
Recurrent	Neural	Networks	(RNNs)

Roi Yehoshua
3/9/2018

Eliahu Khalastchi

Agenda

2

} Representing	Sequences

} Structure	of	RNNs

} Computing	activations	in	RNNs

} Training	RNNs	(Backpropagation	Through	Time)

} The	problem	of	vanishing	gradients

} LSTMs

} Practical	Applications	of	RNNs

Eliahu Khalastchi

Recurrent	Neural	Networks	(RNNs)

3

} Standard	NN	models	(MLPs,	CNNs)	are	not	able	to	handle	sequences	of	data
} They	accept	a	fixed-sized	vector	as	input	and	produce	a	fixed-sized	vector	as	output	

} The	weights	are	updated	independent	of	the	order	the	samples	are	processed

} RNNs	are	designed	for	modeling	sequences	
} Sequences	in	the	input,	in	the	output	or	in	both

} They	are	capable	of	remembering	past	information

Eliahu Khalastchi

Different	Categories	of	Sequence	Modeling

4

Sequence	output
e.g.,	image	captioning

Sequence	input
e.g.,	sentiment	analysis

Synced	sequence	input	
and	output
e.g.,	video	classification

Sequence	input	and	output
e.g.,	machine	translation

Vanilla	mode	without	RNN	
e.g.	image	classification

Source:	http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Eliahu Khalastchi

Structure	of	RNNs

5

} In	RNN	the	hidden	layers	are	recurrent	layers,	where	every	neuron	is	connected	to	
every	other	neuron	in	the	layer

} The	hidden	layer	gets	its	input	from	both	the	input	layer	x(t)	and	the	hidden	layer	
from	the	previous	time	step	h(t-1)

Eliahu Khalastchi

} New	hidden	state:

} Output:

Computing	Activations	in	RNN

6

The	weight	matrix	
between	the	input	
and	the	hidden	layer

The	weight	matrix	
associated	with	the	
recurrent	edges

Bias	vector	for	
the	hidden	units

() () (1)()t t t
h hx hh hf -= + +h W x W h b

() ()()t t
y yh yf= +y W h b

Eliahu Khalastchi

} The	second	hidden	layer	gets	its	input	from	the	hidden	units	from	the	layer	below	at	
the	current	time	step	h1(t) and	its	own	hidden	values	from	previous	time	step	h2(t-1)

Multilayer	RNN

7

Eliahu Khalastchi

Representational	Power	of	RNNs

8

} Regular	feed-forward neural	networks are	not Turing-Complete
} They	can	represent	any	single	mathematical	function	but	don’t	have	any	ability	to	perform	

looping	or	other	control	flow	operations

} RNNs	are	Turing-Complete [Killan and	Siegelmann,	1996]

} They	can	simulate	arbitrary	programs

} They	can	represent	any	mapping	between	input	and	output	sequences

Eliahu Khalastchi

Training	RNNs

9

} RNNs	are	trained	by	unfolding	them	into	deep	feedforward networks,	where	a	new	
layer	is	created	for	each	time	step	of	an	input	sequence	processed	by	the	network

} Then	Backpropagation	is	used	to	train	the	unfolded	version	of	the	network
} Using	the	chain	rule,	as	in	feedforward networks

} Paul	Werbos,	Backpropagation	Through	Time:	What	It	Does	and	How	to	Do	It,	Proceedings	
of	IEEE,	78(10):1550-1560,	1990

Unfold

Eliahu Khalastchi

Backpropagation	Through	Time	(BPTT)

10

} The	overall	loss	L	is	the	sum	of	all	the	loss	functions	at	times	t =	1	to	t =	T:

} The	loss	at	time	t depends	on	the	hidden	units	at	all	previous	time	steps	(1..t)

} W can	be	either	Whh or	Whx

} BPTT	can	be	computationally	expensive	as	the	number	of	time	steps	increases

()

1

T
t

t
L L

=

=å

() () () () ()

() () ()
1

t t t t kt

t t k
k

L L
=

é ùæ ö¶ ¶ ¶ ¶ ¶
= × × ×ê úç ÷¶ ¶ ¶ ¶ ¶è øë û

åy h h
W y h h W

() ()

() (1)
1

t it

k i
i k

-
= +

¶ ¶
=

¶ ¶Õh h
h h

Eliahu Khalastchi

The	Problem	of	Vanishing	Gradients

11

} Backpropagation	computes	gradients	by	the chain	rule

} The	gradient	decreases	exponentially	with the number	of	layers	in	the	network
} or	the	length	of	the	sequence	in	the	case	of	RNNs

} This	causes	the	front	layers	to	train	very	slowly
} Thus,	vanilla	RNNs	are	unable	to	capture	long-term	dependencies

Eliahu Khalastchi

Class	Exercise

12

} Assume	a	single	neuron,	fully-connected	recurrent	layer:

} Prove:

} Activation	function	may	be	either	sigmoid,	tanh or	RelU

()

() | |
t

k
hh hxt k

h
w w

x -

¶
£ ×

¶

whh

whx

Eliahu Khalastchi

Truncated	BPTT	(TBPTT)

13

} A	modified	version	of	BPTT	suggested	by	Ilya Sutskever in	2013:

1. Present	a	sequence	of	k1 time	steps	of	input	and	output	pairs	to	the	network

2. Perform	an	BPTT	update	back	for	k2 time	steps	

3. Repeat

} Example:	Split	a	1,000-long	sequence	into	50	sequences	each	of	length	20	and	treat	
each	sequence	of	length	20	as	a	separate	training	case

} k2 should	be	large	enough	to	capture	the	temporal	structure	in	the	problem
} but	small	enough	to	avoid	vanishing	gradients

} Problem:	the	network	is	blind	to	dependencies	that	span	more	than	k2 time	steps

Eliahu Khalastchi

LSTM	(Long	Short	Term	Memory)	

14

} Suggested	in	1997	by	Hochreiter and	Schmidhuber as	a	solution	to	the	vanishing	
gradient	problem

} An	LSTM	cell	stores	a	value	(state)	for	either	long	or	short	time	periods

} It	contains	three	gates:
} Forget	gate	- controls	the	extent	to	which	a	value	remains	in	the	cell

} Input	gate	- controls	the	extent	to	which	a	new	value	flows	into	the	cell
} Output	gate	- controls	the	extent	to	which	the	value	in	the	cell	is	used	to	compute	the	output

Source: Wikipedia

Eliahu Khalastchi

LSTM	Forward	Pass

15

} Forget	gate:

} Input	gate:

} Output	gate:

} New	cell	state:

} Unit’s	output:

() () (1)()t t t
fx fh fs -= + +f W x W h b

() () (1)()t t t
ix ih is -= + +i W x W h b

() () (1)()t t t
ox oh os -= + +o W x W h b

() () (1) () (1) () (1)tanh()t t t t t t t
cx ch c

- - -= + + +o oc f c i c W x W h b

() () ()tanh()t t t= oh o c
s is	the	sigmoid	function
refers	to	element-wise	product

Eliahu Khalastchi

Training	LSTMs

16

} An	LSTM	network	(an	RNN	composed	of	LSTM	units)	is	trained	with BPTT

} The	subsequent	cell	state	is	a	sum of	the	current	state	with	new	input

} This	helps	LSTMs	preserve	a	constant	error	when	it	is	backpropagated at	depth

} The	cells	learn	when	to	allow	data	to	enter,	leave	or	be	deleted	through	the	iterative	
process	of	backpropagating error	and	adjusting	weights	via	gradient	descent

() () (1) () (1) () (1)tanh()t t t t t t t
cx ch c

- - -= + + +o oc f c i c W x W h b

()
()

(1) ...
t

t
t-

¶
= +

¶
c f
c

Eliahu Khalastchi

Gated	Recurrent	Unit	(GRU)

17

} Similar	performance	as	LSTM	with	less	computation

} They	have	fewer	parameters	than	LSTM,	as	they	lack	an	output	gate

Cho,	Kyunghyun et	al.	(2014).	“Learning	Phrase	Representations	using	RNN	Encoder-Decoder	for	Statistical	Machine	Translation”,	
arXiv:1406.1078

Eliahu Khalastchi

Bidirectional	RNNs

18

} Output	at	time	tmay	not	only	depend	on	the	previous	elements	in	the	sequence,	
but	also	future	elements.	
} e.g.,	to	predict	a	missing	word	in	a	sequence	we’d	like	to	look	at	both	left	and	right	context

} Bidirectional	RNNs	are	just	two	RNNs	stacked	on	top	of	each	other

} The	output	is then	computed	based	on	the	hidden	state	of	both	RNNs

Eliahu Khalastchi

Practical	Applications	of	RNNs

19

} Machine	translation
} Google	uses	LSTMs	for	Google	Translate

} Question	Answering
} Apple	uses	LSTM	for	Siri,	Amazon	uses	LSTM	for	Alexa

} Various	NLP	tasks	
} Part-of-speech	tagging,	named-entity	recognition,	sentiment	analysis,	etc.

} Speech	recognition
} Android’s	speech	recognizer	is	based	on	LSTM	RNNs	(since	2012)

} Generating	image	descriptions
} Generating	text	

} iOS QuickType auto-completion	uses	LSTM

} Handwriting	recognition
} LSTMs	won	the ICDAR	handwriting	competition	(2009)

Eliahu Khalastchi

SEQ2SEQ	(Sequence-To-Sequence)

20

} SEQ2SEQ	has	become	a	popular	model	for	sequence	generation

} Consists	of	two	LSTMs:	an	Encoder	and	a	Decoder

} The	encoder	takes	a	sequence	(sentence)	and	converts	it	into	a	fixed-size	vector
} This	‘thought’	vector	encodes	the	important	information	in	the	sentence

} The	decoder	‘decodes’	this	representation	into	a	response,	one	word	at	a	time
} At	each	time	step,	the	decoder	is	influenced	by	the	context	and	the	previously	generated	symbols.

Source:	https://github.com/farizrahman4u/seq2seq

Eliahu Khalastchi

Word	Embeddings

21

} Represent	words	using	vectors	of	dimension	d
} d is	typically	in	the	range	100-500

} Solves	the	problem	of	sparsity in	one-hot	encodings

} Captures	semantic	relations	between	words

} The	embedding	layer	is	typically	the	first	layer	of	the	
network
} jointly	trained	with	the	other	layers

} often	initialized	with	pre-trained	embeddings	such	as	
word2vec

Eliahu Khalastchi

Machine	Translation

22

Source:	https://devblogs.nvidia.com/introduction-
neural-machine-translation-gpus-part-2/

A	word	to	a	one-hot	vector

A	one-hot	vector	to	continuous	
space	vector	(the	embedding	layer)

After	the	last	word	sT is	read,	the	
encoder’s	hidden	state	hT represents	a	
summary	of	the	whole	sentence

The	internal	state	of	the	decoder	is	based	
on	the	summary	vector	hT,	the	previous	
word	ui-1 and	the	previous	internal	state	zi-1

Select	a	word	by	sampling	the	distribution

A	softmax layer	the	computes	the	probability	
of	each	word	given	the	hidden	state	zi

Eliahu Khalastchi

Generating	Image	Descriptions

23

} Together	with	Convolutional Neural	Networks,	RNNs	have	been	used	to generate	
descriptions for	unlabeled	images

Karpathy and	Fei-Fei,	Deep	Visual-Semantic	Alignments	for	Generating	Image	Descriptions	(2015)
Source: http://cs.stanford.edu/people/karpathy/deepimagesent/

Eliahu Khalastchi

Generating	Image	Descriptions	– Step	1

24

} The	network	is	first	trained	to	align	image	regions	with	
word	snippets	of	the	descriptions

} Regional	Convoluatioal Neural	Network	(RCNN)	is	
pre-trained	on	ImageNet to	detect	objects	in	images	
} Images	are	represented	as	a	set	of	h-dimensional	vectors	vi

} A	Bidirectional	Recurrent	Neural	Network	(BRNN)	is	
trained	on	text	to	compute	word	embeddings
} Words	are	also	represented	as	h-dimensional	vectors	st

} The	dot	product	viTst reflects	the	similarity	between	
region	vi and	word	st

} The	objective	function	is	to	get	the	best	alignment

Eliahu Khalastchi

Generating	Image	Descriptions	– Step	2

25

} The	RNN	takes	a	series	of	input	words	(e.g,	START,	“straw”,	
“hat”...),	and	a	series	of	output	words	(e.g.,	“straw”,	“hat”,	END)

} The	RNN	is	trained	to	combine	a	word	(xt)	and	the	previous	
context	(ht-1)	to	predict	the	next	word	(yt)

} The	image	representation	is	used	to	initialize	the	hidden	state
} The	cost	function	is	to	maximize	the	log	probability	of	the	
assigned	labels	(i.e.	a	Softmax classifier)

} To	predict	a	sentence:
} The	image	representation	bv is	computed
} h0 is	set	to	0	and	x1 is	set	to	the	START	vector
} The	network	computes	the	distribution	over	the	first	word	y1
} A	word	is	sampled	from	the	distribution	and	its	embedding	vector	is	

set	as	x2
} This	process	is	repeated	until	the	END	token	is	generated

Eliahu Khalastchi

Summary

26

} RNNs	are	neural	networks	that	deal	with	sequence	data
} Training	recurrent	nets	is	optimization	over	programs,	not	functions
} RNNs	are	becoming	a	pervasive	and	critical	component	to	intelligent	systems

} with	many	practical	applications

} Many	variants
} LSTM,	GRU,	Bi-Directional	LSTM,	Deep	RNNs

} Further	readings
} The	Unreasonable	Effectiveness	of	Recurrent	Neural	Networks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
} Understanding	LSTM	Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
} Training	a	Neural	Machine	Translation	network	in	TensorFlow

https://www.tensorflow.org/tutorials/seq2seq

http://www.cs.biu.ac.il/~yehoshr1/

