizacion
Spain may be heading for its
third election in a ye

Al Ladee! upciewy

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government
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BACK in June, after Spain's second Indecisive election in six months,

ADOCIRtion was that Mariano Rajoy, the prime minister, would swiftly form a new

governmaent. Although his conservative People's Party (PP) did not win back the absolute
ty it had lost in December, it remained easdy the largest party, with 137 of the 350
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« ELECTION 2016 MORE ELECTION COVERAGE

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop

NEWSIN BRIEY

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. *Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senfor

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as
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Naive Bayes: Model

Whiteboard

— Document = bag-of-words = binary feature
vector

— Generating synthetic "labeled documents"
— Definition of model
— Naive Bayes assumption

— Counting # of parameters with [ without NB
assumption



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip
each red coin each blue coin
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What’s wrong with the
Naive Bayes Assumption?

The features might not be independent!!

Trump Spends Entire Classified National

* Example 1:
X "
Security Briefing Asking About Egyptian

— If a document contains the word -
“Donald”, it’s extremely likely to [
contain the word “Trump”

— These are not independent!

* Example 2:

— If the petal width is very high,
the petal length is also likely to
be very high




Naive Bayes: Learning from Data

Whiteboard
— Data likelihood
— MLE for Naive Bayes

— Example: MLE for Naive Bayes with Two
Features

— MAP for Naive Bayes



NAIVE BAYES: MODEL DETAILS



Model 1: Bernoulli Naive Bayes

Support: Binary vectors of length K
x € {0,1}%

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(f, v) Vk € {1,..., K}

MOdEl: p(b,e(w’y) :pd)’e(aj‘l,...,xK,y)

= ps(y) | | po.. (zxly)
k=1

K
— (qb)y(l _ ¢)(1—y) H(9k7y)a:k(1 . Hk,y)(l_xk)
k=1



Model 1: Bernoulli Naive Bayes

Support: Binary vectors of length K
x € {0,1}%

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(f v) Vk € {1,... K&

Same as Generic

1

Model: Po.0(®,y) = ($)Y(1 — ¢)1-Y) ; Nsitve Ba!yes

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



Model 1: Bernoulli Naive Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X,|Y) we condition on the data with the corresponding

class. N ;
b S I(y® = 1)
N
SN I(y@ =0Azl? =1)

Or.0 = .
. S Iy =0)
N i 1
9, 1 — > o My = 1/\3712) =1)

vazl I(y(® = 1)
Vk e {l,...,K}



Model 1: Bernoulli Naive Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X,|Y) we condition on the data with the corresponding

class. 27{\;1 I(y® = 1) Data:

¢ — N Y X, X, X3 e Xg

0. 0 = 27]3\;1 H(y(i) =0 A x,(:) =1) O] 1|0 |1 |.]|1

o Zf\;l I(y(®) = 0) 1] 0] 1|0 .| 1

! 1T 01 ] 1 .| 1

O = Zi\le H(y(i) = x}({z’) = 1) of[lo|o |1 ]..]|1
k,1 — .

qu;\;1 I[(y(z) =1) ol||1]o]|1]|..]o0

1 1 o) 1 .

Vk e {l,...,K}




Other NB Models

1. Bernoulli Naive Bayes:
— for binary features

2. Gaussian Naive Bayes:
— for continuous features

3. Multinomial Naive Bayes:
— for integer features

4. Multi-class Naive Bayes:

— for classification problems with > 2 classes

— event model could be any of Bernoulli, Gaussian,
Multinomial, depending on features



Model 2: Gaussian Naive Bayes

Support: = RK

Model: Product of prior and the event model

p(may) :p(xlaﬂwa?y)

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Model 3: Multinomial Naive Bayes

Support: Option 1: Integer vector (word IDs)

X = |r1,X2,...,Tp | Wherex,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y" ~ Bernoulli(¢)
forj e {1,...,M;}:

% ~ Multinomial(8,,», 1)

Model:

Ps.6(@,y) = ps(y) | | po. (zxly)
k=1

M;
= (¢)?(L— ) [] by.c,
j=1



Model 5: Multiclass Naive Bayes

Model:

The only change is that we permit y to range over C
classes.

p(way) :p(ml,...,ZUK,y)

k
Now, y ~ Multinomial(¢,
rate conditional distributio
classes.

) and we have a sepa-
(x|y) for each of the C

)
SR



Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y) = P(Y) [] P(XilY)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X,|Y) we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



-\la'l've Bayes Model




1. Add
2. Adc

Smoothing

-1 Smoothing
-A Smoothing

3. MA

P Estimation (Beta Prior)



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



MLE

For Naive Bayes, suppose we never observe
the word “serious” in an Onion article.

In this case, what is the MLE of p(x, | y)?
SN I(yD =0 Az =1)
i, Iy® = 0)
Now suppose we observe the word “serious’

at test time. What is the posterior probability
that the article was an Onion article?

o - Pxly)p(y)
p(y|x) ()

Or.0 =

)




1. Add-1 Smoothing

The simplest setting for smoothing simply adds a single
pseudo-observation to the data. This converts the true
observations D into a new dataset D’ from we derive
the MLEs.

D = {(x", ")}, (1)

1=

D’ :DU{(070)7(071)7(170)7(171)} (2)

where 0 is the vector of all zeros and 1 is the vector of
all ones.

This has the effect of pretending that we observed
each feature x;, with each class y.



1. Add-1 Smoothing

What if we write the MLEs in terms of the original
dataset D?

5o L 10 =1)




2. Add-A Smoothing

For the Categorical Distribution

Suppose we have a dataset obtained by repeatedly
rolling a K-sided (weighted) die. Given data D =
{1 where (¥ € {1,..., K}, we have the fol-
lowing MLE:

Zi\il H(x(i) = k)
N

P =

With add-A smoothing, we add pseudo-observations as
before to obtain a smoothed estimate:

A+ 12D = k)

o X+ N




3. MAP Estimation (Beta Prior)

Generative Story:
The parameters are
drawn once for the
entire dataset.

fork e {1,...,K}:
fory € {0, 1}:
0k, ~ Beta(a, )
fori e {1,...,N}:
yD ~ Bernoulli(¢)
fork e {1,... ,K}:

o0

~ Bernoulli(0y, )

Training: Find the class-conditional
MAP parameters

27];\;1 H(y(i) =1)

¢ = N
0 0 — (a—1) —|—va21 ]I(y(i) — O/\.cz;,(:) =1)
T (a-1)+B-1)+ 3 I(y® =0)
g, — @1 + X IyY =143 =1)

(@—1)+ (B 1)+ Iy® =1)

Vke{l,...,K}



VISUALIZING NAIVE BAYES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_ set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3-3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

30



Slide from William Cohen



Slide from William Cohen



Naive Bayes has a linear decision boundary if
variance (sigma) is constant across classes

LY.

!
15

2 : v - 'S - - ' - »
. . : i 3 is ' s 3

Slide from William Cohen (10-601B, Spring 2016)



Iris Data (2 classes)
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Iris Data (2 classes)

Classification with Naive Bayes

37



Iris Data (2 classes)

Classification with Naive Bayes




Iris Data (3 classes)
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Iris Data (3 classes)

Classification with Naive Bayes

40



Iris Data (3 classes)

Classification with Naive Bayes
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One Pocket
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One Pocket

Classification with Naive Bayes

43



One Pocket

Naive Bayes Distribution

variance learned for each class




Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose p(x., |y) appropriate to the data
(e.g. Bernoulli for binary features,
Gaussian for continuous features)

3. Train by MLE or MAP
4. Classity by maximizing the posterior



DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(x,y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood



Generative vs. Discriminative

Whiteboard
— Contrast: To model p(x) or not to model p(x)?



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more
efficient learner (requires fewer samples) than Logistic
Regression

49
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solid: NB dashed: LR
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Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.

51
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Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities = Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



Learning Objectives

Naive Bayes

You should be able to...

1.
2.

Vi b

o N o

Write the generative story for Naive Bayes

Create a new Naive Bayes classifier using your favorite probability distribution
as the event model

Apply the principle of maximum likelihood estimation (MLE) to learn the
parameters of Bernoulli Naive Bayes

Motivate the need for MAP estimation through the deficiencies of MLE

Apply the principle of maximum a posteriori (MAP) estimation to learn the
parameters of Bernoulli Naive Bayes

Select a suitable prior for a model parameter
Describe the tradeoffs of generative vs. discriminative models
Implement Bernoulli Naives Bayes

Employ the method of Lagrange multipliers to find the MLE parameters of
Multinomial Naive Bayes

Describe how the variance affects whether a Gaussian Naive Bayes model will
have a linear or nonlinear decision boundary



