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Reminders

• Homework 7: HMMs
– Out: Fri, Nov. 8
– Due: Mon, Nov. 25 at 11:59pm 

• Homework 8: Learning Paradigms
– Out: Mon, Nov. 25
– Due: Wed, Dec. 4 at 11:59pm
– Can only be submitted up to 3 days late, 

so we can return grades before final exam

• Today’s In-Class Poll
– http://p27.mlcourse.org
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CONSTRAINED OPTIMIZATION
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Constrained Optimization
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SVM: Optimization Background

Whiteboard
– Constrained Optimization
– Linear programming
– Quadratic programming
– Example: 2D quadratic function with linear 

constraints
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Quadratic Program
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Quadratic Program
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Quadratic Program
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Quadratic Program
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Quadratic Program
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SUPPORT VECTOR MACHINE 
(SVM)
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Example: Building a Canal

16https://www.flickr.com/photos/hereistom/10438848375

https://www.flickr.com/photos/hereistom/10438848375


SVM

Whiteboard
– SVM Primal (Linearly Separable Case)

17This section borrows ideas from Nina Balcan’s SVM lectures at CMU and Patrick Winston’s 

“widest street” SVM lecture at MIT (https://www.youtube.com/watch?v=_PwhiWxHK8o).

https://www.youtube.com/watch?v=_PwhiWxHK8o


SVM QP
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SVM QP
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SVM QP
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SVM QP
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SVM QP
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SVM QP
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Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)
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• Instead of minimizing the primal, we can maximize the 
dual problem

• For the SVM, these two problems give the same 
answer (i.e. the minimum of one is the maximum of the 
other)

• Definition: support vectors are those points x(i) for 
which α(i) ≠ 0



METHOD OF LAGRANGE 
MULTIPLIERS
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Method of Lagrange Multipliers

26



Method of Lagrange Multipliers
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Method of Lagrange Multipliers
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Method of Lagrange Multipliers
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Method of Lagrange Multipliers
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Method of Lagrange Multipliers
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Method of Lagrange Multipliers

32Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx



Method of Lagrange Multipliers

33Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx



SVM DUAL
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Method of Lagrange Multipliers

Whiteboard
– Lagrangian Duality
– Example: SVM Dual

35This section borrows ideas from Nina Balcan’s SVM lectures at CMU and Patrick Winston’s 
“widest street” SVM lecture at MIT (https://www.youtube.com/watch?v=_PwhiWxHK8o).

https://www.youtube.com/watch?v=_PwhiWxHK8o


Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)
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• Instead of minimizing the primal, we can maximize the 
dual problem

• For the SVM, these two problems give the same 
answer (i.e. the minimum of one is the maximum of the 
other)

• Definition: support vectors are those points x(i) for 
which α(i) ≠ 0



SVM EXTENSIONS
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Soft-Margin SVM
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Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

• Question: If the dataset is 
not linearly separable, can 
we still use an SVM?

• Answer: Not the hard-
margin version. It will never 
find a feasible solution.

In the soft-margin version, 
we add “slack variables” 
that allow some points to 
violate the large-margin 
constraints.

The constant C dictates 
how large we should allow 
the slack variables to be



Soft-Margin SVM
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Hard-margin SVM (Primal)

Soft-margin SVM (Primal)



Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Soft-Margin SVM
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We can also work with the dual of the soft-margin SVM



Multiclass SVMs
The SVM is inherently a binary classification method, 
but can be extended to handle K-class classification in 
many ways.
1. one-vs-rest: 
– build K binary classifiers
– train the kth classifier to predict whether an instance 

has label k or something else
– predict the class with largest score

2. one-vs-one:
– build (K choose 2) binary classifiers
– train one classifier for distinguishing between each pair 

of labels
– predict the class with the most “votes” from any given 

classifier
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Learning Objectives

Support Vector Machines
You should be able to…
1. Motivate the learning of a decision boundary with large margin

2. Compare the decision boundary learned by SVM with that of 

Perceptron

3. Distinguish unconstrained and constrained optimization

4. Compare linear and quadratic mathematical programs

5. Derive the hard-margin SVM primal formulation

6. Derive the Lagrangian dual for a hard-margin SVM

7. Describe the mathematical properties of support vectors and provide 

an intuitive explanation of their role

8. Draw a picture of the weight vector, bias, decision boundary, training 

examples, support vectors, and margin of an SVM

9. Employ slack variables to obtain the soft-margin SVM

10. Implement an SVM learner using a black-box quadratic programming 

(QP) solver
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KERNELS
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Kernels: Motivation

Most real-world problems exhibit data that is 
not linearly separable.
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Q: When your data is not linearly separable, 
how can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Example: pixel representation for Facial Recognition:



Kernels: Motivation

• Motivation #1: Inefficient Features
– Non-linearly separable data requires high 

dimensional representation
– Might be prohibitively expensive to compute or 

store

• Motivation #2: Memory-based Methods
– k-Nearest Neighbors (KNN) for facial recognition 

allows a distance metric between images -- no 
need to worry about linearity restriction at all
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Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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• Suppose we do some 
feature engineering

• Our feature function is ɸ
• We apply ɸ to each input 

vector x



Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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We could replace the dot product of the two feature vectors 
in the transformed space with a function k(x,z)



Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick
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We could replace the dot product of the two feature vectors 
in the transformed space with a function k(x,z)



Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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Kernel Methods
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Q: These are just non-linear features, right?
A: Yes, but…

Q: Can’t we just compute the feature 
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either 

be prohibitively expensive to compute or 
infinite length vectors



Example: Polynomial Kernel

60
Slide from Nina Balcan

Example 

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to  

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2) 
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Kernel Examples

63

Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input 
space

Polynomial (v1) All polynomials of degree 
d

Polynomial (v2) All polynomials up to 
degree d

Gaussian Infinite dimensional space

Hyperbolic
Tangent 
(Sigmoid) 
Kernel

(With SVM, this is 
equivalent to a 2-layer 
neural network)



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example
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RBF Kernel:



RBF Kernel Example

76
RBF Kernel:

KNN vs. SVM



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



RBF Kernel Example
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RBF Kernel:

KNN vs. SVM



RBF Kernel Example

79
RBF Kernel:

KNN vs. SVM



Kernel Methods
• Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …
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SVM + Kernels: Takeaways
• Maximizing the margin of a linear separator is a good 

training criteria
• Support Vector Machines (SVMs) learn a max-margin 

linear classifier
• The SVM optimization problem can be solved with 

black-box Quadratic Programming (QP) solvers
• Learned decision boundary is defined by its support 

vectors
• Kernel methods allow us to work in a transformed 

feature space without explicitly representing that 
space

• The kernel-trick can be applied to SVMs, as well as 
many other algorithms
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Learning Objectives
Kernels

You should be able to…
1. Employ the kernel trick in common learning 

algorithms
2. Explain why the use of a kernel produces only 

an implicit representation of the transformed 
feature space

3. Use the "kernel trick" to obtain a 
computational complexity advantage over 
explicit feature transformation

4. Sketch the decision boundaries of a linear 
classifier with an RBF kernel
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