Machine Learning

Convolutional Neural Networks

Pat Virtue
University of California, Berkeley

"Allow myself to introduce... myself" - A. Powers

"Allow myself to introduce... myself" - A. Powers

"Allow myself to introduce... myself" - A. Powers

III
Den UC Berkeley CS188 Intro to AI

Outline

1. Measuring the current state of computer vision
2. Why convolutional neural networks

- Old school computer vision
- Image features and classification

3. Convolution "nuts and bolts"

Computer Vision: How far along are we?

Computer Vision: How far along are we?

Terminator 2, 1991

Computer Vision: How far along are we?

Mask R-CNN He, Kaiming, et al. "Mask R-CNN." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.

Computer Vision: How far along are we?

"My CPU is a neural net processor, a learning computer"

Computer Vision: Autonomous Driving

Tesla, Inc: https://vimeo.com/192179726

Computer Vision: Domain Transfer

CycleGAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017.

Temporal Convolution

MR Fingerprinting

Patrick Virtue , Jonathan I Tamir, Mariya Doneva, Stella X Yu, and Michael Lustig. "Learning Contrast Synthesis from MR Fingerprinting", ISMRM 2018, forthcoming.

Outline

1. Measuring the current state of computer vision
2. Why convolutional neural networks

- Old school computer vision
- Image features and classification

3. Convolution "nuts and bolts"

Image Classification

- What's the problem with just directly classifying raw pixels in high dimensional space?

Not

CAT

Image Classification

[Dalal and Triggs, 2005]

HoG Filter

- HoG: Histogram of oriented gradients

Image Classification

- HOG features passed to a linear classifier (SVM)

Classification: Learning Features

Classification: Deep Learning

Convolution

- Signal processing definition
$z[i, j]=\sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} x[i-u, j-v] \cdot w[u, v]$

-1	0	1
-2	0	2
-1	0	1

- Relaxed definition
- Drop infinity; don't flip kernel

$$
z[i, j]=\sum_{u=0}^{\mathrm{K}-1} \sum_{v=0}^{\mathrm{K}-1} x[i \pm u, j \pm v] \cdot w[u, v]
$$

Convolution

- Relaxed definition
$z[i, j]=\sum_{u=0}^{\mathrm{K}-1} \sum_{v=0}^{\mathrm{K}-1} x[i+u, j+v] \cdot w[u, v]$

-1	0	1
-2	0	2
-1	0	1

```
for i in range(0, im_width - K + 1):
        for j in range(0, im_height - K):
            im_out[i,j] = 0
            for u in range(0, K):
            for v in range(0, K):
                im_out[i,j] += im[i+u, j+v] * kernel[u,v]
```

GPU!!

	-	\cdot	\ddots		
			1	1	1
			\ddots	$=$	-

Convolution

-1	0	1
-1	0	1
-1	0	1

Convolution

0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0

$03300-3-30$

-1	0	1
-1	0	1
-1	0	1

Convolution

Convolution: Padding

0	0	1	1	1	1	0	0	0	2	2	0	0	-2	-2	0
0	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
$\bigcirc 0$	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
0	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
0	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
0	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
0	0	1	1	1	1	0	0	0	3	3	0	0	-3	-3	0
0	0	1	1	1	1	0	0	0	2	2	0	0	-2	-2	0

Quiz: Which kernel goes with which output image?

Convolutional Neural Networks

Convolutional Neural Networks

Convolution: Stride=2

0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0

0.51 .50

.25	.25
.25	.25

Stride: Max Pooling

max pool with 2×2 filters and stride 2

Stanford CS 231n, Spring 2017

Convolutional Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks

- Lenet5 - Lecun, et al, 1998
- Convnets for digit recognition

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

Quiz: How many weights?

- How big many convolutional weights between S2 and C3?
- S2: 6 channels @14x14 \longleftarrow
- Conv: 5×5, pad=1, stride=1
- C3: 16 channels @ 10x10

Convolutional Neural Networks

- Alexnet - Lecun, et al, 2012
- Convnets for image classification
- More data \& more compute power

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." NIPS, 2012.

That's All Folks

Pat Virtue
virtue@eecs.berkeley.edu

