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Reminders

• Homework 5: Neural Networks

– Out: Tue, Feb 28

– Due: Fri, Mar 9 at 11:59pm
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Q&A
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BACKPROPAGATION
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



Approaches to 
Differentiation

• Question 1:
When can we compute the gradients of the 
parameters of an arbitrary neural network?

• Question 2:
When can we make the gradient 
computation efficient?
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Approaches to 
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of backpropagation
– Con: Slow for high dimensional inputs / outputs
– Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation
– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha / Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time if not carefully implemented
– Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied to Neural Nets
– Pro: Computes partial derivatives of one output f(x)i with respect to all inputs xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional outputs (e.g. vector-valued functions)
– Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode
– Note: Easy to implement. Uses dual numbers.
– Pro: Computes partial derivatives of all outputs f(x)i with respect to one input xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional inputs (e.g. vector-valued x)
– Required: Algorithm for computing f(x)
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Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon

8

Training



Symbolic Differentiation
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Training

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx 
and dy/dz for the function below?



Symbolic Differentiation

Differentiation Quiz #2:
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…

…

…



Chain Rule

Whiteboard
– Chain Rule of Calculus
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Chain Rule
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2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)
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Chain Rule:

Given: 

…



Chain Rule
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Chain Rule:

Given: 

…

Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.



Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation
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Error Back-Propagation

22Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



Backpropagation

Whiteboard
– Example: Backpropagation for Chain Rule #1
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Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx 
and dy/dz for the function below?



Backpropagation
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Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables



Backpropagation
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Forward Backward

J = cos(u)
dJ

du
= �sin(u)

u = u1 + u2
dJ

du1
=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
=

dJ

du1

du1

dt
,

du1

dt
= (t)

u2 = 3t
dJ

dt
=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = ( (x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.
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Forward Backward

J = cos(u)
dJ

du
= �sin(u)

u = u1 + u2
dJ

du1
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du

du

du1
,

du

du1
= 1

dJ

du2
=

dJ

du

du

du2
,

du

du2
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dJ

dt
=
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du1

du1

dt
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du1

dt
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…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� y + (1 � y�) (1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + (�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

(�a)

( (�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
= �j



Backpropagation
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…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i
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…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Backpropagation
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Case 2:
Neural 
Network

…

…

Forward Backward

J = y� y + (1 � y�) (1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + (�b)

dJ

db
=

dJ

dy

dy

db
,

dy

db
=

(�b)

( (�b) + 1)2

b =
D�

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,

db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,

db

dzj
= �j

zj =
1

1 + (�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,

dzj

daj
=

(�aj)

( (�aj) + 1)2

aj =
M�

i=0

�jixi
dJ

d�ji
=

dJ

daj

daj

d�ji
,

daj

d�ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,

daj

dxi
=

D�

j=0

�ji



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Forward Backward
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dJ
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daj
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dJ
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dJ

daj

daj
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D�
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Derivative of a Sigmoid
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Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Backpropagation

Whiteboard
– SGD for Neural Network
– Example: Backpropagation for Neural Network
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Backpropagation
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Backpropagation (Auto.Diff. - Reverse Mode)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
a. Compute the corresponding variable’s value
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

39

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Summary

1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic 

regression classifiers
– discover useful hidden representations of the 

input
2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic 

differentiation
40



Backprop Objectives
You should be able to…
• Construct a computation graph for a function as specified by an 

algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the 

given and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. 

L2) when the parameters of a model are comprised of several matrices 
corresponding to different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural 
network

• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and 

when it can be computed efficiently
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