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ML Big Picture

Learning Paradigms:

What data is available and
when’ What form of prediction?

supervised learning
. unsupervised learning
) semi-supervised learning
. reinforcement learning
. active learning
O imitation learning
O domain adaptation
O online learning
0 density estimation
0 recommender systems
e  featurelearning
O manifold learning
. dimensionality reduction
. ensemble learning
. distant supervision
0 hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

Cop0C

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification T :E)
categorical Multiclass Classification %’_8
ordinal Ordinal Classification 2 - 2“
real Regression 0 .. S99
ordering Ranking E g}o {::g
multiple discrete  Structured Prediction g é:’ 3 §
multiple continuous (e.g. dynamical systems) g = 3 =
both discrete & (e.g. mixed graphical models) & ; o5
cont. 2‘ = E e

Facets of Building ML
Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Big Ideas in ML:

Which are the ideas driving
development of the field?

* inductive bias

* generadlization [ overfitting

*  bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
* PAClearning

* distant rewards



LEARNING THEORY



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

. Given a classifier with low training error, what

can we say about generalization error?
(Sample Complexity, Agnostic Case)

Is there a theoretical justification for
regularization to avoid overfitting?
(Structural Risk Minimization)



PAC/SLT models for Supervised Learning
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Slide from Nina Balcan



Two Types of Error

True Error (aka. expected risk)

R(h) = Pepe (0 (c"(x) # h(x)) s Qe
Is GIWantlty
Train Error (aka. empirical risk) ""’fnowj,/f
R(h) = Peos(c*(x) £ h(x)) <
. N Me5. S Ca
l s (0 (i) €as h
= o D (x0) £ h(xD)) [ ONtheeredy
N O'ata ”7”78‘

n\’

1 (1] %

= 5 D1 £ hx))
i—1

where S = {x, ... x("))1V s the training data set, and x ~
S denotes that x is sampled from the empirical distribution.
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PAC [ SLT Model  /aigatess,

) .~ (O

ey, s
Generate instances from unknown distnbution &'
L rx), v (1)
. Oracle lzbels each instance with uniknown function «*
y i = etixit, v (2)

. Learning algorithm choeses hypothesis i & W with low(esL)

training error, M h)

ho= ArguLin Bih (3)

Goal: Choose an & with low generalization errar S5 ]



Three Hypotheses of Interest

he true function 2" is the ore we are trying to leam and that "abe'ad
ther training data:

y'.‘.' = [x:'.":, V2 {1)
The expected risk minimizer has ‘owesl Lrye errorn

RS = arpmin R (2)

e
The empirical risk minimizer has lowest waining amor:

k — avgemin (A (3)

ﬂE‘o’



PAC LEARNING



Probably Approximately Correct

(PAC) Learning
Whiteboard:
— PAC Criterion
— Meaning of “Probably Approximately Correct”
— PAC Learnable
— Consistent Learner
— Sample Complexity



Generalization and Overfitting

Whiteboard:

— Realizable vs. Agnostic Cases
— Finite vs. Infinite Hypothesis Spaces



PAC Learning

Ihe PAC criterion is that cur leamer praduces & high accuracy
learner with high probability:

PR =R < e) =1 =4 (1)

suppose we have a learner that procuces a hypothesis i & M
given 2 sample of % training examples. The algorithm is called con
sistentif for every « and &, there exists & pasitive number of training
examples A such thal for any disuoution p, we have Lhac

PURRY — RIRY =6 = § (2)

The sample complexity is the minimumn value of % far which this
statement holds. I A is finite for same learning algoridn, then A
s said to be learnable. If V & a polynomial function of ! and ; for
saom leaming algonthm, ther 3 is said to be PAC learnable.
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SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

We’ll start with the
Four Cases we care about... finite case...

Realizable y Agnostb

Finite ||

Infinite |H|
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

N > !log(/H|) + log(})] labeled ex-

e o amples are sufficient so that with prob-
Finite |H| ability (1 — 6) all h € M with R(h) > ¢
have It(h) > 0.

Infinite |H|
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Example: Conjunctions

In-Class Quiz:
Suppose H = class of conjunctions over x in {0,1}V
If M =10, € = 0.1, 0 = 0.01, how many examples suffice?

Realizable Agnostic

N > 'l :ll)',;: M)+ ln;;l: ‘: } labeled ex-

¢ . amples are sufficient so that with prob-
Flnlte |H| ability (1 - d)all h € ¥ with R(h) > ¢
have R(h) > 0.

Infinite |H|
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

Four Cases we care about...

Realizable

Agnostic

N > !log(/H|) +log(})] labeled ex-

e e amples are sufficient so that with prob-
Finite |H| ability (1 — &) all h € H with R(h) > e
have R(h) > 0.

N 2 g [log(IH]) +log(3)] la-
beled examples are sufficient so
that with probability (1 — 4) for
all h € H we have that |R(h) —
R(h)| < e

Infinite |H|
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Bound is inversely linear in
epsilon (e.g. halving the error
requires double the examples)

2. Boundis only logarithmicin  [€]2.
|H| (e.g. quadrupling the

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable

hypothesis space only requires [° case)
double the examples)
% Realizable % Agnostic
N > l log{ 1) + logi i labeled ex-| N > l log(|#H]) + log( %) la-
¢ amples are suffiicient so that with prob- | beled examples are sufhcient so
Finite |H‘ ability (1 — é) all h € ¥ with R(h) > «| that with probability (1 — 4) for
have R(h) > 0. all h € H we have that |R(A)
Hlih) < e

Infinite ||




Generalization and Overfitting

Whiteboard:

— Sample Complexity Bounds (Agnostic Case)
— Corollary (Agnostic Case)

— Empirical Risk Minimization

— Structural Risk Minimization

— Motivation for Regularization



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

N > !log(/M]) +log(})] labeled ex-| N > 3!y [log(|H|) + log(3)] la-

¢ . amples are sufficient so that : cient so
Flnlte |H| ability (1 — &) all h € H{ with We need a new definition of c
e o o ‘ ““complexity” for a Hypothesis space
have fi(h) > 0. for these results (see VC Dimension)

Infinite |H| y Iy
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Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



