MACHINE LEARNING DEPARTMENT

10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Perceptron

Matt Gormley
Lecture 6
Sep. 13, 2019

Q\&A

Q: How do we define a distance function when the features are categorical (e.g. weather takes values \{sunny, rainy, overcast\})?
A: Step 1: Convert from categorical attributes to numeric features (e.g. binary)
Step 2: Select an appropriate distance function (e.g. Hamming distance)

Q\&A

O: We pick the best hyperparameters by learning on the training data and evaluating error on the validation error. For our final model, should we then learn from training + validation?

A:

Yes.

Let's assume that \{train-original\} is the original training data, and \{test\} is the provided test dataset.

1. Split \{train-original\} into \{train-subset\} and \{validation\}.
2. Pick the hyperparameters that when training on $\{$ train-subset $\}$ give the lowest error on \{validation\}. Call these hyperparameters \{best-hyper\}.
3. Retrain a new model using \{best-hyper\} on \{train-original $\}=\{$ trainsubset $\} \cup\{$ validation $\}$.
4. Report test error by evaluating on \{test\}.

Alternatively, you could replace Step $1 / 2$ with the following: Pick the hyperparameters that give the lowest cross-validation error on \{trainoriginal\}. Call these hyperparameters \{best-hyper\}.

Reminders

- Homework 2: Decision Trees
- Out: Wed, Sep. 04
- Due: Wed, Sep. 18 at 11:59pm
- Homework 3: KNN, Perceptron, Lin.Reg.
- Out: Wed, Sep. 18
- Due: Wed, Sep. 25 at 11:59pm
- Today's In-Class Poll
- http://p6.mlcourse.org

Course Staff

Lisa Hou

Max

Manini Amin

David Xu

Yujia Chen

Yue Yin

Yang Yu

Yuwei Qiu

Kelly Shi

Ayushi Sood

PSankalp Patro

Matt Gormley

Eric Chen

Brynn Edmunds

Roni Rosenfeld

Course Staff

Longxiang Zhang

Bharath Prabhu

ANUPMA SHARAN

Lisa Hou

Max

Manini Amin

David Xu

Yujia Chen

Yue Yin

Yang Yu

Kelly Shi

PSankalp Patro

Matt Gormley

Brynn Edmunds

Roni Rosenfeld

Team A

Course Staff

Course Staff

[^0]

Yue Yin

Yang Yu

Yuwei Qiu

Kelly Shi

Eric Chen

Brynn Edmunds

Roni Rosenfeld

Matt Gormley

Course Staff

Course Staff

Lisa Hou

Max

Manini Amin

David Xu

Yujia Chen

Yue Yin

Yang Yu

Yuwei Qiu

Kelly Shi

Ayushi Sood

PSankalp Patro

Matt Gormley

Eric Chen

Brynn Edmunds

Roni Rosenfeld

THE PERCEPTRON ALGORITHM

Perceptron: History

Imagine you are trying to build a new machine learning technique... your name is Frank Rosenblatt... and the year is 1957

Perceptron: History

Imagine you are trying to build a new machine learning technique... your name is Frank Rosenblatt... and the year is 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built, but which has been successfully simulated on the I.B.M. 704. Talk with Dr. Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the two men who developed the prodigy; the other man is Dr. Marshall C. Yovits, of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the perceptron as the first non-biological object which will achieve an organization o its external environment in a meaningful way. It interacts with its environment, forming concepts that have not been made ready for it by a human agent. If a triangle is held up, the perceptron's eye picks up the image \& conveys it along a random succession of lines to the response units, where the image is registered. It can tell the difference betw. a cat and a dog, although it wouldn't be able to tell whether the dog was to theleft or right of the cat. Right now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day it might be useful to send one into outer space to take in impressions for us.

Linear Models for Classification

Looking ahead:

- We'll see a number of commonly used Linear Classifiers
- These include:
- Perceptron
- Logistic Regression
- Naïve Bayes (under certain conditions)
- Support Vector Machines

Key idea: Try to learn this hyperplane directly

Directly modeling the hyperplane would use a decision function:

$$
h(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)
$$

for:

$$
y \in\{-1,+1\}
$$

Geometry

In-Class Exercise

Draw a picture of the region corresponding to:
$w_{1} x_{1}+w_{2} x_{2}+b>0$
where $w_{1}=2, w_{2}=3, b=6$
Draw the vector $\mathbf{w}=\left[w_{1}, w_{2}\right]$

Answer Here:

Visualizing Dot-Products

Chalkboard:

- vector in 2D
- line in 2D
- adding a bias term
- definition of orthogonality
- vector projection
- hyperplane definition
- half-space definitions

Vector Projection

Question:

Which of the following is the projection of a vector a onto a vector b ?

A. $\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{b}} \mathbf{a}$

D. $\frac{(\mathbf{a} \cdot \mathbf{b})}{\|\mathbf{b}\|_{2}} \mathbf{b}$
B. $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a}^{T} \mathbf{b}}$

E
C. $\frac{\left(\mathbf{a}^{T} \mathbf{b}\right)}{\|\mathbf{b}\|_{2}} \mathbf{b}$

E. $\frac{\left(\mathbf{a}^{T} \mathbf{b}\right)}{\|\mathbf{b}\|_{2}^{2}} \mathbf{b}$
F. $\frac{\left(\mathbf{a}^{T} \mathbf{b}\right)^{2}}{\|\mathbf{b}\|_{2}} \mathbf{b}$

Linear Models for Classification

Looking ahead:

- We'll see a number of commonly used Linear Classifiers
- These include:
- Perceptron
- Logistic Regression
- Naïve Bayes (under certain conditions)
- Support Vector Machines

Key idea: Try to learn this hyperplane directly

Directly modeling the hyperplane would use a decision function:

$$
h(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)
$$

for:

$$
y \in\{-1,+1\}
$$

Online vs. Batch Learning

Batch Learning

Learn from all the examples at once

Online Learning

Gradually learn as each example is received

Online Learning

Examples

1. Stock market prediction (what will the value of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam and regular mail changes over time, but the target function stays fixed - last year's spam still looks like spam)
3. Recommendation systems. Examples: recommending movies; predicting whether a user will be interested in a new news article
4. Ad placement in a new market

Online Learning

For $\mathrm{i}=1,2,3, \ldots$:

- Receive an unlabeled instance $\mathbf{x}^{(\mathrm{i})}$
- Predict $y^{\prime}=h_{\theta}\left(\mathbf{x}^{(i)}\right)$
- Receive true label $y^{(i)}$
- Suffer loss if a mistake was made, $y^{\prime} \neq y^{(i)}$
- Update parameters $\boldsymbol{\theta}$

Goal:

- Minimize the number of mistakes

Perceptron

Chalkboard:

- (Online) Perceptron Algorithm
- Why do we need a bias term?
- Inductive Bias of Perceptron
- Limitations of Linear Models

Perceptron Algorithm: Example

Example: $(-1,2)-x$ $(1,0)+$ $(1,1)+X$ ($-1,0$) -$(-1,-2)-X$ $(1,-1)+$

Perceptron Algorithm: (without the bias term)

- Set $\mathrm{t}=1$, start with all-zeroes weight vector w_{1}.
- Given example x, predict positive iff $w_{t} \cdot x \geq 0$.
- On a mistake, update as follows:
- Mistake on positive, update $w_{t+1} \leftarrow w_{t}+x$
- Mistake on negative, update $w_{t+1} \leftarrow w_{t}-x$

$$
\begin{aligned}
& w_{1}=(0,0) \\
& w_{2}=w_{1}-(-1,2)=(1,-2) \\
& w_{3}=w_{2}+(1,1)=(2,-1) \\
& w_{4}=w_{3}-(-1,-2)=(3,1)
\end{aligned}
$$

Background: Hyperplanes

Hyperplane (Definition 1):

$$
\mathcal{H}=\left\{\mathbf{x}: \mathbf{w}^{T} \mathbf{x}=b\right\}
$$

Hyperplane (Definition 2):

$$
\mathcal{H}=\left\{\mathbf{x}: \boldsymbol{\theta}^{T} \mathbf{x}=0\right.
$$

and $\left.x_{0}=1\right\}$

Half-spaces:

$$
\begin{aligned}
& \mathcal{H}^{+}=\left\{\mathbf{x}: \boldsymbol{\theta}^{T} \mathbf{x}>0 \text { and } x_{0}=1\right\} \\
& \mathcal{H}^{-}=\left\{\mathbf{x}: \boldsymbol{\theta}^{T} \mathbf{x}<0 \text { and } x_{0}=1\right\}
\end{aligned}
$$

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$
\begin{aligned}
& \left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots \\
& \text { where } \mathbf{x} \in \mathbb{R}^{M} \text { and } y \in\{+1,-1\}
\end{aligned}
$$

Prediction: Output determined by hyperplane.

$$
\begin{aligned}
& \hat{y}=h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right) \quad \operatorname{sign}(a)= \begin{cases}1, & \text { if } a \geq 0 \\
-1, & \text { otherwise }\end{cases} \\
& \text { Assume } \boldsymbol{\theta}=\left[b, w_{1}, \ldots, w_{M}\right]^{T} \text { and } x_{0}=1
\end{aligned}
$$

Learning: Iterative procedure:

- initialize parameters to vector of all zeroes
- while not converged
- receive next example $\left(x^{(i)}, y^{(i)}\right)$
- predict $y^{\prime}=\mathrm{h}\left(\mathbf{x}^{(i)}\right)$
- if positive mistake: add $\mathbf{x}^{(i)}$ to parameters
- if negative mistake: subtract $\mathbf{x}^{(i)}$ from parameters

(Online) Perceptron Algorithm

Data: Inputs are continuous vectors of length M. Outputs are discrete.
$\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots$
where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in\{+1,-1\}$
Prediction: Output determine Implementation Trick: same

$$
\hat{y}=h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)
$$

Assume $\boldsymbol{\theta}=\left[b, w_{1}, \ldots, w_{M}\right]$

Learning:

Algorithm 1 Perceptron Learning Alg behavior as our "add on positive mistake and
subtract on negative mistake" version, because $y^{(i)}$ takes care of the sign

```
procedure PERCEPTRON (\mathcal{D = { (x}
    2: }\quad\boldsymbol{0}\leftarrow\mathbf{0
    3: for i\in{1,2,\ldots} do
    6: }\quad\boldsymbol{0}\leftarrow\boldsymbol{0}+\mp@subsup{y}{}{(i)}\mp@subsup{\mathbf{x}}{}{(i)
```

 4:
 5:
 \triangleright Initialize parameters \triangleright For each example
\triangleright Predict
\triangleright If mistake
\triangleright Update parameters
return θ

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: $\operatorname{procedure} \operatorname{PERCEPTRON}\left(\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}\right)$
2: $\quad \boldsymbol{\theta} \leftarrow \mathbf{0}$
\triangleright Initialize parameters
3: while not converged do
4: for $i \in\{1,2, \ldots, N\}$ do
\triangleright For each example
$\hat{y} \leftarrow \operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)$
\triangleright Predict
6: \quad if $\hat{y} \neq y^{(i)}$ then
7:
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+y^{(i)} \mathbf{x}^{(i)}$
\triangleright If mistake
\triangleright Update parameters
8: \quad return θ

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Discussion:

The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch setting (as mentioned above)
2. By applying Stochastic Gradient Descent (SGD) to minimize a so-called Hinge Loss on a linear separator

Extensions of Perceptron

- Voted Perceptron
- generalizes better than (standard) perceptron
- memory intensive (keeps around every weight vector seen during training, so each one can vote)
- Averaged Perceptron
- empirically similar performance to voted perceptron
- can be implemented in a memory efficient way (running averages are efficient)
- Kernel Perceptron
- Choose a kernel K(x^{\prime}, x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple
- Structured Perceptron
- Basic idea can also be applied when y ranges over an exponentially large set
- Mistake bound does not depend on the size of that set

Perceptron Exercises

Question:

The parameter vector w learned by the Perceptron algorithm can be written as a linear combination of the feature vectors $\boldsymbol{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \boldsymbol{x}^{(N)}$.
A. True, if you replace "linear" with "polynomial" above
B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

ANALYSIS OF PERCEPTRON

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Definition: The margin γ_{w} of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$ (or the negative if on wrong side)

Definition: The margin γ_{w} of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_{w} over all linear separators w.

Linear Separability

Def: For a binary classification problem, a set of examples S is linearly separable if there exists a linear decision boundary that can separate the points

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq(R / \gamma)^{2}$ mistakes.
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq(R / \gamma)^{2}$ mistakes.
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has converged if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite \# of steps.

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and

$$
y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i
$$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

Analysis: Percept

Perceptron Mistake Boun
Theorem 0.1 (Block (1962), Novikoff (19 Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=}^{N}$ Suppose: The radius is centered at the origin, not at the center of the points.

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and

$$
y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i
$$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$
A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}
$$

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and $y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i$
Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

```
Algorithm 1 Perceptron Learning Algorithm (Online)
    procedure PERCEPTRON \(\left(\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots\right\}\right)\)
    \(\boldsymbol{\theta} \leftarrow \mathbf{0}, k=1 \quad \triangleright\) Initialize parameters
    for \(i \in\{1,2, \ldots\}\) do \(\quad \triangleright\) For each example
        if \(y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \leq 0\) then \(\quad \triangleright\) If mistake
            \(\boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)} \quad \triangleright\) Update parameters
            \(k \leftarrow k+1\)
```

 return \(\theta\)

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 1: for some A, $A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\|$

$$
\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*}=\left(\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right) \boldsymbol{\theta}^{*}
$$

by Perceptron algorithm update

$$
\begin{aligned}
& =\boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \\
& \geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+\gamma
\end{aligned}
$$

by assumption

$$
\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*} \geq k \gamma
$$

$$
\text { by induction on } k \text { since } \theta^{(1)}=\mathbf{0}
$$

$$
\begin{aligned}
& \Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\| \geq k \gamma \\
& \quad \text { since }\|\mathbf{w}\| \times\|\mathbf{u}\| \geq \mathbf{w} \cdot \mathbf{u} \text { and }\left\|\theta^{*}\right\|=1
\end{aligned}
$$

Cauchy-Schwartz inequality

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 2: for some $\mathrm{B},\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}$

$$
\begin{aligned}
\left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2}= & \left\|\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right\|^{2} \\
& \text { by Perceptron algorithm update } \\
= & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}+2 y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \\
\leq & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2} \\
& \text { since } k \text { th mistake } \Rightarrow y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \leq 0 \\
= & \left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+R^{2} \\
& \text { since }\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}=\left\|\mathbf{x}^{(i)}\right\|^{2}=R^{2} \text { by assumption and }\left(y^{(i)}\right)^{2}=1 \\
\Rightarrow & \left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2} \leq k R^{2} \\
& \text { by induction on } k \text { since }\left(\theta^{(1)}\right)^{2}=0 \\
\Rightarrow & \left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R
\end{aligned}
$$

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$
\begin{aligned}
& k \gamma \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R \\
\Rightarrow & k \leq(R / \gamma)^{2}
\end{aligned}
$$

The total number of mistakes must be less than this

Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can't!)
2. However, Freund \& Schapire (1999) show that by projecting the points (hypothetically) into a higher dimensional space, we can achieve a similar bound on the number of mistakes made on one pass through the sequence of examples

Theorem 2. Let $\left\langle\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\rangle$ be a sequence oflabeled examples with $\left\|\mathbf{x}_{i}\right\| \leq R$. Let \mathbf{u} be any vector with $\|\mathbf{u}\|=1$ and let $\gamma>0$. Define the deviation of each example as

$$
d_{i}=\max \left\{0, \gamma-y_{i}\left(\mathbf{u} \cdot \mathbf{x}_{i}\right)\right\},
$$

and define $D=\sqrt{\sum_{i=1}^{m} d_{i}^{2}}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$
\left(\frac{R+D}{\gamma}\right)^{2}
$$

Perceptron Exercises

Question:

Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron algorithm does not suffer from overfitting because it does not have any hyperparameters that could be over-tuned on the training data.
A. True
B. False
C. True and False

Summary: Perceptron

- Perceptron is a linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- Perceptron will converge if the data are linearly separable, it will not converge if the data are linearly inseparable
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron

[^0]: Lisa Hou

