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Q&A
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Q: Professor Gormley said there might be an error in the 

corollaries of the Realizable / Agnostic case for inifinite

|H|. What are the correct versions?

A: Here they are…



Reminders

• Homework 6: PAC Learning / Generative
Models

– Out: Mon, Mar 26 (+/-)

– Due: Mon, Apr 02 (+/-) at 11:59pm
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PROBABILITY
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Random Variables: Definitions
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Discrete 
Random
Variable

Random variable whose values come 

from a countable set (e.g. the natural 

numbers or {True, False})

Probability 
mass 
function 
(pmf)

Function giving the probability that 

discrete r.v. X takes value x.

X

p(x) := P (X = x)

p(x)



Random Variables: Definitions
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Continuous 
Random
Variable

Random variable whose values come 

from an interval or collection of 

intervals (e.g. the real numbers or the 

range (3, 5))

Probability 
density 
function 
(pdf)

Function the returns a nonnegative 

real indicating the relative likelihood 

that a continuous r.v. X takes value x

X

f(x)

• For any continuous random variable: P(X = x) = 0
• Non-zero probabilities are only available to intervals: 

P (a � X � b) =

� b

a
f(x)dx



Random Variables: Definitions
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Cumulative
distribution 
function

Function that returns the probability 

that a random variable X is less than or 

equal to x:

F (x)

F (x) = P (X � x)

• For discrete random variables:

• For continuous random variables:

F (x) = P (X � x) =
�

x�<x

P (X = x�) =
�

x�<x

p(x�)

F (x) = P (X � x) =

� x

��
f(x�)dx�



Notational Shortcuts
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P (A|B) =
P (A, B)

P (B)

� For all values of a and b:

P (A = a|B = b) =
P (A = a, B = b)

P (B = b)

A convenient shorthand:



Notational Shortcuts

But then how do we tell P(E) apart from P(X) ?
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Event
Random

Variable

P (A|B) =
P (A, B)

P (B)
Instead of writing:

We should write:

PA|B(A|B) =
PA,B(A, B)

PB(B)

…but only probability theory textbooks go to such lengths.



COMMON PROBABILITY 
DISTRIBUTIONS
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Common Probability Distributions

• For Discrete Random Variables:

– Bernoulli

– Binomial

– Multinomial

– Categorical

– Poisson

• For Continuous Random Variables:

– Exponential

– Gamma

– Beta

– Dirichlet

– Laplace

– Gaussian (1D)

– Multivariate Gaussian
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Common Probability Distributions

Beta Distribution
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1

0

1

2

3

4

f
(�

|↵
,�

)

0 0.2 0.4 0.6 0.8 1
�

↵ = 0.1,� = 0.9
↵ = 0.5,� = 0.5
↵ = 1.0,� = 1.0
↵ = 5.0,� = 5.0
↵ = 10.0,� = 5.0

probability density function:



Common Probability Distributions

Dirichlet Distribution
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1
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↵ = 0.1,� = 0.9
↵ = 0.5,� = 0.5
↵ = 1.0,� = 1.0
↵ = 5.0,� = 5.0
↵ = 10.0,� = 5.0

probability density function:



Common Probability Distributions

Dirichlet Distribution
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Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta( �
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
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probability density function:



EXPECTATION AND VARIANCE
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Expectation and Variance

17

• Discrete random variables:

E[X] =
�

x�X
xp(x)

Suppose X can take any value in the set X .

• Continuous random variables:

E[X] =

� +�

��
xf(x)dx

The expected value of X is E[X]. Also called the mean.



Expectation and Variance
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The variance of X is Var(X).

V ar(X) = E[(X � E[X])2]

• Discrete random variables:

V ar(X) =
�

x�X
(x � µ)2p(x)

• Continuous random variables:

V ar(X) =

� +�

��
(x � µ)2f(x)dx

µ = E[X]



MULTIPLE RANDOM VARIABLES

Joint probability

Marginal probability

Conditional probability

19



Joint Probability

20

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)⊤] =

∫

x
(x−m)(x−m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)⊤] = C

=

∫

xy
(x−mx)(y −my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities
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Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)⊤] =

∫

x
(x−m)(x−m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)⊤] = C

=

∫

xy
(x−mx)(y −my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability
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Slide from Sam Roweis (MLSS, 2005)

Means, Variances and Covariances

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)⊤] =

∫

x
(x−m)(x−m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean.

• Also, the covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)⊤] = C

=

∫

xy
(x−mx)(y −my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)



Independence and 

Conditional Independence
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Bayes’ Rule

•Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)

Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

•Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

•Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p∥q] =
∑

x

p(x)[log p(x)− log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).

Slide from Sam Roweis (MLSS, 2005)



MLE AND MAP
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MLE

25

Suppose we have dataD = {x(i)}N
i=1

�MLE =
�

N�

i=1

p( (i)|�)

�MAP =
�

N�

i=1

p( (i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 

of the data.

�MLE =
�

N�

i=1

p( (i)|�)

Maximum Likelihood Estimate (MLE)



MLE

What does maximizing likelihood accomplish?

• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)

• MLE tries to allocate as much probability 

mass as possible to the things we have 

observed…

…at the expense of the things we have not
observed

26



MLE

Example: MLE of Exponential Distribution

27

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE

Example: MLE of Exponential Distribution

28

• First write down log-likelihood of sample.

�(�) =
N�

i=1

f(x(i)) (1)

=
N�

i=1

(� (��x(i))) (2)

=
N�

i=1

(�) + ��x(i) (3)

= N (�) � �
N�

i=1

x(i) (4)



MLE

Example: MLE of Exponential Distribution

29

• Compute first derivative, set to zero, solve for �.

d�(�)

d�
=

d

d�
N (�) � �

N�

i=1

x(i) (1)

=
N

�
�

N�

i=1

x(i) = 0 (2)

� �MLE =
N

�N
i=1 x(i)

(3)



MLE

Example: MLE of Exponential Distribution

30

• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



MLE

In-Class Exercise

Show that the MLE of 

parameter p for N 

samples drawn from 

Bernoulli(p) is:

31

Steps to answer:

1. Write log-likelihood 

of sample

2. Compute derivative 

w.r.t. p

3. Set derivative to 

zero and solve for p



Learning from Data (Frequentist)

Whiteboard
– Optimization for MLE

– Examples: 1D and 2D optimization

– Example: MLE of Bernoulli

– Example: MLE of Categorical

– Aside: Method of Langrange Multipliers

32



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE =
�

N�

i=1

p( (i)|�)

�MAP =
�

N�

i=1

p( (i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 

of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 

of the data.

�MLE =
�

N�

i=1

p( (i)|�)

Maximum Likelihood Estimate (MLE)

Maximum a posteriori (MAP) estimate



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE =
�

N�

i=1

p( (i)|�)

�MAP =
�

N�

i=1

p( (i)|�)p(�)

Principle of Maximum a posteriori (MAP) Estimation:
Choose the parameters that maximize the posterior 

of the parameters given the data.

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 

of the data.

�MLE =
�

N�

i=1

p( (i)|�)

Maximum Likelihood Estimate (MLE)

�MAP =
�

N�

i=1

p( (i)|�)p(�)

Maximum a posteriori (MAP) estimate

Prior



Learning from Data (Bayesian)

Whiteboard
– maximum a posteriori (MAP) estimation

– Optimization for MAP

– Example: MAP of Bernoulli—Beta 

35



Takeaways

• One view of what ML is trying to accomplish is 

function approximation

• The principle of maximum likelihood 
estimation provides an alternate view of 

learning

• Synthetic data can help debug ML algorithms

• Probability distributions can be used to model
real data that occurs in the world

(don’t worry we’ll make our distributions more 

interesting soon!)

36



Learning Objectives

MLE / MAP
You should be able to…
1. Recall probability basics, including but not limited to: discrete 

and continuous random variables, probability mass functions, 

probability density functions, events vs. random variables, 

expectation and variance, joint probability distributions, 

marginal probabilities, conditional probabilities, independence, 

conditional independence

2. Describe common probability distributions such as the Beta, 

Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.

3. State the principle of maximum likelihood estimation and 

explain what it tries to accomplish

4. State the principle of maximum a posteriori estimation and 

explain why we use it

5. Derive the MLE or MAP parameters of a simple model in closed 

form
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