

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: Q-Learning

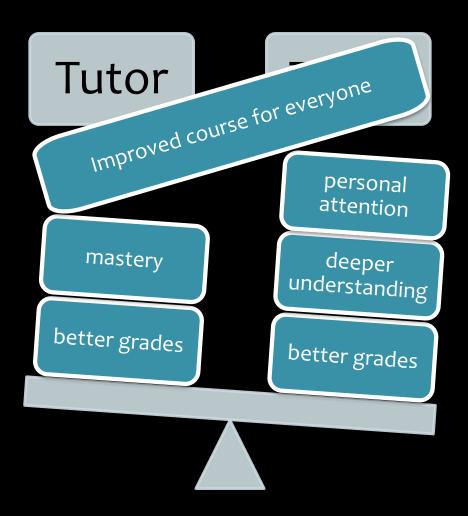
Matt Gormley Lecture 17 Oct. 21, 2019

Reminders

- Recitation:
 - Thu, Oct 17th at 7:30pm 8:30pm in GHC 4401
 - (also available on Panopto)
- Homework 5: Neural Networks
 - Out: Fri, Oct. 11
 - Due: Fri, Oct. 25 at 11:59pm
- Homework 6: Information Theory / Generative Models
 - Out: Fri, Oct. 25
 - Due: Fri, Nov. 8 at 11:59pm

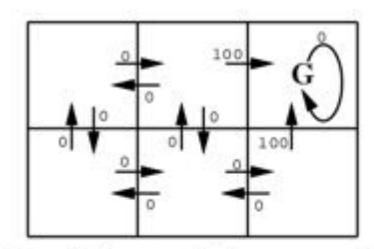
- Today's In-Class Poll
 - http://p17.mlcourse.org

Peer Tutoring

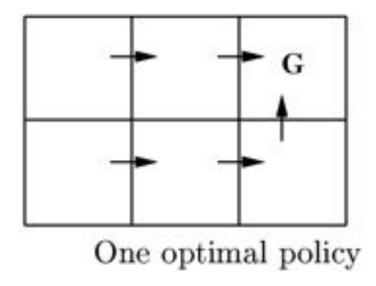


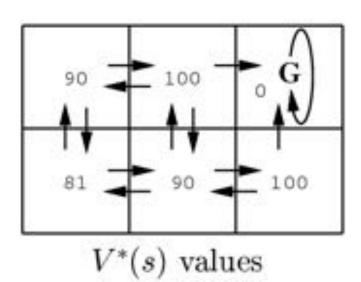
VALUE ITERATION

Example: Robot Localization



r(s, a) (immediate reward) values





Value Iteration

Whiteboard

- Value Iteration Algorithm
- Synchronous vs. Asychronous Updates

Value Iteration

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a)
   transition probabilities)
       Initialize value function V(s) = 0 or randomly
2:
       while not converged do
3:
            for s \in \mathcal{S} do
4:
                for a \in \mathcal{A} do
5:
                    Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')
6:
                V(s) = \max_a Q(s, a)
7:
       Let \pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s
8:
       return \pi
9:
```

Variant 1: with Q(s,a) table

Value Iteration

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a) transition probabilities)
2: Initialize value function V(s) = 0 or randomly
3: while not converged do
4: for s \in \mathcal{S} do
5: V(s) = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')
6: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
7: return \pi
```

Variant 2: without Q(s,a) table

Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

```
1: procedure AsynchronousValueIteration(R(s,a),p(\cdot|s,a))
2: Initialize value function V(s)^{(0)}=0 or randomly
3: t=0
4: while not converged do
5: for s \in \mathcal{S} do
6: V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s')^{(t)}
7: t=t+1
8: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)V(s'), \forall s
9: return \pi
```

asynchronous updates: compute
and update V(s) for
each state one at a
time

Algorithm 1 Synchronous Value Iteration

```
1: procedure SYNCHRONOUSVALUEITERATION(R(s,a), p(\cdot|s,a))
2: Initialize value function V(s)^{(0)} = 0 or randomly
3: t = 0
4: while not converged do
5: for s \in \mathcal{S} do
6: V(s)^{(t+1)} = \max_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V(s')^{(t)}
7: t = t + 1
8: Let \pi(s) = \operatorname{argmax}_a R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V(s'), \forall s
9: return \pi
```

updates: compute all the fresh values of V(s) from all the stale values of V(s), then update V(s) with fresh values

Value Iteration Convergence

very abridged

Theorem 1 (Bertsekas (1989))

V converges to V^* , if each state is visited infinitely often

Theorem 2 (Williams & Baird (1993))

$$\begin{split} &\text{if } max_s|V^{t+1}(s)-V^t(s)|<\epsilon\\ &\text{then } max_s|V^{t+1}(s)-V^*(s)|<\frac{2\epsilon\gamma}{1-\gamma},\ \forall s \end{split}$$

Theorem 3 (Bertsekas (1987))

greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!) Holds for both asynchronous and sychronous updates

Provides reasonable stopping criterion for value iteration

Often greedy policy converges well before the value function

Value Iteration Variants

Question:

True or False: The value iteration algorithm shown below is an example of **synchronous** updates

```
Algorithm 1 Value Iteration
  1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a)
    transition probabilities)
         Initialize value function V(s) = 0 or randomly
         while not converged do
 3:
             for s \in \mathcal{S} do
 4:
                 for a \in \mathcal{A} do
 5:
                      Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')
 6:
                 V(s) = \max_a Q(s, a)
 7:
         Let \pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s
 8:
         return \pi
 9:
```

POLICY ITERATION

Policy Iteration

Algorithm 1 Policy Iteration

- 1: **procedure** PolicyIteration(R(s,a) reward function, $p(\cdot|s,a)$ transition probabilities)
- 2: Initialize policy π randomly
- 3: while not converged do
- 4: Solve Bellman equations for fixed policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s'), \ \forall s$$

5: Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

Policy Iteration

Algorithm 1 Policy Iteration

- 1: **procedure** POLICYITERATION(R(s,a)) transition probabilities)
- 2: Initialize policy π randomly
- 3: while not converged do
- 4: Solve Bellman equations for fixed policy π

n, $p(\cdot|s,a)$

System of |S| equations and |S| variables

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s'), \ \forall s$$

5: Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

Greedy policy w.r.t. current value function

Greedy policy might remain the same for a particular state if there is no better action

Policy Iteration Convergence

In-C	lass	Exer	cise:
		_/\\	

How ma	iny po	licies	are t	there '	for a	finite	sized	state	anc
action s	pace?								

In-Class Exercise:

Suppose policy iteration is shown to improve the policy at every iteration. Can you bound the number of iterations it will take to converge?

Value Iteration vs. Policy Iteration

- Value iteration requires
 O(|A| |S|²)
 computation per iteration
- Policy iteration requires
 O(|A| |S|² + |S|³)
 computation per iteration
- In practice, policy iteration converges in fewer iterations

Algorithm 1 Value Iteration

```
1: procedure VALUEITERATION(R(s,a) reward function, p(\cdot|s,a)
   transition probabilities)
       Initialize value function V(s) = 0 or randomly
2:
       while not converged do
3:
           for s \in \mathcal{S} do
4:
                for a \in \mathcal{A} do
5:
                    Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a)V(s')
6:
                V(s) = \max_{a} Q(s, a)
7:
       Let \pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s
8:
       return \pi
9:
```

Algorithm 1 Policy Iteration

- 1: **procedure** POLICYITERATION(R(s,a) reward function, $p(\cdot|s,a)$ transition probabilities)
- 2: Initialize policy π randomly
- 3: while not converged do
- Solve Bellman equations for fixed policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V^{\pi}(s'), \ \forall s$$

5: Improve policy π using new value function

$$\pi(s) = \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s')$$

6: return π

Learning Objectives

Reinforcement Learning: Value and Policy Iteration

You should be able to...

- 1. Compare the reinforcement learning paradigm to other learning paradigms
- 2. Cast a real-world problem as a Markov Decision Process
- 3. Depict the exploration vs. exploitation tradeoff via MDP examples
- 4. Explain how to solve a system of equations using fixed point iteration
- 5. Define the Bellman Equations
- 6. Show how to compute the optimal policy in terms of the optimal value function
- 7. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- 8. Implement value iteration
- 9. Implement policy iteration
- 10. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- 11. Identify the conditions under which the value iteration algorithm will converge to the true value function
- 12. Describe properties of the policy iteration algorithm

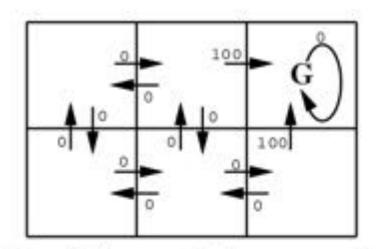
Q-LEARNING

Q-Learning

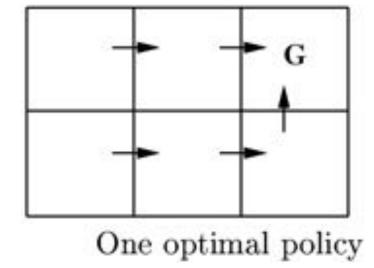
Whiteboard

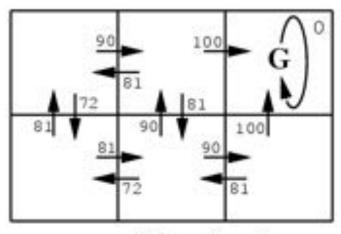
- Motivation: What if we have zero knowledge of the environment?
- Q-Function: Expected Discounted Reward

Example: Robot Localization

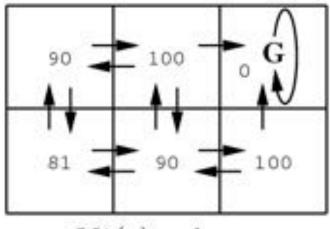


r(s, a) (immediate reward) values





Q(s, a) values



 $V^*(s)$ values

Q-Learning

Whiteboard

- Q-Learning Algorithm
 - Case 1: Deterministic Environment
 - Case 2: Nondeterministic Environment
- Convergence Properties
- Exploration Insensitivity
- Ex: Re-ordering Experiences
- ε-greedy Strategy

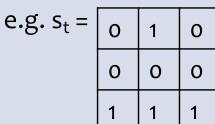
Q&A

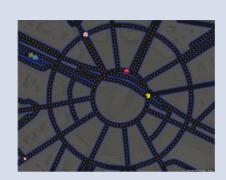
Q: Do we have to retrain our RL agent every time we change our state space?

A: Yes. But whether your state space changes from one setting to another is determined by your design of the state representation.

Two examples:

- State Space A: $\langle x,y \rangle$ position on map e.g. $s_t = \langle 74, 152 \rangle$
- State Space B: window of pixel colors centered at current Pac Man location





DEEP RL EXAMPLES

TD Gammon -> Alpha Go

Learning to beat the masters at board games

THEN

"...the world's top computer program for backgammon, TD-GAMMON (Tesauro, 1992, 1995), learned its strategy by playing over one million practice games against itself..."

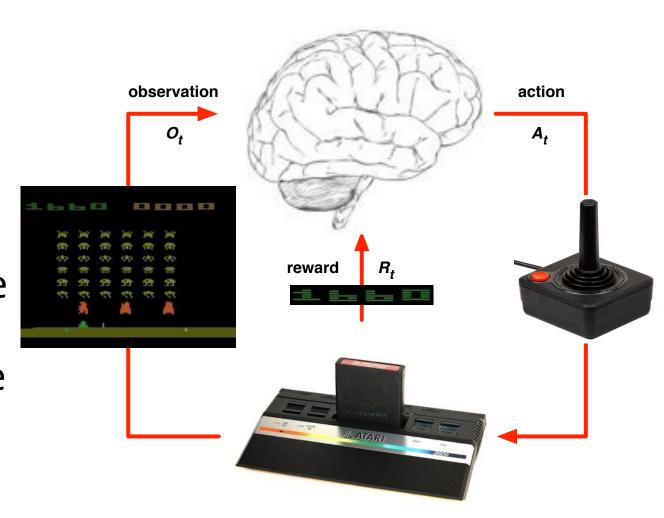
NOW



(Mitchell, 1997)

Playing Atari with Deep RL

- Setup: RL system observes the pixels on the screen
- It receives rewards as the game score
- Actions decide how to move the joystick / buttons



Playing Atari with Deep RL

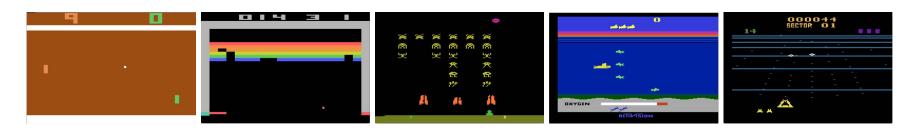


Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

Videos:

- Atari Breakout:

https://www.youtube.com/watch?v=V1eYniJoRn
k

– Space Invaders:

https://www.youtube.com/watch?v=ePvoFs9cG
gU

Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (*Left-to-right*) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Table 1: The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon=0.05$ for a fixed number of steps. The lower table reports results of the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that always get the same score while DQN used an ϵ -greedy policy with $\epsilon=0.05$.

Deep Q-Learning

Question: What if our state space S is too large to represent with a table?

Examples:

- s_t = pixels of a video game
- s_t = continuous values of a sensors in a manufacturing robot
- s_t = sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:

- 1. Use a neural network $Q(s,a;\theta)$ to approximate $Q^*(s,a)$
- 2. Learn the parameters θ via SGD with training examples < s_t, a_t, r_t, s_{t+1} >

Deep Q-Learning

Whiteboard

- Strawman loss function (i.e. what we cannot compute)
- Approximating the Q function with a neural network
- Approximating the Q function with a linear model
- Deep Q-Learning
- function approximators
 (<state, action_i> → q-value
 vs.
 state → all action q-values)

Experience Replay

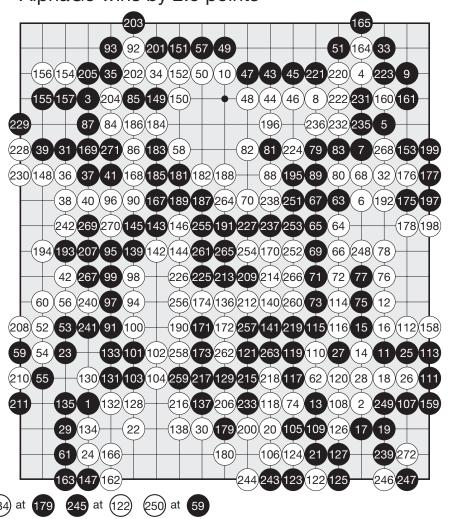
- Problems with online updates for Deep Q-learning:
 - not i.i.d. as SGD would assume
 - quickly forget rare experiences that might later be useful to learn from
- Uniform Experience Replay (Lin, 1992):
 - Keep a replay memory D = $\{e_1, e_2, ..., e_N\}$ of N most recent experiences $e_t = \langle s_t, a_t, r_t, s_{t+1} \rangle$
 - Alternate two steps:
 - Repeat T times: randomly sample e_i from D and apply a Q-Learning update to e_i
 - Agent selects an action using epsilon greedy policy to receive new experience that is added to D
 - Prioritized Experience Replay (Schaul et al, 2016)
 - similar to Uniform ER, but sample so as to prioritize experiences with high error

Alpha Go

Game of Go (圍棋)

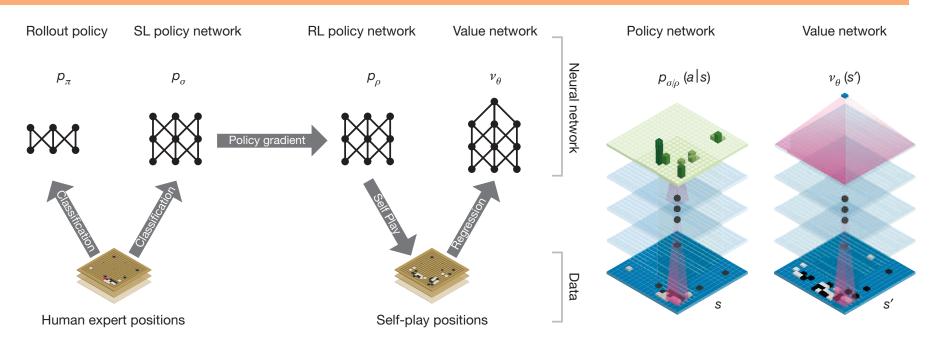
- 19x19 board
- Players alternately play black/white stones
- Goal is to fully encircle the largest region on the board
- Simple rules, but extremely complex game play

Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points



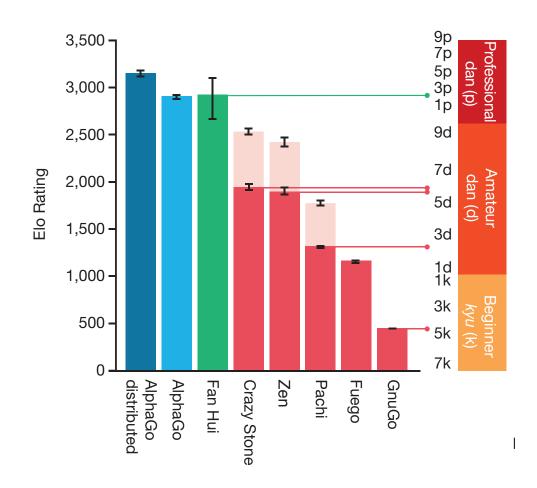
Alpha Go

- State space is too large to represent explicitly since # of sequences of moves is $O(b^d)$
 - Go: b=250 and d=150
 - Chess: b=35 and d=80
- Key idea:
 - Define a neural network to approximate the value function
 - Train by policy gradient



Alpha Go

- Results of a tournament
- From Silver et al. (2016): "a
 230 point gap corresponds to a 79% probability of winning"



Learning Objectives

Reinforcement Learning: Q-Learning

You should be able to...

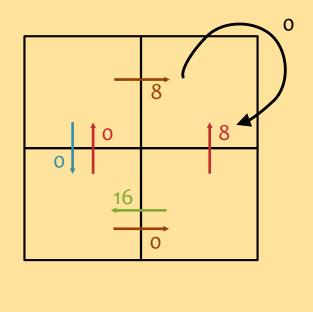
- 1. Apply Q-Learning to a real-world environment
- 2. Implement Q-learning
- Identify the conditions under which the Qlearning algorithm will converge to the true value function
- Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
- Describe the connection between Deep Q-Learning and regression

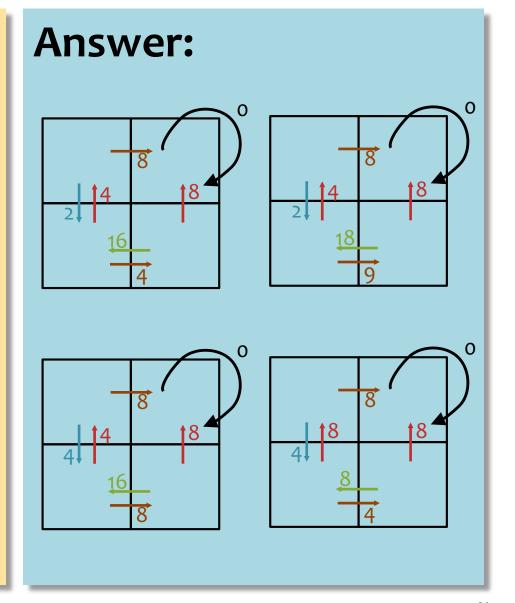
Q-Learning

Question:

For the R(s,a) values shown on the arrows below, which are the corresponding Q*(s,a) values?

Assume discount factor = 0.5.





ML Big Picture

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?

- probabilistic
- ☐ information theoretic
- evolutionary search
- ☐ ML as optimization

Problem Formulation:

What is the structure of our output prediction?

boolean Binary Classification

categorical Multiclass Classification

ordinal Ordinal Classification

real Regression

ordering Ranking

multiple discrete Structured Prediction

multiple continuous (e.g. dynamical systems)

both discrete & (e.g. mixed graphical models)

cont.

Application Areas

Key challenges?

NLP, Speech, Computer
Vision, Robotics, Medicines

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

- 1. Data prep
- 2. Model selection
- 3. Training (optimization / search)
- 4. Hyperparameter tuning on validation data
- 5. (Blind) Assessment on test data

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

Learning Paradigms

Paradigm	Data
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$
\hookrightarrow Regression	$y^{(i)} \in \mathbb{R}$
\hookrightarrow Classification	$y^{(i)} \in \{1, \dots, K\}$
\hookrightarrow Binary classification	$y^{(i)} \in \{+1, -1\}$
\hookrightarrow Structured Prediction	$\mathbf{y}^{(i)}$ is a vector
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot)$
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$
Online	$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \ldots \}$
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost
Imitation Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \ldots\}$
Reinforcement Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \ldots\}$