ML
MACHINE LEARNING DEPARTMENT

10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation

Matt Gormley
Lecture 13
Mar 1, 2018

Reminders

- Homework 5: Neural Networks
- Out: Tue, Feb 28
- Due: Fri, Mar 9 at 11:59pm

Q\&A

BACKPROPAGATION

Background

A Recipe for Machine Learning

1. Given training data:

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

2. Choose each of these:

- Decision function

$$
\hat{\boldsymbol{y}}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

3. Define goal:

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

4. Train with SGD:
(take small steps opposite the gradient)

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)
$$

Training

Approaches to Differentiation

- Question 1:

When can we compute the gradients of the parameters of an arbitrary neural network?

- Question 2:

When can we make the gradient computation efficient?

Training

Approaches to Differentiation

1. Finite Difference Method

- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- \quad Required: Ability to call the function $f(\mathbf{x})$ on any input \mathbf{x}

2. Symbolic Differentiation

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- \quad Required: Mathematical expression that defines $f(x)$

3. Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets
- Pro: Computes partial derivatives of one output $f(x)_{i}$ with respect to all inputs x_{j} in time proportional to computation of $\mathrm{f}(\mathrm{x})$
- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- \quad Required: Algorithm for computing $f(x)$

4. Automatic Differentiation - Forward Mode

- Note: Easy to implement. Uses dual numbers.
- \quad Pro: Computes partial derivatives of all outputs $f(x)_{i}$ with respect to one input x_{j} in time proportional to computation of $\mathrm{f}(\mathrm{x})$
- Con: Slow for high dimensional inputs (e.g. vector-valued \mathbf{x})
- \quad Required: Algorithm for computing $f(x)$

Training

Finite Difference Method

The centered finite difference approximation is:

$$
\begin{equation*}
\frac{\partial}{\partial \theta_{i}} J(\boldsymbol{\theta}) \approx \frac{\left(J\left(\boldsymbol{\theta}+\epsilon \cdot \boldsymbol{d}_{i}\right)-J\left(\boldsymbol{\theta}-\epsilon \cdot \boldsymbol{d}_{i}\right)\right)}{2 \epsilon} \tag{1}
\end{equation*}
$$

where d_{i} is a 1-hot vector consisting of all zeros except for the i th entry of \boldsymbol{d}_{i}, which has value 1 .

Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon

Training

Symbolic Differentiation

Differentiation Quiz \#1:

Suppose $x=2$ and $z=3$, what are $d y / d x$ and $\mathrm{dy} / \mathrm{dz}$ for the function below?

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{\exp (x z)}
$$

Training

Symbolic Differentiation

Differentiation Quiz \#2:

A neural network with 2 hidden layers can be written as:

$$
y=\sigma\left(\boldsymbol{\beta}^{T} \sigma\left(\left(\boldsymbol{\alpha}^{(2)}\right)^{T} \sigma\left(\left(\boldsymbol{\alpha}^{(1)}\right)^{T} \mathbf{x}\right)\right)\right.
$$

where $y \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{D^{(0)}}, \boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$ and $\boldsymbol{\alpha}^{(i)}$ is a $D^{(i)} \times D^{(i-1)}$ matrix. Nonlinear functions are applied elementwise:

$$
\sigma(\mathbf{a})=\left[\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{K}\right)\right]^{T}
$$

Let σ be sigmoid: $\sigma(a)=\frac{1}{1+\operatorname{exp-a}}$
What is $\frac{\partial y}{\partial \beta_{j}}$ and $\frac{\partial y}{\partial \alpha_{j}^{(i)}}$ for all i, j.

Training

Chain Rule

Whiteboard

- Chain Rule of Calculus

Training

Chain Rule

Given: $\boldsymbol{y}=g(\boldsymbol{u})$ and $\boldsymbol{u}=h(\boldsymbol{x})$.
Chain Rule:

$$
\frac{d y_{i}}{d x_{k}}=\sum_{j=1}^{J} \frac{d y_{i}}{d u_{j}} \frac{d u_{j}}{d x_{k}}, \quad \forall i, k
$$

Training

Chain Rule

Given: $\boldsymbol{y}=g(\boldsymbol{u})$ and $\boldsymbol{u}=h(\boldsymbol{x})$.
Chain Rule:

$$
\frac{d y_{i}}{d x_{k}}=\sum_{j=1}^{J} \frac{d y_{i}}{d u_{j}} \frac{d u_{j}}{d x_{k}}, \quad \forall i, k
$$

Backpropagation
 is just repeated application of the chain rule from Calculus 101.

Error Back-Propagation

Slide from (Stoyanov \& Eisner, 2012)

Training

Backpropagation

Whiteboard

- Example: Backpropagation for Chain Rule \#1

Differentiation Quiz \#1:

Suppose $x=2$ and $z=3$, what are $d y / d x$ and $\mathrm{dy} / \mathrm{dz}$ for the function below?

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{\exp (x z)}
$$

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The
algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}$
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{j}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/du
b. Increment $d y / d v_{j}$ by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$
(Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{dv}_{\mathrm{j}}\right)$ is easy)
Return partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ for all variables

Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

Forward
$J=\cos (u)$
$u=u_{1}+u_{2}$
$u_{1}=\sin (t)$
$u_{2}=3 t$
$t=x^{2}$

Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

Forward	Backward
$J=\cos (u)$	$\frac{d J}{d u}+=-\sin (u)$
$u=u_{1}+u_{2}$	$\frac{d J}{d u_{1}}+=\frac{d J}{d u} \frac{d u}{d u_{1}}, \quad \frac{d u}{d u_{1}}=1 \quad \frac{d J}{d u_{2}}+=\frac{d J}{d u} \frac{d u}{d u_{2}}, \quad \frac{d u}{d u_{2}}=1$
$u_{1}=\sin (t)$	$\frac{d J}{d t}+=\frac{d J}{d u_{1}} \frac{d u_{1}}{d t}, \quad \frac{d u_{1}}{d t}=\cos (t)$
$u_{2}=3 t$	$\frac{d J}{d t}+=\frac{d J}{d u_{2}} \frac{d u_{2}}{d t}, \quad \frac{d u_{2}}{d t}=3$
$t=x^{2}$	$\frac{d J}{d x}+=\frac{d J}{d t} \frac{d t}{d x}, \quad \frac{d t}{d x}=2 x$

Training

Backpropagation

$$
\begin{array}{l|l}
\text { Forward } & \begin{array}{l}
\text { Backward } \\
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)
\end{array} \\
\begin{array}{l}
\frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
y=\frac{1}{1+\exp (-a)}
\end{array} & \frac{d J}{d a}=\frac{d J}{d y} \frac{d y}{d a}, \frac{d y}{d a}=\frac{\exp (-a)}{(\exp (-a)+1)^{2}} \\
a=\sum_{j=0}^{D} \theta_{j} x_{j} & \frac{d J}{d \theta_{j}}=\frac{d J}{d a} \frac{d a}{d \theta_{j}}, \frac{d a}{d \theta_{j}}=x_{j} \\
\frac{d J}{d x_{j}}=\frac{d J}{d a} \frac{d a}{d x_{j}}, \frac{d a}{d x_{j}}=\theta_{j}
\end{array}
$$

Training

Backpropagation

Training

Backpropagation

Training

Backpropagation

Case 2:
Neural
Network

Forward

$$
\begin{aligned}
& J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \\
& y=\frac{1}{1+\exp (-b)} \\
& b=\sum_{j=0}^{D} \beta_{j} z_{j}
\end{aligned}
$$

$$
z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}
$$

$$
a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}
$$

Backward

$$
\begin{aligned}
& \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}
$$

Training

Backpropagation

Case 2:
Forward

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}
$$

Sigmoid

Linear

Sigmoid

Linear

$$
\begin{aligned}
z_{j} & =\frac{1}{1+\exp \left(-a_{j}\right)} \\
a_{j} & =\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i} \\
& \frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}
\end{aligned}
$$

Derivative of a Sigmoid

First suppose that

$$
\begin{equation*}
s=\frac{1}{1+\exp (-b)} \tag{1}
\end{equation*}
$$

To obtain the simplified form of the derivative of a sigmoid.

$$
\begin{align*}
\frac{d s}{d b} & =\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \tag{2}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1+1-1)^{2}} \tag{3}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1)^{2}} \tag{4}\\
& =\frac{\exp (-b)+1}{(\exp (-b)+1)^{2}}-\frac{1}{(\exp (-b)+1)^{2}} \tag{5}\\
& =\frac{1}{(\exp (-b)+1)}-\frac{1}{(\exp (-b)+1)^{2}} \tag{6}\\
& =\frac{1}{(\exp (-b)+1)}-\left(\frac{1}{(\exp (-b)+1)} \frac{1}{(\exp (-b)+1)}\right) \tag{7}\\
& =\frac{1}{(\exp (-b)+1)}\left(1-\frac{1}{(\exp (-b)+1)}\right) \tag{8}\\
& =s(1-s) \tag{9}
\end{align*}
$$

Training

Backpropagation

Case 2:

Forward

Backward
Loss

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{u-1}
$$

Sigmoid

$$
y=\frac{1}{1+\exp (-b)}
$$

$$
\frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b} \cdot \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}}
$$

Linear

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

$$
\begin{aligned}
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d i}{d \beta_{j}}, \frac{{ }^{u v}}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d \sim_{j}}=\beta_{j}
\end{aligned}
$$

Sigmoid

$$
\begin{aligned}
z_{j} & =\frac{1}{1+\exp \left(-a_{j}\right)} \\
a_{j} & =\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}} \cdot \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

Linear

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{\dot{u} u_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}
$$

Training

Backpropagation

Case 2:
Loss
Forward
$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{u-1}$
Sigmoid $\quad y=\frac{1}{1+\exp (-b)}$
$b=\sum_{j=0}^{D} \beta_{j} z_{j}$
Linear

Sigmoid

Linear

Backward

$$
\begin{aligned}
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b} \frac{d y}{d b}=y(1-y) \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d \stackrel{d}{d \beta_{j}}, \frac{d}{d \beta_{j}}=z_{j}}{\frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}} \frac{d z_{j}}{d a_{j}}=z_{j}\left(1-z_{j}\right)
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{\dot{u} u_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\sum_{j=0}^{D} \alpha_{j i}
$$

Training

Backpropagation

Whiteboard

- SGD for Neural Network
- Example: Backpropagation for Neural Network

Backpropagation

Backpropagation (Auto.Diff. - Reverse Mode)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.
a. Compute the corresponding variable's value
b. Store the result at the node

Backward Computation

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{j}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/du
b. Increment $d y / d v_{j}$ by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$ (Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{dv}_{\mathrm{j}}\right)$ is easy)

Return partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ for all variables

Background

A Recipe for

Gradients

1. Given training dat $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}$
2. Choose each of t

- Decision functior

$$
\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)^{\prime}
$$

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

Backpropagation can compute this gradient!
And it's a special case of a more general algorithm called reversemode automatic differentiation that
can compute the gradient of any differentiable function efficiently!

opp-site the gradient)

Summary

1. Neural Networks...

- provide a way of learning features
- are highly nonlinear prediction functions
- (can be) a highly parallel network of logistic regression classifiers
- discover useful hidden representations of the input

2. Backpropagation...

- provides an efficient way to compute gradients
- is a special case of reverse-mode automatic differentiation

Backprop Objectives

You should be able to...

- Construct a computation graph for a function as specified by an algorithm
- Carry out the backpropagation on an arbitrary computation graph
- Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
- Instantiate the backpropagation algorithm for a neural network
- Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. $\mathrm{L} 2)$ when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
- Apply the empirical risk minimization framework to learn a neural network
- Use the finite difference method to evaluate the gradient of a function
- Identify when the gradient of a function can be computed at all and when it can be computed efficiently

