10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Support Vector Machines

$$
\stackrel{+}{\text { Kernels }}
$$

Matt Gormley
Lecture 27
Nov. 22, 2019

Reminders

- Homework 7: HMMs
- Out: Fri, Nov. 8
- Due: Mon, Nov. 25 at 11:59pm
- Homework 8: Learning Paradigms
- Out: Mon, Nov. 25
- Due: Wed, Dec. 4 at 11:59pm
- Can only be submitted up to 3 days late, so we can return grades before final exam
- Today's In-Class Poll
- http://p27.mlcourse.org

CONSTRAINED OPTIMIZATION

Constrained Optimization
Unconstraned

$\min _{\vec{\theta}} J(\vec{\theta})$$\quad$| Constratued |
| :--- |
| |
| |
| |
| |
| |

SVM: Optimization Background

Whiteboard

- Constrained Optimization
- Linear programming
- Quadratic programming
- Example: 2D quadratic function with linear constraints

Quadratic Program

SUPPORT VECTOR MACHINE (SVM)

Example: Building a Canal

SVM

Whiteboard

- SVM Primal (Linearly Separable Case)

SVM QP

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
& \text { s.t. } y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
\max _{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{aligned}
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

- Instead of minimizing the primal, we can maximize the dual problem
- For the SVM, these two problems give the same answer (i.e. the minimum of one is the maximum of the other)
- Definition: support vectors are those points $x^{(i)}$ for which $\alpha^{(i)} \neq 0$

METHOD OF LAGRANGE MULTIPLIERS

Method of Lagrange Multipliers
Method af Lagrange Multipliers (case wine qualities)
Goal: min $f(\vec{x})$ st. $g(\vec{x}) \leqslant c$
(1) Construct Lagrangian

$$
L(\vec{x}, \lambda)=f(\vec{x})-\lambda(g(\vec{x})-c)
$$

(2) Solve

$$
\begin{aligned}
& \underset{\vec{x}}{\min } \max _{\lambda} x L(\vec{x}, \lambda) \\
& \nabla L(\vec{x}, \lambda)=0 \quad \text { st. } \lambda \geqslant 0, g(\vec{x}) \leq c
\end{aligned}
$$

Equivalent to solving

$$
\nabla f(\vec{x})=\lambda \nabla_{s}(\vec{x}) \quad \text { st. } \lambda \geqslant 0, \quad g(\vec{x}) \leq c
$$

Method of Lagrange Multipliers

Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx

Method of Lagrange Multipliers

Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx

SVM DUAL

Method of Lagrange Multipliers

Whiteboard

- Lagrangian Duality
- Example: SVM Dual

Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$
\begin{aligned}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
\max _{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{aligned}
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

- Instead of minimizing the primal, we can maximize the dual problem
- For the SVM, these two problems give the same answer (i.e. the minimum of one is the maximum of the other)
- Definition: support vectors are those points $x^{(i)}$ for which $\alpha^{(i)} \neq 0$

SVM EXTENSIONS

Soft-Margin SVM

Hard-margin SVM (Primal)

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
& \text { s.t. } y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Soft-margin SVM (Primal)

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{N} e_{i}\right)
$$

$$
\text { s.t. } y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-e_{i}, \quad \forall i=1, \ldots, N
$$

$$
e_{i} \geq 0, \quad \forall i=1, \ldots, N
$$

- Question: If the dataset is not linearly separable, can we still use an SVM?
- Answer: Not the hardmargin version. It will never find a feasible solution.

In the soft-margin version, we add "slack variables" that allow some points to violate the large-margin constraints.

The constant C dictates how large we should allow the slack variables to be

Soft-Margin SVM

Hard-margin SVM (Primal)
 $$
\begin{array}{ll} \min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\ \text { s.t. } & y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N \end{array}
$$

Soft-margin SVM (Primal)
$\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C\left(\sum_{i=1}^{N} e_{i}\right)$
s.t. $y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1-e_{i}, \quad \forall i=1, \ldots, N$

$$
e_{i} \geq 0, \quad \forall i=1, \ldots, N
$$

Soft-Margin SVM

Hard-margin SVM (Primal)

$$
\begin{aligned}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
\max _{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{aligned}
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

Soft-margin SVM (Lagrangian Dual)

$$
\max _{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}
$$

$$
\text { s.t. } 0 \leq \alpha_{i} \leq C, \quad \forall i=1, \ldots, N
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

We can also work with the dual of the soft-margin SVM

Multiclass SVMs

The SVM is inherently a binary classification method, but can be extended to handle K-class classification in many ways.

1. one-vs-rest:

- build K binary classifiers
- train the $k^{\text {th }}$ classifier to predict whether an instance has label k or something else
- predict the class with largest score

2. one-vs-one:

- build (K choose 2) binary classifiers
- train one classifier for distinguishing between each pair of labels
- predict the class with the most "votes" from any given classifier

Learning Objectives

Support Vector Machines

You should be able to...

1. Motivate the learning of a decision boundary with large margin
2. Compare the decision boundary learned by SVM with that of Perceptron
3. Distinguish unconstrained and constrained optimization
4. Compare linear and quadratic mathematical programs
5. Derive the hard-margin SVM primal formulation
6. Derive the Lagrangian dual for a hard-margin SVM
7. Describe the mathematical properties of support vectors and provide an intuitive explanation of their role
8. Draw a picture of the weight vector, bias, decision boundary, training examples, support vectors, and margin of an SVM
9. Employ slack variables to obtain the soft-margin SVM
10. Implement an SVM learner using a black-box quadratic programming (QP) solver

KERNELS

Kernels: Motivation

Most real-world problems exhibit data that is not linearly separable.

Example: pixel representation for Facial Recognition:

Q: When your data is not linearly separable, how can you still use a linear classifier?
A: Preprocess the data to produce nonlinear features

Kernels: Motivation

- Motivation \#1: Inefficient Features
- Non-linearly separable data requires high dimensional representation
- Might be prohibitively expensive to compute or store
- Motivation \#2: Memory-based Methods
- k-Nearest Neighbors (KNN) for facial recognition allows a distance metric between images -- no need to worry about linearity restriction at all

Kernel Methods

- Key idea:

1. Rewrite the algorithm so that we only work with dot products $x^{\top} z$ of feature vectors
2. Replace the dot products $x^{\top} z$ with a kernel function $k(x, z)$

- The kernel $k(x, z)$ can be any legal definition of a dot product:

$$
\mathrm{k}(\mathrm{x}, \mathrm{z})=\varphi(\mathrm{x})^{\top} \varphi(\mathrm{z}) \text { for any function } \varphi: \mathcal{X} \rightarrow \mathbf{R}^{\mathrm{D}}
$$

So we only compute the φ dot product implicitly

- This "kernel trick" can be applied to many algorithms:
- classification: perceptron, SVM, ...
- regression: ridge regression, ...
- clustering: k-means, ...

SVM: Kernel Trick

Hard-margin SVM (Primal)

$$
\begin{aligned}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i
\end{aligned}
$$

 feature engineering
\square - Our feature function is ϕ We apply ϕ to each input vector \mathbf{x}
$\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}$
s.t. $y^{(i)}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)+b\right) \geq 1, \quad \forall i$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
\max _{\boldsymbol{\alpha}} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{aligned}
$$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

$\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$
s.t. $\alpha_{i} \geq 0, \quad \forall i=1, \ldots, N$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

$$
\max _{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)
$$

s.t. $\alpha_{i} \geq 0, \quad \forall i=1, \ldots, N$

$$
\sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

We could replace the dot product of the two feature vectors in the transformed space with a function $k(x, z)$
where $k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$

SVM: Kernel Trick

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
& \max _{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)}\left(k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)\right. \\
& \text { s.t. } \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N \\
& \quad \sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
\end{aligned}
$$

We could replace the dot product of the two feature vectors in the transformed space with a function $k(x, z)$
where $k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\phi\left(\mathbf{x}^{(i)}\right) \cdot \phi\left(\mathbf{x}^{(j)}\right)$

Kernel Methods

- Key idea:

1. Rewrite the algorithm so that we only work with dot products $x^{\top} z$ of feature vectors
2. Replace the dot products $x^{\top} z$ with a kernel function $k(x, z)$

- The kernel $k(x, z)$ can be any legal definition of a dot product:

$$
\mathrm{k}(\mathrm{x}, \mathrm{z})=\varphi(\mathrm{x})^{\top} \varphi(\mathrm{z}) \text { for any function } \varphi: \mathcal{X} \rightarrow \mathbf{R}^{\mathrm{D}}
$$

So we only compute the φ dot product implicitly

- This "kernel trick" can be applied to many algorithms:
- classification: perceptron, SVM, ...
- regression: ridge regression, ...
- clustering: k-means, ...

Kernel Methods

Q: These are just non-linear features, right? A: Yes, but...

Q: Can't we just compute the feature transformation φ explicitly?
A: That depends...
Q: So, why all the hype about the kernel trick? A: Because the explicit features might either be prohibitively expensive to compute or infinite length vectors

Example: Polynomial Kernel

For $n=2, d=2$, the kernel $K(x, z)=(x \cdot z)^{d}$ corresponds to

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \\
& \begin{array}{r}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z})= \\
=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \cdot\left(\mathrm{z}_{1}^{2}, \mathrm{z}_{2}^{2}, \sqrt{2} z_{1} z_{2}\right) \\
=\left(\mathrm{x}_{1} z_{1}+\mathrm{x}_{2} z_{2}\right)^{2}=(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{array}
\end{aligned}
$$

Original space
Φ-space

Kernel Examples

Name	Kernel Function (implicit dot product)	Feature Space (explicit dot product)		
Linear	$K(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{z}$	Same as original input space		
Polynomial (v1)	$K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{T} \mathbf{z}\right)^{d}$	All polynomials of degree d		
Polynomial (v2)	$K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{T} \mathbf{z}+1\right)^{d}$	All polynomials up to degree d		
Gaussian	$K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\\|\mathbf{x}-\mathbf{z}\\|_{2}^{2}}{2 \sigma^{2}}\right)$	Infinite dimensional space		
Hyperbolic Tangent (Sigmoid) Kernel	$K(\mathbf{x}, \mathbf{z})=\tanh \left(\alpha \mathbf{x}^{T} \mathbf{z}+c\right)$	(With SVM, this is equivalent to a 2-layer neural network)		

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

KNN vs. SVM

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

KNN vs. SVM

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

KNN vs. SVM

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

RBF Kernel Example

KNN vs. SVM

RBF Kernel: $K\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)=\exp \left(-\gamma\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|_{2}^{2}\right)$

Kernel Methods

- Key idea:

1. Rewrite the algorithm so that we only work with dot products $x^{\top} z$ of feature vectors
2. Replace the dot products $x^{\top} z$ with a kernel function $k(x, z)$

- The kernel $k(x, z)$ can be any legal definition of a dot product:

$$
\mathrm{k}(\mathrm{x}, \mathrm{z})=\varphi(\mathrm{x})^{\top} \varphi(\mathrm{z}) \text { for any function } \varphi: \mathcal{X} \rightarrow \mathbf{R}^{\mathrm{D}}
$$

So we only compute the φ dot product implicitly

- This "kernel trick" can be applied to many algorithms:
- classification: perceptron, SVM, ...
- regression: ridge regression, ...
- clustering: k-means, ...

SVM + Kernels: Takeaways

- Maximizing the margin of a linear separator is a good training criteria
- Support Vector Machines (SVMs) learn a max-margin linear classifier
- The SVM optimization problem can be solved with black-box Quadratic Programming (QP) solvers
- Learned decision boundary is defined by its support vectors
- Kernel methods allow us to work in a transformed feature space without explicitly representing that space
- The kernel-trick can be applied to SVMs, as well as many other algorithms

Learning Objectives

Kernels

You should be able to...

1. Employ the kernel trick in common learning algorithms
2. Explain why the use of a kernel produces only an implicit representation of the transformed feature space
3. Use the "kernel trick" to obtain a computational complexity advantage over explicit feature transformation
4. Sketch the decision boundaries of a linear classifier with an RBF kernel
