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Reminders

• Homework 6: PAC Learning / Generative
Models
– Out: Wed, Mar 28
– Due: Wed, Apr 04 at 11:59pm

2



NAÏVE BAYES
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Naïve Bayes Outline

• Real-world Dataset
– Economist vs. Onion articles

– Document à bag-of-words à binary 

feature vector

• Naive Bayes: Model
– Generating synthetic "labeled documents"

– Definition of model

– Naive Bayes assumption

– Counting # of parameters with / without 

NB assumption

• Naïve Bayes: Learning from Data
– Data likelihood

– MLE for Naive Bayes

– MAP for Naive Bayes

• Visualizing Gaussian Naive Bayes
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Fake News Detector
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The Economist The Onion

Today’s Goal: To define a generative model of emails 

of two different classes (e.g. real vs. fake news)



Naive Bayes: Model

Whiteboard
– Document à bag-of-words à binary feature 

vector

– Generating synthetic "labeled documents"

– Definition of model

– Naive Bayes assumption

– Counting # of parameters with / without NB 

assumption
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Model 1: Bernoulli Naïve Bayes

7

If HEADS, flip 

each red coin

Flip weighted coin

If TAILS, flip 

each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each red coin 

corresponds to 

an xm

… …

We can generate data in 

this fashion. Though in 

practice we never would 

since our data is given. 

Instead, this provides an 

explanation of how the 

data was generated 

(albeit a terrible one).



What’s wrong with the 

Naïve Bayes Assumption?

The features might not be independent!!
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• Example 1:

– If a document contains the word 

“Donald”, it’s extremely likely to 

contain the word “Trump”

– These are not independent!

• Example 2:

– If the petal width is very high, 

the petal length is also likely to 

be very high



Naïve Bayes: Learning from Data

Whiteboard
– Data likelihood

– MLE for Naive Bayes

– Example: MLE for Naïve Bayes with Two 

Features

– MAP for Naive Bayes
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NAÏVE BAYES: MODEL DETAILS
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Model 1: Bernoulli Naïve Bayes

11

Support: Binary vectors of length K

� {0, 1}K

Generative Story:

Y � Bernoulli(�)

Xk � Bernoulli(�k,Y ) �k � {1, . . . , K}

Model: p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)



Model 1: Bernoulli Naïve Bayes
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Support: Binary vectors of length K

� {0, 1}K

Generative Story:

Y � Bernoulli(�)

Xk � Bernoulli(�k,Y ) �k � {1, . . . , K}

Model: p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)

Classification: Find the class that maximizes the posterior

ŷ =
y

p(y| )

p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)

Same as Generic 

Naïve Bayes



Model 1: Bernoulli Naïve Bayes
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Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 

P(Xk|Y)we condition on the data with the corresponding 

class.

� =

�N
i=1 I(y(i) = 1)

N

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

�k,1 =

�N
i=1 I(y(i) = 1 � x(i)

k = 1)
�N

i=1 I(y(i) = 1)

�k � {1, . . . , K}



Model 1: Bernoulli Naïve Bayes
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Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 

P(Xk|Y)we condition on the data with the corresponding 

class.

� =

�N
i=1 I(y(i) = 1)

N

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

�k,1 =

�N
i=1 I(y(i) = 1 � x(i)

k = 1)
�N

i=1 I(y(i) = 1)

�k � {1, . . . , K}

Data:

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0



Other NB Models

1. Bernoulli Naïve Bayes:

– for binary features
2. Gaussian Naïve Bayes: 

– for continuous features
3. Multinomial Naïve Bayes:

– for integer features
4. Multi-class Naïve Bayes:

– for classification problems with > 2 classes

– event model could be any of Bernoulli, Gaussian, 

Multinomial, depending on features
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Model 2: Gaussian Naïve Bayes
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Model: Product of prior and the event model

Support: 

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

� RK

Gaussian Naive Bayes assumes that p(xk|y) is given by
a Normal distribution.



Model 3: Multinomial Naïve Bayes
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Option 1: Integer vector (word IDs)

= [x1, x2, . . . , xM ] where xm � {1, . . . , K} a word id.

Support:

Generative Story:
for i � {1, . . . , N}:

y(i) � Bernoulli(�)

for j � {1, . . . , Mi}:

x(i)
j � Multinomial(�y(i) , 1)

Model:
p�,�(x, y) = p�(y)

K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
Mi�

j=1

�y,xj



Model 5: Multiclass Naïve Bayes
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Model:

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

Now, y � Multinomial(�, 1) and we have a sepa-
rate conditional distribution p(xk|y) for each of the C
classes.

The only change is that we permit y to range over C
classes.



Model: Product of prior and the event model

Naïve Bayes Model
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Generic

P ( , Y ) = P (Y )
K�

k=1

P (Xk|Y )

Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 

P(Xk|Y)we condition on the data with the corresponding 

class.Classification: Find the class that maximizes the posterior

ŷ =
y

p(y| )



Naïve Bayes Model
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Generic

Classification:

ŷ =
y

p(y| ) (posterior)

=
y

p( |y)p(y)

p(x)
(by Bayes’ rule)

=
y

p( |y)p(y)



Smoothing

1. Add-1 Smoothing

2. Add-λ Smoothing

3. MAP Estimation (Beta Prior)
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MLE

What does maximizing likelihood accomplish?

• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)

• MLE tries to allocate as much probability 

mass as possible to the things we have 

observed…

…at the expense of the things we have not
observed
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MLE

For Naïve Bayes, suppose we never observe 

the word “serious” in an Onion article.

In this case, what is the MLE of p(x
k

| y)?
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�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

Now suppose we observe the word “serious” 

at test time. What is the posterior probability 

that the article was an Onion article?

p(y|x) =
p(x|y)p(y)

p(x)



1. Add-1 Smoothing

The simplest setting for smoothing simply adds a single
pseudo-observation to the data. This converts the true
observations D into a new dataset D� from we derive
the MLEs.

D = {( (i), y(i))}N
i=1 (1)

D� = D � {( , 0), ( , 1), ( , 0), ( , 1)} (2)

where is the vector of all zeros and is the vector of
all ones.
This has the effect of pretending that we observed
each feature xk with each class y.
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1. Add-1 Smoothing
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What if we write the MLEs in terms of the original
dataset D?

� =

�N
i=1 I(y(i) = 1)

N

�k,0 =
1 +

�N
i=1 I(y(i) = 0 � x(i)

k = 1)

2 +
�N

i=1 I(y(i) = 0)

�k,1 =
1 +

�N
i=1 I(y(i) = 1 � x(i)

k = 1)

2 +
�N

i=1 I(y(i) = 1)

�k � {1, . . . , K}



2. Add-λ Smoothing
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Suppose we have a dataset obtained by repeatedly
rolling a K-sided (weighted) die. Given data D =
{x(i)}N

i=1 where x(i) � {1, . . . , K}, we have the fol-
lowing MLE:

�k =

�N
i=1 I(x(i) = k)

N

Withadd-� smoothing,weaddpseudo-observations as
before to obtain a smoothed estimate:

�k =
� +

�N
i=1 I(x(i) = k)

k� + N

For the Categorical Distribution



3. MAP Estimation (Beta Prior)
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Generative Story:
The parameters are 

drawn once for the 

entire dataset.

for k � {1, . . . , K}:
for y � {0, 1}:

�k,y � Beta(�, �)

for i � {1, . . . , N}:
y(i) � Bernoulli(�)

for k � {1, . . . , K}:

x(i)
k � Bernoulli(�k,y(i))

Training: Find the class-conditional 
MAP parameters

� =

�N
i=1 I(y(i) = 1)

N

�k,0 =
(� � 1) +

�N
i=1 I(y(i) = 0 � x(i)

k = 1)

(� � 1) + (� � 1) +
�N

i=1 I(y(i) = 0)

�k,1 =
(� � 1) +

�N
i=1 I(y(i) = 1 � x(i)

k = 1)

(� � 1) + (� � 1) +
�N

i=1 I(y(i) = 1)

�k � {1, . . . , K}



VISUALIZING NAÏVE BAYES
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris 

virginica (1), Iris versicolor (2) collected by 

Anderson (1936)
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Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Slide from William Cohen



Slide from William Cohen



Naïve Bayes has a linear decision boundary if 

variance (sigma) is constant across classes

Slide from William Cohen (10-601B, Spring 2016)



Iris Data (2 classes)
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Iris Data (2 classes)

37variance = 1



Iris Data (2 classes)

38variance learned for each class



Iris Data (3 classes)
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Iris Data (3 classes)

40variance = 1



Iris Data (3 classes)

41variance learned for each class



One Pocket
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One Pocket

43variance learned for each class



One Pocket

44variance learned for each class



Summary

1. Naïve Bayes provides a framework for 

generative modeling
2. Choose p(x

m
| y) appropriate to the data

(e.g. Bernoulli for binary features, 

Gaussian for continuous features)

3. Train by MLE or MAP
4. Classify by maximizing the posterior
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DISCRIMINATIVE AND 
GENERATIVE CLASSIFIERS
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Generative vs. Discriminative

• Generative Classifiers:
– Example: Naïve Bayes

– Define a joint model of the observations x and the 

labels y:

– Learning maximizes (joint) likelihood

– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression

– Directly model the conditional:  

– Learning maximizes conditional likelihood

47

p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative

Whiteboard
– Contrast: To model p(x) or not to model p(x)?

48



Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite 

training dataset]
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If model assumptions are correct: Naive Bayes is a more 

efficient learner (requires fewer samples) than Logistic 

Regression

If model assumptions are incorrect: Logistic Regression has 

lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR
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Slide courtesy of William Cohen



Naïve Bayes makes stronger assumptions about the data

but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ….” Andrew Ng 

and Michael Jordan, NIPS 2001.
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solid: NB dashed: LR

Slide courtesy of William Cohen



Generative vs. Discriminative

Learning (Parameter Estimation)
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Naïve Bayes: 
Parameters are decoupled à Closed form solution for MLE

Logistic Regression: 
Parameters are coupled à No closed form solution – must 

use iterative optimization techniques instead



Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)
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Bernoulli Naïve Bayes: 
Parameters are probabilities à Beta prior (usually) pushes 

probabilities away from zero / one extremes

Logistic Regression: 
Parameters are not probabilities à Gaussian prior 

encourages parameters to be close to zero 

(effectively pushes the probabilities away from zero / one 

extremes)



Naïve Bayes vs. Logistic Reg.

Features
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Naïve Bayes: 
Features x are assumed to be conditionally independent 

given y. (i.e. Naïve Bayes Assumption)

Logistic Regression: 
No assumptions are made about the form of the features x.  

They can be dependent and correlated in any fashion. 



Learning Objectives

Naïve Bayes
You should be able to…
1. Write the generative story for Naive Bayes

2. Create a new Naive Bayes classifier using your favorite probability distribution 

as the event model

3. Apply the principle of maximum likelihood estimation (MLE) to learn the 

parameters of Bernoulli Naive Bayes

4. Motivate the need for MAP estimation through the deficiencies of MLE

5. Apply the principle of maximum a posteriori (MAP) estimation to learn the 

parameters of Bernoulli Naive Bayes

6. Select a suitable prior for a model parameter

7. Describe the tradeoffs of generative vs. discriminative models

8. Implement Bernoulli Naives Bayes

9. Employ the method of Lagrange multipliers to find the MLE parameters of 

Multinomial Naive Bayes

10. Describe how the variance affects whether a Gaussian Naive Bayes model will 

have a linear or nonlinear decision boundary
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