Recurrent Neural Networks (RNNs)

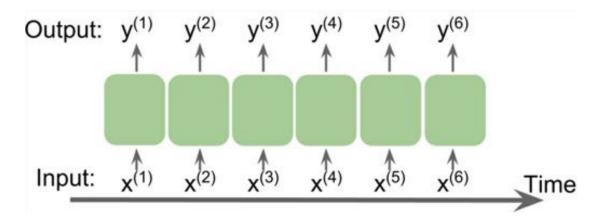
Roi Yehoshua 3/9/2018

Agenda

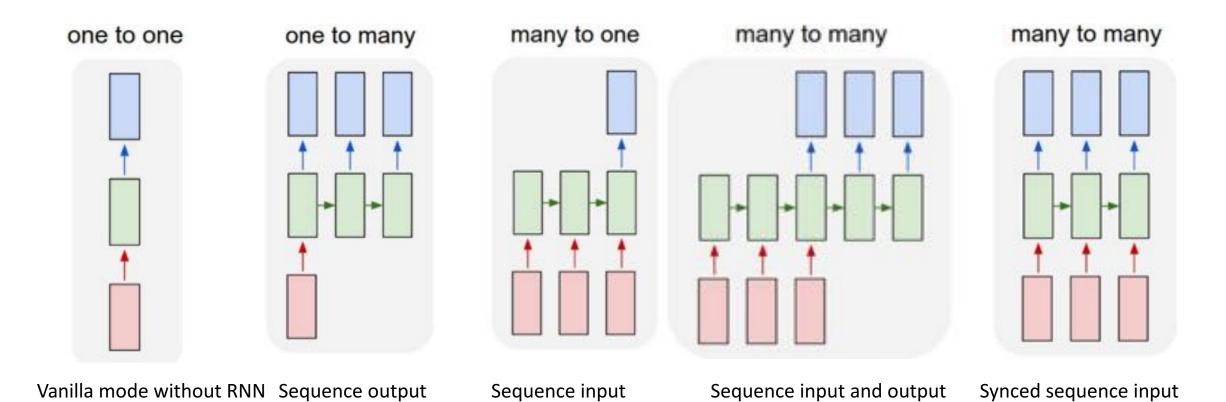
- Representing Sequences
- Structure of RNNs
- Computing activations in RNNs
- Training RNNs (Backpropagation Through Time)
- ▶ The problem of vanishing gradients
- **▶** LSTMs
- Practical Applications of RNNs

Recurrent Neural Networks (RNNs)

- Standard NN models (MLPs, CNNs) are not able to handle sequences of data
 - They accept a fixed-sized vector as input and produce a fixed-sized vector as output
 - The weights are updated independent of the order the samples are processed
- ▶ RNNs are designed for modeling **sequences**
 - Sequences in the input, in the output or in both
 - They are capable of remembering past information



Different Categories of Sequence Modeling



e.g., sentiment analysis

e.g., machine translation

and output

e.g., video classification

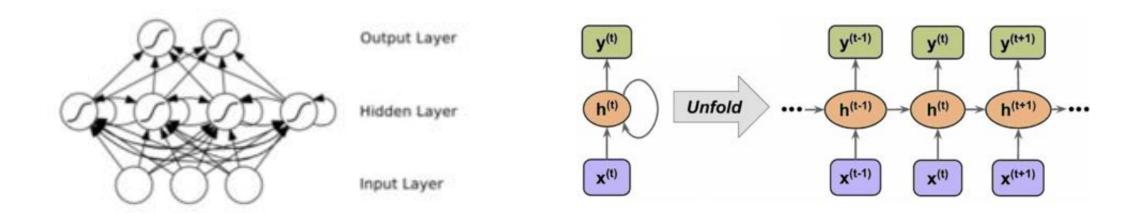
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

e.g., image captioning

e.g. image classification

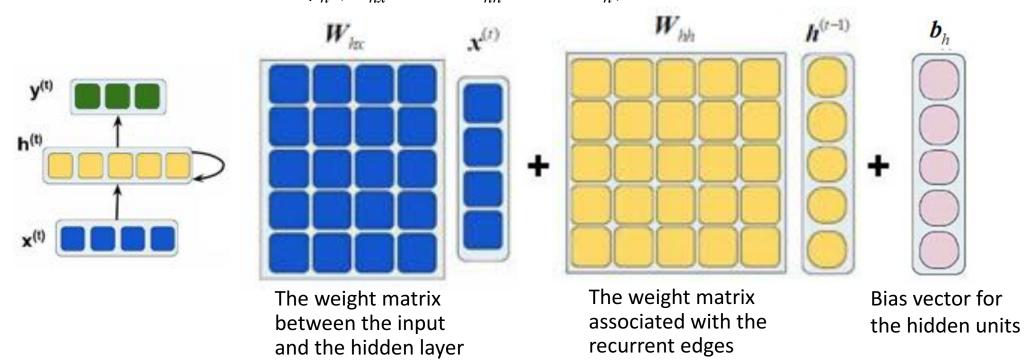
Structure of RNNs

- In RNN the hidden layers are **recurrent layers**, where every neuron is connected to every other neuron in the layer
- The hidden layer gets its input from both the input layer $x^{(t)}$ and the hidden layer from the previous time step $h^{(t-1)}$



Computing Activations in RNN

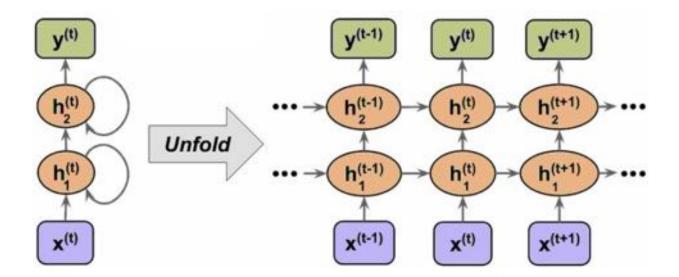
New hidden state: $\boldsymbol{h}^{(t)} = \phi_h(\boldsymbol{W}_{hx}\boldsymbol{x}^{(t)} + \boldsymbol{W}_{hh}\boldsymbol{h}^{(t-1)} + \boldsymbol{b}_h)$



• Output: $y^{(t)} = \phi_y (W_{yh} h^{(t)} + b_y)$

Multilayer RNN

The second hidden layer gets its input from the hidden units from the layer below at the current time step $h_1^{(t)}$ and its own hidden values from previous time step $h_2^{(t-1)}$

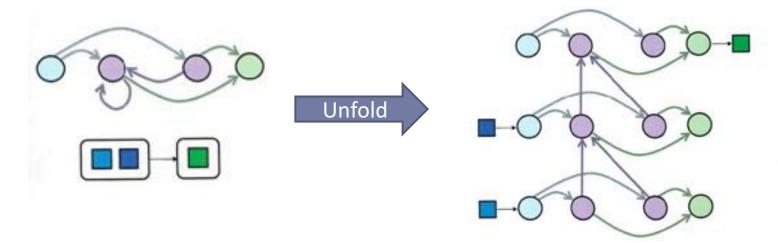


Representational Power of RNNs

- Regular feed-forward neural networks are not Turing-Complete
 - They can represent any single mathematical function but don't have any ability to perform looping or other control flow operations
- RNNs are Turing-Complete [Killan and Siegelmann, 1996]
 - They can simulate arbitrary programs
 - They can represent any mapping between input and output sequences

Training RNNs

RNNs are trained by unfolding them into deep feedforward networks, where a new layer is created for each time step of an input sequence processed by the network



- ▶ Then Backpropagation is used to train the unfolded version of the network
 - Using the chain rule, as in feedforward networks
 - Paul Werbos, Backpropagation Through Time: What It Does and How to Do It, Proceedings of IEEE, 78(10):1550-1560, 1990

Backpropagation Through Time (BPTT)

▶ The overall loss L is the sum of all the loss functions at times t = 1 to t = T:

$$L = \sum_{t=1}^{T} L^{(t)}$$

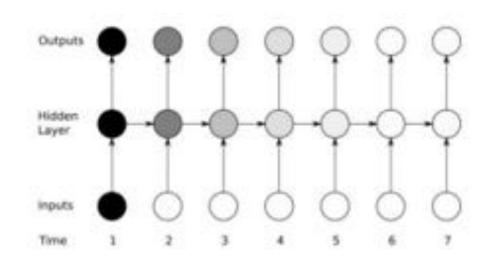
 \blacktriangleright The loss at time t depends on the hidden units at all previous time steps (1..t)

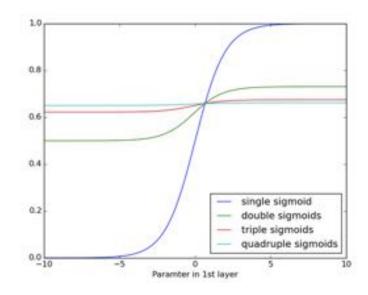
$$\frac{\partial L^{(t)}}{\partial \boldsymbol{W}} = \frac{\partial L^{(t)}}{\partial \boldsymbol{y}^{(t)}} \cdot \frac{\partial \boldsymbol{y}^{(t)}}{\partial \boldsymbol{h}^{(t)}} \cdot \left[\sum_{k=1}^{t} \left(\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{h}^{(k)}} \cdot \frac{\partial \boldsymbol{h}^{(k)}}{\partial \boldsymbol{W}} \right) \right] \qquad \frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{h}^{(k)}} = \prod_{i=k+1}^{t} \frac{\partial \boldsymbol{h}^{(i)}}{\partial \boldsymbol{h}^{(i-1)}}$$

- **W** can be either W_{hh} or W_{hx}
- ▶ BPTT can be computationally expensive as the number of time steps increases

The Problem of Vanishing Gradients

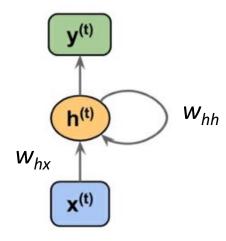
- Backpropagation computes gradients by the chain rule
- ▶ The gradient decreases exponentially with the number of layers in the network
 - or the length of the sequence in the case of RNNs
- ▶ This causes the front layers to train very slowly
 - ▶ Thus, vanilla RNNs are unable to capture long-term dependencies





Class Exercise

▶ Assume a single neuron, fully-connected recurrent layer:



Prove:
$$\frac{\partial h^{(t)}}{\partial x^{(t-k)}} \le |w_{hh}|^k \cdot w_{hx}$$

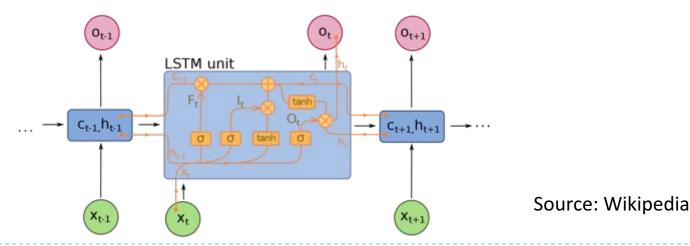
Activation function may be either sigmoid, tanh or RelU

Truncated BPTT (TBPTT)

- ▶ A modified version of BPTT suggested by Ilya Sutskever in 2013:
 - 1. Present a sequence of k_1 time steps of input and output pairs to the network
 - 2. Perform an BPTT update back for k_2 time steps
 - 3. Repeat
- ▶ Example: Split a 1,000-long sequence into 50 sequences each of length 20 and treat each sequence of length 20 as a separate training case
- \triangleright k_2 should be large enough to capture the temporal structure in the problem
 - but small enough to avoid vanishing gradients
- **Problem:** the network is blind to dependencies that span more than k_2 time steps

LSTM (Long Short Term Memory)

- Suggested in 1997 by Hochreiter and Schmidhuber as a solution to the vanishing gradient problem
- An LSTM cell stores a value (state) for either long or short time periods
- It contains three gates:
 - Forget gate controls the extent to which a value remains in the cell
 - Input gate controls the extent to which a new value flows into the cell
 - Output gate controls the extent to which the value in the cell is used to compute the output

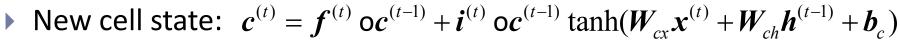


LSTM Forward Pass

Forget gate: $f^{(t)} = \sigma(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + b_f)$

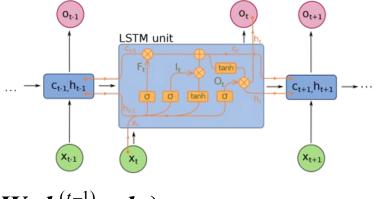
Input gate: $\boldsymbol{i}^{(t)} = \sigma(\boldsymbol{W}_{ix}\boldsymbol{x}^{(t)} + \boldsymbol{W}_{ih}\boldsymbol{h}^{(t-1)} + \boldsymbol{b}_i)$

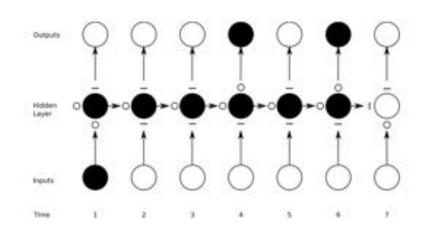
• Output gate: $o^{(t)} = \sigma(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + b_o)$



• Unit's output: $h^{(t)} = o^{(t)} \operatorname{otanh}(c^{(t)})$

 σ is the sigmoid function orefers to element-wise product





Training LSTMs

- An LSTM network (an RNN composed of LSTM units) is trained with BPTT
- ▶ The subsequent cell state is a **sum** of the current state with new input

$$c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ c^{(t-1)} \tanh(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + b_c)$$

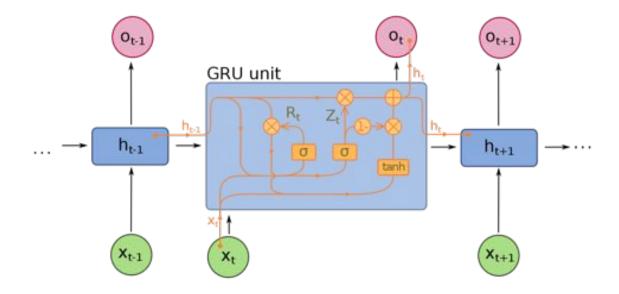
▶ This helps LSTMs preserve a constant error when it is backpropagated at depth

$$\frac{\partial \boldsymbol{c}^{(t)}}{\partial \boldsymbol{c}^{(t-1)}} = \boldsymbol{f}^{(t)} + \dots$$

The cells learn when to allow data to enter, leave or be deleted through the iterative process of backpropagating error and adjusting weights via gradient descent

Gated Recurrent Unit (GRU)

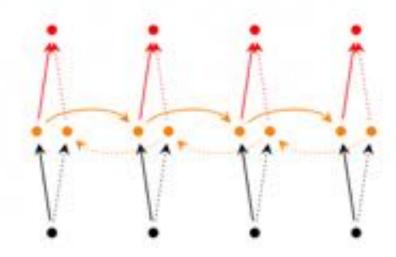
- Similar performance as LSTM with less computation
- ▶ They have fewer parameters than LSTM, as they lack an output gate



Cho, Kyunghyun et al. (2014). "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation", arXiv:1406.1078

Bidirectional RNNs

- Output at time t may not only depend on the previous elements in the sequence, but also future elements.
 - e.g., to predict a missing word in a sequence we'd like to look at both left and right context
- ▶ Bidirectional RNNs are just two RNNs stacked on top of each other
- ▶ The output is then computed based on the hidden state of both RNNs

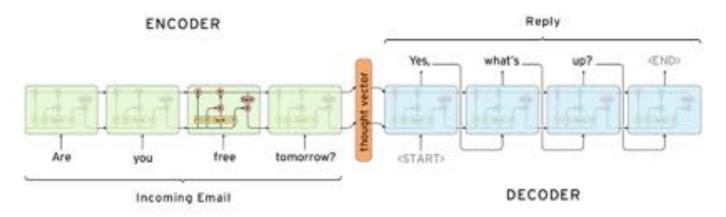


Practical Applications of RNNs

- Machine translation
 - Google uses LSTMs for Google Translate
- Question Answering
 - Apple uses LSTM for Siri, Amazon uses LSTM for Alexa
- Various NLP tasks
 - Part-of-speech tagging, named-entity recognition, sentiment analysis, etc.
- Speech recognition
 - Android's speech recognizer is based on LSTM RNNs (since 2012)
- Generating image descriptions
- Generating text
 - iOS QuickType auto-completion uses LSTM
- Handwriting recognition
 - ▶ LSTMs won the ICDAR handwriting competition (2009)

SEQ2SEQ (Sequence-To-Sequence)

- ▶ SEQ2SEQ has become a popular model for sequence generation
- Consists of two LSTMs: an Encoder and a Decoder
- The encoder takes a sequence (sentence) and converts it into a fixed-size vector
 - This 'thought' vector encodes the important information in the sentence
- ▶ The decoder 'decodes' this representation into a response, one word at a time
 - At each time step, the decoder is influenced by the context and the previously generated symbols.

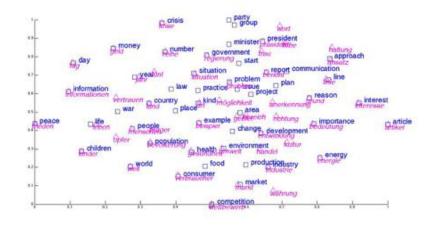


Source: https://github.com/farizrahman4u/seq2seq

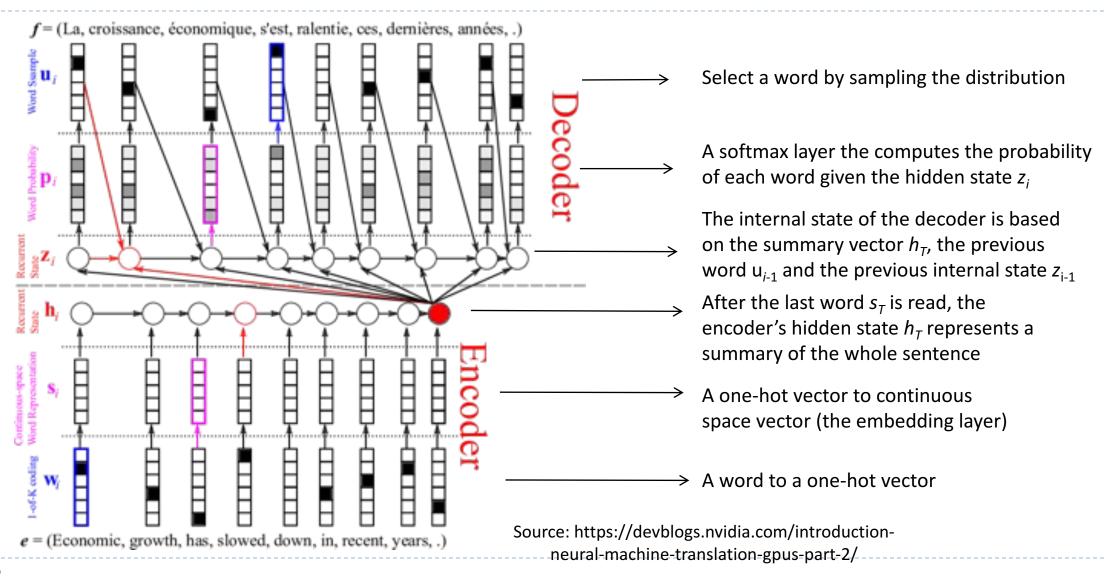
Word Embeddings

- Represent words using vectors of dimension d
 - d is typically in the range 100-500
- Solves the problem of sparsity in one-hot encodings
- Captures semantic relations between words
- The embedding layer is typically the first layer of the network
 - jointly trained with the other layers
 - often initialized with pre-trained embeddings such as word2vec

	x1	x2	x3	x4
the	0.51	0.009	0.43	0.44
cat	0.58	-0.53	0.25	-0.51
ate	0.54	-0.64	0.32	0.22
food	0.42	0.258	0.26	0.25

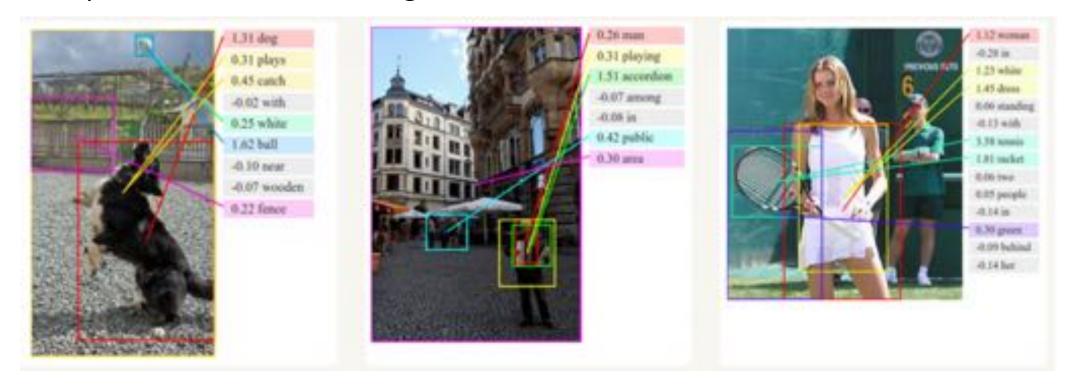


Machine Translation



Generating Image Descriptions

▶ Together with Convolutional Neural Networks, RNNs have been used to generate descriptions for unlabeled images



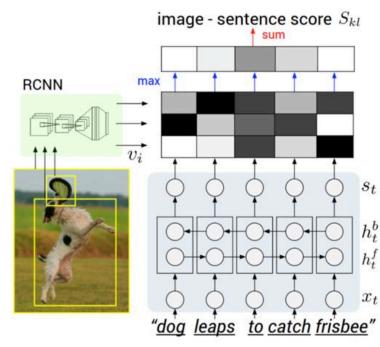
Karpathy and Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions (2015)

Source: http://cs.stanford.edu/people/karpathy/deepimagesent/

Generating Image Descriptions – Step 1

- ▶ The network is first trained to align image regions with word snippets of the descriptions
- Regional Convoluatioal Neural Network (RCNN) is pre-trained on ImageNet to detect objects in images
 - \triangleright Images are represented as a set of h-dimensional vectors v_i
- ▶ A Bidirectional Recurrent Neural Network (BRNN) is trained on text to compute word embeddings
 - \triangleright Words are also represented as h-dimensional vectors s_t
- The dot product $v_i^T s_t$ reflects the similarity between region v_i and word s_t
- ▶ The objective function is to get the best alignment

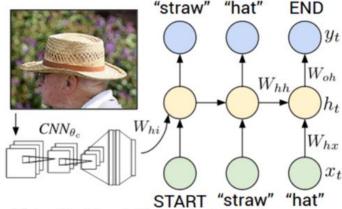
$$S_{kl} = \sum_{t \in g_l} max_{i \in g_k} v_i^T s_t$$



Ref: Deep Visual-Semantic Alignments for Generating Image Descriptions; http://cs.stanford.edu/people/karpathy/deepimagesent/

Generating Image Descriptions – Step 2

- The RNN takes a series of input words (e.g, START, "straw", "hat"...), and a series of output words (e.g., "straw", "hat", END)
- The RNN is trained to combine a word (x_t) and the previous context (h_{t-1}) to predict the next word (y_t)
- ▶ The image representation is used to initialize the hidden state
- The cost function is to maximize the log probability of the assigned labels (i.e. a Softmax classifier)
- ▶ To predict a sentence:
 - ightharpoonup The image representation b_{ν} is computed
 - h_0 is set to 0 and x_1 is set to the START vector
 - \triangleright The network computes the distribution over the first word y_1
 - A word is sampled from the distribution and its embedding vector is set as x_2
 - This process is repeated until the END token is generated



Ref: Deep Visual-Semantic Alignments for Generating Image Descriptions; http://cs.stanford.edu/people/karpathy/deepimagesent/

$$\begin{aligned} b_v &= W_{hi}[\mathit{CNN}_{\theta_c}(I)] \\ h_t &= f(W_{hx}x_t + W_{hh}h_{t-1} + b_h + \mathbb{1}(t=1) \odot b_v) \\ y_t &= softmax(W_{oh}h_t + b_o). \end{aligned}$$

Summary

- RNNs are neural networks that deal with sequence data
- Training recurrent nets is optimization over programs, not functions
- RNNs are becoming a pervasive and critical component to intelligent systems
 - with many practical applications
- Many variants
 - LSTM, GRU, Bi-Directional LSTM, Deep RNNs
- Further readings
 - ► The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/
 - Understanding LSTM Networks https://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - Training a Neural Machine Translation network in TensorFlow https://www.tensorflow.org/tutorials/seq2seq

http://www.cs.biu.ac.il/~yehoshr1/