

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation

Matt Gormley Lecture 13 Mar 1, 2018

Reminders

- Homework 5: Neural Networks
 - Out: Tue, Feb 28
 - Due: Fri, Mar 9 at 11:59pm

Q&A

BACKPROPAGATION

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Approaches to Differentiation

Question 1:

When can we compute the gradients of the parameters of an arbitrary neural network?

Question 2:

When can we make the gradient computation efficient?

Approaches to Differentiation

1. Finite Difference Method

- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets
- Pro: Computes partial derivatives of one output $f(x)_i$ with respect to all inputs x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode

- Note: Easy to implement. Uses dual numbers.
- Pro: Computes partial derivatives of all outputs $f(x)_i$ with respect to one input x_j in time proportional to computation of f(x)
- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

Given
$$f: \mathbb{R}^A \to \mathbb{R}^B, f(\mathbf{x})$$

Compute $\frac{\partial f(\mathbf{x})_i}{\partial x_i} \forall i, j$

Finite Difference Method

The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{(J(\boldsymbol{\theta} + \epsilon \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \epsilon \cdot \boldsymbol{d}_i))}{2\epsilon} \tag{1}$$

where d_i is a 1-hot vector consisting of all zeros except for the ith

entry of d_i , which has value 1.

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon

Symbolic Differentiation

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below?

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{\exp(xz)}$$

Symbolic Differentiation

Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:

$$y = \sigma(\boldsymbol{\beta}^T \sigma((\boldsymbol{\alpha}^{(2)})^T \sigma((\boldsymbol{\alpha}^{(1)})^T \mathbf{x}))$$

where $y \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^{D^{(0)}}$, $\boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$ and $\boldsymbol{\alpha}^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$\sigma(\mathbf{a}) = [\sigma(a_1), \dots, \sigma(a_K)]^T$$

Let σ be sigmoid: $\sigma(a)=\frac{1}{1+exp-a}$ What is $\frac{\partial y}{\partial \beta_j}$ and $\frac{\partial y}{\partial \alpha_j^{(i)}}$ for all i,j.

Chain Rule

Whiteboard

Chain Rule of Calculus

Chain Rule

Given: y = g(u) and u = h(x).

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Chain Rule

Given: $\boldsymbol{y} = g(\boldsymbol{u})$ and $\boldsymbol{u} = h(\boldsymbol{x})$.

Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation

is just repeated application of the **chain rule** from Calculus 101.

Backpropagation

Whiteboard

- Example: Backpropagation for Chain Rule #1

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below?

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{\exp(xz)}$$

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- 2. Visit each node in topological order.

For variable u_i with inputs $v_1, ..., v_N$ a. Compute $u_i = g_i(v_1, ..., v_N)$

- b. Store the result at the node

Backward Computation

- Initialize all partial derivatives dy/du_i to 0 and dy/dy = 1.
- Visit each node in reverse topological order.

For variable $u_i = g_i(v_1,..., v_N)$ a. We already know dy/du_i

- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_i) is easy)

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward

$$J = cos(u)$$

$$u = u_1 + u_2$$

$$u_1 = sin(t)$$

$$u_2 = 3t$$

$$t = x^2$$

Backpropagation

Simple Example: The goal is to compute $J = \cos(\sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Forward	Backward
J = cos(u)	$\frac{dJ}{du} += -sin(u)$
$u = u_1 + u_2$	$\frac{dJ}{du_1} += \frac{dJ}{du} \frac{du}{du_1}, \frac{du}{du_1} = 1 \qquad \qquad \frac{dJ}{du_2} += \frac{dJ}{du} \frac{du}{du_2}, \frac{du}{du_2} = 1$
$u_1 = \sin(t)$	$\frac{dJ}{dt} += \frac{dJ}{du_1} \frac{du_1}{dt}, \frac{du_1}{dt} = \cos(t)$
$u_2 = 3t$	$\frac{dJ}{dt} += \frac{dJ}{du_2} \frac{du_2}{dt}, \frac{du_2}{dt} = 3$
$t = x^2$	$\frac{dJ}{dx} += \frac{dJ}{dt}\frac{dt}{dx}, \frac{dt}{dx} = 2x$
	28

Backpropagation

Case 1: Logistic Regression

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-a)}$$

$$a = \sum_{j=0}^{D} \theta_j x_j$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a) + 1)^2}$$

$$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$$

$$\frac{dJ}{dx_j} = \frac{dJ}{da}\frac{da}{dx_j}, \, \frac{da}{dx_j} = \theta_j$$

Backpropagation

Backpropagation

Backpropagation

Case 2: Neural Network

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$dJ = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{1}{2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = \frac{1}{2}$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1 - y^*)}{y - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$ $\frac{dJ}{dx_{i}} = \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \sum_{j=0}^{D} \alpha_{ji}$

Derivative of a Sigmoid

First suppose that

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2} \tag{2}$$

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1+1-1)^2}$$
(3)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
 (4)

$$= \frac{\exp(-b) + 1}{(\exp(-b) + 1)^2} - \frac{1}{(\exp(-b) + 1)^2}$$
 (5)

$$= \frac{1}{(\exp(-b)+1)} - \frac{1}{(\exp(-b)+1)^2} \tag{6}$$

$$= \frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)} \frac{1}{(\exp(-b)+1)}\right)$$
 (7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)}\right) \tag{8}$$

$$=s(1-s) \tag{9}$$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db} \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j} \cdot \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j) + 1)^2}$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$ $\frac{dJ}{dx_{i}} = \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \sum_{j=0}^{D} \alpha_{ji}$

Backpropagation

Case 2:	Forward	Backward
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	ay y = 1
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db} \frac{dy}{db} = y(1-y)$
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j} \frac{dz_j}{da_j} = z_j (1 - z_j)$
Linear	$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$	$ \frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i} $ $ \frac{dJ}{dx_{i}} = \frac{dJ}{da_{j}} \frac{da_{j}}{dx_{i}}, \frac{da_{j}}{dx_{i}} = \sum_{j=0}^{D} \alpha_{ji} $

Backpropagation

Whiteboard

- SGD for Neural Network
- Example: Backpropagation for Neural Network

Backpropagation

Backpropagation (Auto.Diff. - Reverse Mode)

Forward Computation

- Write an algorithm for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- 2. Visit each node in topological order.
 - a. Compute the corresponding variable's value
 - b. Store the result at the node

Backward Computation

- 1. Initialize all partial derivatives dy/du_i to 0 and dy/dy = 1.
- 2. Visit each node in reverse topological order.

```
For variable u_i = g_i(v_1, ..., v_N)
```

- a. We already know dy/du_i
- b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently