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Reminders

• Midterm Exam
– Thursday Evening 6:30 – 9:00 (2.5 hours)
– Room and seat assignments will be announced 

on Piazza
– You may bring one 8.5 x 11 cheatsheet
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming
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Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



Oracles and Sampling

Whiteboard
– Sampling from common probability distributions

• Bernoulli
• Categorical
• Uniform
• Gaussian

– Pretending to be an Oracle (Regression)
• Case 1: Deterministic outputs
• Case 2: Probabilistic outputs

– Probabilistic Interpretation of Linear Regression
• Adding Gaussian noise to linear function
• Sampling from the noise model

– Pretending to be an Oracle (Classification)
• Case 1: Deterministic labels
• Case 2: Probabilistic outputs (Logistic Regression)
• Case 3: Probabilistic outputs (Gaussian Naïve Bayes)
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In-Class Exercise

1. With your neighbor, write a function which 
returns samples from a Categorical
– Assume access to the rand() function

– Function signature should be:

categorical_sample(theta)
where theta is the array of parameters

– Make your implementation as efficient as 
possible!

2. What is the expected runtime of your 
function?
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Generative vs. Discrminative

Whiteboard
– Generative vs. Discriminative Models

• Chain rule of probability

• Maximum (Conditional) Likelihood Estimation for 
Discriminative models

• Maximum Likelihood Estimation for Generative 
models
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Categorical Distribution

Whiteboard
– Categorical distribution details

• Independent and Identically Distributed (i.i.d.)

• Example: Dice Rolls
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Takeaways

• One view of what ML is trying to accomplish is 
function approximation

• The principle of maximum likelihood 
estimation provides an alternate view of 
learning

• Synthetic data can help debug ML algorithms

• Probability distributions can be used to model
real data that occurs in the world
(don’t worry we’ll make our distributions more 
interesting soon!)
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Learning Objectives

Oracles, Sampling, Generative vs. Discriminative
You should be able to…
1. Sample from common probability distributions
2. Write a generative story for a generative or 

discriminative classification or regression model
3. Pretend to be a data generating oracle
4. Provide a probabilistic interpretation of linear 

regression
5. Use the chain rule of probability to contrast 

generative vs. discriminative modeling
6. Define maximum likelihood estimation (MLE) and 

maximum conditional likelihood estimation (MCLE)
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