10601 Notation Crib Sheet

Matthew R. Gormley

February 26, 2018

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters $x, y, z, \alpha, \beta, \gamma$ or uppercase Latin letters N, M, T. The latter are typically used to indicate a **count** (e.g. number of examples, features, timesteps) and are often accompanied by a corresponding **index** n, m, t (e.g. current example, feature, timestep). **Vectors** are bold lowercase letters $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$ and are typically assumed to be *column* vectors—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow $\vec{x} = [x_1, x_2, \dots, x_M]^T$. **Matrices** are bold uppercase letters:

$$\mathbf{U} = \begin{bmatrix} U_{11} & U_{12} & \dots & U_{1m} \\ U_{21} & U_{22} & & & \\ \vdots & & \ddots & \vdots \\ U_{n1} & & \dots & U_{nm} \end{bmatrix}$$

As in the examples above, subscripts are used as **indices** into structured objects such as vectors or matrices.

2 Sets

Sets are represented by caligraphic uppercase letters $\mathcal{X}, \mathcal{Y}, \mathcal{D}$. We often index a set by labels in parenthesized superscripts $\mathcal{S} = \{s^{(1)}, s^{(2)}, \dots, s^{(S)}\}$, where $S = |\mathcal{S}|$. A shorthand for this equivalently defines $\mathcal{S} = \{s^{(s)}\}_{s=1}^{S}$. This shorthand is convenient when defining a set of **training examples**: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$ is equivalent to $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$.

3 Random Variables

Random variables are also uppercase Latin letters X, Y, Z, but their use is typically apparent from context. When a random variable X_i and a scalar x_i are upper/lower-case versions of each other, we typically mean that the scalar is a **value** taken by the random variable.

When possible, we try to reserve Greek letters for parameters θ , ϕ or hyperparameters α , β , γ .

For a random variable X, we write $X \sim \text{Gaussian}(\mu, \sigma^2)$ to indicate that X follows a 1D Gaussian distribution with mean μ and variance σ^2 . We write $x \sim \text{Gaussian}(\mu, \sigma^2)$ to say that x is a value sampled from the same distribution.

A conditional probability distribution over random variable X given Y and Z is written P(X|Y,Z) and its probability mass function (pmf) or probability density function (pdf) is p(x|y,z). If the probability distribution has parameters α, β , we can write its pmf/pdf in at least three equivalent ways: A statistician might prefer $p(x|y,z;\alpha,\beta)$ to clearly demarcate the parameters. A graphical models expert prefer $p(x|y,z,\alpha,\beta)$ since said parameters are really just additional random variables. A typographer might prefer to save ink by writing $p_{\alpha,\beta}(x|y,z)$. To refer to this pmf/pdf as a function over possible values of a we would elide it as in $p_{\alpha,\beta}(\cdot|y,z)$. Using our \sim notation from above, we could then write that X follows the distribution $X \sim p_{\alpha,\beta}(\cdot|y,z)$ and x is a sample from it $x \sim p_{\alpha,\beta}(\cdot|y,z)$.

The **expectation** of a random variable X is $\mathbb{E}[X]$. When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example, $\mathbb{E}_{x \sim p_{\alpha,\beta}(\cdot|y,z)}[f(x,y,z)]$ is the expectation of f(x,y,z) for some function f where x is sampled from the distribution $p_{\alpha,\beta}(\cdot|y,z)$ and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as $\frac{\partial f(x)}{\partial x}$ or $\frac{df(x)}{dx}$. We also denote its first derivative as f'(x), its second derivative as f''(x), and so on. For a multivariate function $f(\mathbf{x}) = f(x_1, \dots, x_M)$, we write its gradient with respect to \mathbf{x} as $\nabla_{\mathbf{x}} f(\mathbf{x})$ and frequently omit the subscript, i.e. $\nabla f(\mathbf{x})$, when it is clear from context—it might not be for a gradient such as $\nabla_{\mathbf{y}} g(\mathbf{x}, \mathbf{y})$.

5 Common Conventions

The table below lists additional common conventions we follow:

Notation	Description
N	number of training examples
M	number of feature types
K	number of classes
n or i	current training example
m	current feature type
k	current class
${\mathbb Z}$	set of integers
\mathbb{R}	set of reals
\mathbb{R}^M	set of real-valued vectors of length M
$\{0,1\}^{M}$	set of binary vectors of length M
X	feature vector (input) where $\mathbf{x} = [x_1, x_2, \dots, x_M]^T$; typically
	$\mathbf{x} \in \mathbb{R}^M \text{ or } \mathbf{x} \in \{0,1\}^M$

Note that a more careful notation system would always use $\frac{\partial f(x)}{\partial x}$ for partial derivatives, since $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ is typically reserved for total derivatives. However, only partial derivatives make an appearance herein.

```
label / regressand (output); for classification y
                             \{1,2,\ldots,K\}; for binary classification y \in \{0,1\} or y \in \{0,1\}
                             \{+1, -1\}; for regression, y \in \mathbb{R}
                            input space, i.e. \mathbf{x} \in \mathcal{X}
                       \mathcal{X}
                             output space, i.e. y \in Yc
                             the ith feature vector in the training data
                             the ith true output in the training data
                     x_m^{(i)}
                             the mth feature of the ith feature vector
             (x^{(i)}, y^{(i)})
                             the ith training example (feature vector, true output)
                             set of training examples; for supervised learning \mathcal{D} =
                             \{(\boldsymbol{x}^{(n)}, y^{(n)})\}_{n=1}^N; for unsupervised learning \mathcal{D} = \{\boldsymbol{x}^{(n)}\}_{n=1}^N
                             design matrix; the ith row contains the features of the ith
                             training example \mathbf{x}^{(i)}; i.e the ith row contains x_1^{(i)}, \ldots, x_M^{(i)}
                             random variables corresponding to feature vector \mathbf{x}; (note:
          X_1,\ldots,X_M
                             we generally avoid defining a vector-valued random variable
                             \mathbf{X} = [X_1, X_2, \dots, X_M]^T so that \mathbf{X} is not overloaded with the
                             design matrix)
                             random variable corresponding to predicted class y
   P(Y = y | \mathbf{X} = \mathbf{x})
                             probability of random variable Y taking value y given that
                             random variable X takes value x
                            shorthand for P(Y = y | \mathbf{X} = \mathbf{x})
                 p(y|\mathbf{x})
                             model parameters
                           model parameters (weights of linear model)
                             model parameter (bias term of linear model)
                    \ell(\boldsymbol{\theta})
                             log-likelihood of the data; depending on context, this might
                             alternatively be the log-conditional likelihood or log-
                             marginal likelihood
                    J(\boldsymbol{\theta})
                             objective function
                 J^{(i)}(\boldsymbol{\theta})
                             example i's contribution to the objective function; typically
                             J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
                             gradient of the objective function with respect to model pa-
                 \nabla J(\boldsymbol{\theta})
                             rameters \boldsymbol{\theta}
              \nabla J^{(i)}(\boldsymbol{\theta})
                             gradient of J^{(i)}(\boldsymbol{\theta}) with respect to model parameters \boldsymbol{\theta}
                             stepsize in numerical optimization
\theta^T \mathbf{x} \text{ or } \mathbf{x}^T \boldsymbol{\theta} \text{ or } \boldsymbol{\theta} \cdot \mathbf{x}
                             dot product of model parameters and features
                  h_{\boldsymbol{\theta}}(\mathbf{x})
                             decision function / decision rule / hypothesis
                             hypothesis space; we say that h \in \mathcal{H}
                             prediction of a decision function, e.g. \hat{y} = h_{\theta}(\mathbf{x})
                             model parameters that result from learning
                  \ell(\hat{y}, y)
                             loss function
               p^*(\mathbf{x}, y)
                             unknown data generating distribution of labeled examples
                  p^*(\mathbf{x})
                             unknown data generating distribution of feature vectors only
                   c^*(\mathbf{x})
                             true unknown hypothesis (i.e. oracle labeling function), e.g.
                             y = c^*(\mathbf{x})
                             Values of unknown variables (latent)
```

random variables (latent) corresponding to z

 Z_1,\ldots,Z_C