
Learning Large 
Language Models

and Decoding

1

10-423/10-623 Generative AI

Pat Virtue and Matt Gormley
Lecture 3

Jan. 22, 2025

Slide credit: Matt Gormley and Henry Chai

Machine Learning Department
School of Computer Science
Carnegie Mellon University

v2



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)
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This whole 
“Backward” columns 
is now computed for 
us automatically by 

AutoDiff



LEARNING A TRANSFORMER LM
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Language Models
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1. Given training data:

2. Choose Decision function

But what is the task?

Data
I am Sam .
I am Sam .
Sam I am .
That Sam-I-am .
That Sam-I-am !
I do not like that Sam-I-am
Do you like green eggs and ham
I do not like them , Sam-I-am .
I do not like green eggs and ham .
Would you like them here or there ?
I would not like them here or there .
I would not like them anywhere .
I do not like green eggs and ham .
I do not like them , Sam-I-am .
Would you like them in a house ?
Would you like them with a mouse ?
I do not like them in a house .
I do not like them with a mouse .
I do not like them here or there .
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Data
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2. Choose Decision function



2. Choose each of these:

– Decision function

– Loss function

Language Models
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1. Given training data: 3. Define goal:

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)



EFFICIENT TRANSFORMERS
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Why does efficiency matter?

Case Study: GPT-3

• # of training 
tokens = 500 
billion

• # of 
parameters = 
175 billion

• # of cycles = 50 
petaflop/s-days 
(each of which 
are 8.64e+19 
flops)
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Figure from https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they 
have been so successful.)
• Batching: Rather than processing one 

sentence at a time, Transformers take in 
a batch of B sentences at a time. The 
computation is identical for each batch 
and is trivially parallelized.

• Scaled Dot-product Attention: can be 
easily parallelized because the attention 
scores of one timestep do not depend on 
other timesteps.

• Multi-headed Attention: computes each 
head independently, which permits yet 
more parallelism.

• Matrix multiplication: The core 
computation in attention is matrix 
multiplication, and specialized hardware 
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we 
can divide the model over multiple 
GPUs/machines.

• Key-value caching: The keys and values 
are re-used over many timesteps, but we 
do not need to cache the queries, 
similarity scores, and attention weights.
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Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning

14

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens <PAD>

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning <PAD> <PAD>
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• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length



Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 2 41 17 19 41 13 42 23 6 16

2 3 20 32 10 40 36 53 51 49 8

3 3 50 41 9 30 46 21 50 41 55 of times

4 1 25 39 6 22 45 0 0 0 0

5 4 26 40 56 34 41 26 44 56 54 know

6 5 7 15 12 31 28 24 53 14 0

7 4 38 11 29 35 21 50 48 52 47 play

8 4 18 43 20 47 27 37 33 0 0
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• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Vocabulary:
{

    '<PAD>': 0,

    'Even': 1,

    'In': 2,

    'It': 3,

    'The': 4,

    "We'll": 5,

    'a': 6,

    'always': 7,

    'are': 8,

    'best': 9,

     …

    'what': 53,

    'will': 54,

    'worst': 55,

    'you': 56

}



i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1

2

3 of times

4

5 know

6

7 play
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Batching: Padding and Truncation
• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Embeddings:
{

 0 :

 1 :

 2 : 

 3 : 

 4 : 

 5 :

 6 :

 7 : 

 …

 55 :

 56 :

}



Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they 
have been so successful.)
• Batching: Rather than processing one 

sentence at a time, Transformers take in 
a batch of B sentences at a time. The 
computation is identical for each batch 
and is trivially parallelized.

• Scaled Dot-product Attention: can be 
easily parallelized because the attention 
scores of one timestep do not depend on 
other timesteps.

• Multi-headed Attention: computes each 
head independently, which permits yet 
more parallelism.

• Matrix multiplication: The core 
computation in attention is matrix 
multiplication, and specialized hardware 
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we 
can divide the model over multiple 
GPUs/machines.

• Key-value caching: The keys and values 
are re-used over many timesteps, but we 
do not need to cache the queries, 
similarity scores, and attention weights.
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Key-Value Cache

• At each timestep, we reuse all 
previous keys and values (i.e. 
we need to cache them)

• But we can get rid of the 
queries, similarity scores, and 
attention weights (i.e. we can 
let them fall out of the cache)
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q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

Wv

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this 

timestep



TOKENIZATION

20



Tokenization

Pros/Cons:

• Can have difficulty trading off between vocabulary size and computational 
tractability

• Similar words e.g., “transformers” and “transformer” can get mapped to 
completely disparate representations

• Typos will typically be out-of-vocabulary (OOV)

21
Slide adapted from Henry Chai

Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”]

Word-based Tokenizer:



Tokenization

Pros/Cons:

• Can have difficulty trading off between vocabulary size and computational 
tractability

• Similar words e.g., “transformers” and “transformer” can get mapped to 
completely disparate representations

• Typos will typically be out-of-vocabulary (OOV)

22
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“henry”, “is”, <OOV>, “a”, <OOV>, “on”, “transformers”]

Word-based Tokenizer:



Tokenization

Pros/Cons:

• Much smaller vocabularies but a lot of semantic meaning is lost…

• Sequences will be much longer than word-based tokenization, potentially 
causing computational issues

• Can do well on logographic languages e.g., Kanji 漢字

23
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, … ]

Character-based Tokenizer:



Tokenization

Pros/Cons:

• Split long or rare words into smaller, semantically meaningful components 
or subwords

• No out-of-vocabulary words – any non-subword token can be constructed 
from other subwords (always includ all characters as subwords)

• Examples algorithms for learning a subword tokenization: 

– Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

24
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers” 

Output: [“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lec” “##true”, “on”, “transform”, “##ers”]

Subword-based Tokenizer:



GREEDY DECODING FOR A LANGUAGE MODEL
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Background: Greedy Search
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Greedy Search:
• At each node, selects 

the edge with lowest 
(immediate) weight

• Heuristic method of 
search (i.e. does not 
necessarily find the 
best path)

• Computation time: 
linear in max path 
length

Goal:
• Search space consists 

of nodes and weighted 
edges

• Goal is to find the 
lowest (total) weight 
path from root to a 
leaf
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Setup:
• Assume a 

character-based 
tokenizer

• Each node has all 
characters 
{a,b,c,…,z} as 
neighbors

• Here we only 
show the high 
probability 
neighbors for 
space

Greedy Decoding for a Language Model

29
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Greedy Search:

• At each node, selects the edge 
with lowest negative log 
probability

• Heuristic method of search (i.e. 
does not necessarily find the best 
path)

• Computation time: linear in max 
path length
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Goal:
• Search space consists of nodes 

(partial sentences) and weighted by 
negative log probability

• Goal is to find the highest probably 
(lowest negative log probability) 
path from root to a leaf
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Setup:
• Assume a 

character-based 
tokenizer

• Each node has all 
characters 
{a,b,c,…,z} as 
neighbors

• Here we only 
show the high 
probability 
neighbors for 
space

Sampling from a Language Model
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Ancestral Sampling:

• At each node, randomly pick an 
edge with probability (converting 
from negative log probability)

• Exact method of sampling, 
assuming a locally normalized 
distribution (i.e. does not 
necessarily find the best path)

• Computation time: linear in max 
path length
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Goal:
• Search space consists of nodes 

(partial sentences) and weighted by 
negative log probability

• Goal is to sample a path from root to 
a leaf with probability according to 
the probability of that path
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