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1 Scalars, Vectors, Matrices

Scalars are either lowercase letters x,vy, z, «, 3,y or uppercase Latin letters N, M,T. The latter
are typically used to indicate a count (e.g. number of examples, features, timesteps) and are often
accompanied by a corresponding index n,m,t (e.g. current example, feature, timestep). Vectors

are bold lowercase letters x = [z, 2z2,..., 2 M]T and are typically assumed to be column vectors—
hence the transposed row vector in this example. When handwritten, a vector is indicated by an
over-arrow Z = [r1,T2,...,7y|’. Matrices are bold uppercase letters:

Un U ... Umn

Uz Uso

U= .

Un1 voo Upm
As in the examples above, subscripts are used as indices into structured objects such as vectors or
matrices.
2 Sets

Sets are represented by caligraphic uppercase letters &', ), D. We often index a set by labels in
parenthesized superscripts S = {s(M, s ... 59} where S = |S|. A shorthand for this equiva-
lently defines & = {s(s)}le. This shorthand is convenient when defining a set of training exam-
ples: D = {(x1) yM) (x? @) ... (x™) ¢y is equivalent to D = {(x™,yM)IN_ .

3 Random Variables

Random variables are also uppercase Latin letters X,Y, Z, but their use is typically apparent
from context. When a random variable X; and a scalar x; are upper/lower-case versions of each
other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters 6, ¢ or hyperparameters «, 3, .

For a random variable X, we write X ~ Gaussian(y,o?) to indicate that X follows a 1D Gaussian
distribution with mean p and variance 0. We write 2 ~ Gaussian(u, 02) to say that z is a value
sampled from the same distribution.



A conditional probability distribution over random variable X given Y and Z is written
P(X|Y,Z) and its probability mass function (pmf) or probability density function (pdf)
is p(x|y, z). If the probability distribution has parameters «, 3, we can write its pmf/pdf in at least
three equivalent ways: A statistician might prefer p(z|y, z; «, ) to clearly demarcate the parame-
ters. A graphical models expert prefer p(z|y, z, o, 3) since said parameters are really just additional
random variables. A typographer might prefer to save ink by writing p, g(z|y, z). To refer to this
pmf/pdf as a function over possible values of a we would elide it as in p, g(-|y, z). Using our ~
notation from above, we could then write that X follows the distribution X ~ p, g(-|y, z) and x is
a sample from it = ~ pq g(-|y, 2).

The expectation of a random variable X is E[X]. When dealing with random quantities for which
the generating distribution might not be clear we can denote it in the expectation. For example,
) [f(x,y,2)] is the expectation of f(z,y,z) for some function f where x is sampled from
the distribution p, g(-|y, 2) and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as 8](;(5) or

%.m We also denote its first derivative as f’(x), its second derivative as f”(z), and so on. For

a multivariate function f(x) = f(x1,...,znm), we write its gradient with respect to x as Vxf(x)
and frequently omit the subscript, i.e. V f(x), when it is clear from context—it might not be for a

gradient such as Vyg(x,y).

5 Common Conventions

The table below lists additional common conventions we follow:

Notation Description

N number of training examples
M  number of feature types
K number of classes
n or ¢ current training example
m  current feature type
k  current class
Z  set of integers
R set of reals
RM  set of real-valued vectors of length M
{0,1}M  set of binary vectors of length M
x feature vector (input) where x = [z1, 72, ..., 2] ; typically
x € RM or x € {0,1}M

Note that a more careful notation system would always use agg) for partial derivatives, since

reserved for total derivatives. However, only partial derivatives make an appearance herein.
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label / regressand (output); for classification y €
{1,2,...,K}; for binary classification y € {0,1} or y €
{+1, —1}; for regression, y € R

input space, i.e. x € X

output space, i.e. y € Yc

the ith feature vector in the training data

the ith true output in the training data

the mth feature of the ith feature vector

the ith training example (feature vector, true output)

set of training examples; for supervised learning D =
{(x™,y™M)IN_ . for unsupervised learning D = {x(™}Y_,
design matrix; the ith row contains the features of the ith
training example x(; i.e the ith row contains acgi), e xg\z/[)
random variables corresponding to feature vector x; (note:
we generally avoid defining a vector-valued random variable
X = [X1, Xo,..., X3]" so that X is not overloaded with the
design matrix)

random variable corresponding to predicted class y
probability of random variable Y taking value y given that
random variable X takes value x

shorthand for P(Y = y|X = x)

model parameters

model parameters (weights of linear model)

model parameter (bias term of linear model)

log-likelihood of the data; depending on context, this might
alternatively be the log- conditional likelihood or log-
marginal likelihood

objective function

example i’s contribution to the objective function; typically
J(0) = 5 Yo, 70(0)

gradient of the objective function with respect to model pa-
rameters 6

gradient of J®) (@) with respect to model parameters 6

A stepsize in numerical optimization
7% or xT0 or -x dot product of model parameters and features
hg(x) decision function / decision rule / hypothesis
H  hypothesis space; we say that h € H
9 prediction of a decision function, e.g. § = hg(x)
6 model parameters that result from learning
(y,y) loss function
p*(x,y) unknown data generating distribution of labeled examples
p*(x) unknown data generating distribution of feature vectors only
c*(x) true unknown hypothesis (i.e. oracle labeling function), e.g.
y=c"(x)
z Values of unknown variables (latent)
Zi,...,Z¢c random variables (latent) corresponding to z



predicted structure (output) for structured prediction
random variables corresponding to predicted structure y
indicator function which returns 1 when a equals b and 0
otherwise—other notations are also possible I(a = b) =
l(a = b) = 1a:b
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