V2

%

M 10-423/10-623 Generative Al

Machine Learning Department

| School of Computer Science

MACHINE LEARNING i A
EEEEEEEEEE Carnegie Mellon University

Learning Large
Language Models
and Decoding

Pat Virtue and Matt Gormley
Lecture 3
Jan. 22,2025

Slide credit: Matt Gormley and Henry Chai

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:
{xi, Y, }i 9
(%) Z Z:]. * — 1 : .
0" = arg meln;afe(wz), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fe(iﬁz) (take small steps

opposite the gradient)
— Loss function

((9,y;) ER 0D = 0 — VU fo(w.),)

Example:
Neural Network

Loss

Sigmoid

Linear

Sigmoid

Linear

Backpropagation

Forward

J =y logy + (1 —y")log(l —y)

1
14 exp(—b)

D
b= Z 63'2’]'
7=0

Y

1
Ty exp(—a;)
M
aj = Z()éjiwz
1=0

Backward
y*
gy ="+
Ty
_ . %
g g ob Ob ;
ba,s) an — ~J
Bg 863 aﬁj J
_0b Ob 3
8zj &zj
Ja; = 9z, (97&3'7 a—aj — Zj(l - Z])
8CLJ‘ 8@7
Joss Ja; 80{7@ ’ ('30zji i

Example:
Neural Network

Backpropagatio%

LOss This whole)
€C))
Sigmoid Backward” columns
is now computed for
us automatically by
Linear .
AutoDiff
oo e—
Sigmoid E— oy
M
a; = Zaﬁxz
Linear =0

Backward
oyt A=y
0y Oy
gb—gy%7%_y(1 Y)
_ 9 o
L
gzj _gb(‘?zj’ 8Zj -
8Zj 8zj
oy = o ety = (1 2
ga gaaaj aaj ZJ(ZJ)
8aj 86Lj

Ga.; = Ya; = Ty
J / 8iji’ 8ij@'

LEARNING A TRANSFORMER LM

Language Models
Data

1. Given training data: :am gam.
am >am.
{,’I;- y N Sam |lam.

¢ 1Ji=1 That Sam-l-am..

That Sam-I-am !

. . . | do not like that Sam-I-am
2. Choose Decision function Do you like green eggs and ham

:") _ f9 (33 .) | do not like them, Sam-l-am..
- (/

| do not like green eggs and ham .

Would you like them here or there ?

| would not like them here or there.

. | would not like them anywhere .

But What 15 the taSk? | do not like green eggs and ham .

| do not like them, Sam-lI-am .

Would you like them in a house ?

Would you like them with a mouse ?

| do not like them in a house..

| do not like them with a mouse .

[I T - D B R ' P

Language Models
Data

| am Sam.

Language Models

2. Choose Decision function

Yy = fo(x;)

Language Models

Language Models

1. Given training data: 3. Define goal:

N N
T, Y, izt = i), Y,
0" = arg meln ; K(f@ (CBZ)v yz)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(ill,,) (take small steps

opposite the gradient)
— Loss function

((9,y;) ER 0D = 0 — VU fo(w.),)

EFFICIENT TRANSFORMERS

Why does efficiency matter?

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
c a S e S t u d [] G PT_3 Common Crawl (filtered) 410 billion 60% 0.44
y [] WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training

. .
* # of training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
t O e n S j— O O result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

L[] L]
b l I I I O n Mm(‘-’]' ch ?.I'Pil.l.'ililll.!i Tt’l.il}'l.!r!i dmod I.'I n]l.l.!il.('.!i dhﬂﬂd Bat‘:h S]ZC LCMing Rﬂc
GPT-3 Small 125M 12 T68 12 64 0.5M G.0= 1071
° f GPT-3 Medium 350M 24 1024 1& 64 0.5M 3.0 = 104
O GPT-3 Large To0M 24 1536 16 96 0.5M 2.5 x 107
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~
aramete rS _ GPT-3 2.7B 2.7B iz 2560 32 80 1M 1.6 % 101
p - GPT-3 6.7B 6.7B 32 4096 32 128 ™M 1.2 % 1074
GPT-3 13B 13.0B 40 5140 40 128 M 1.0 = 104

1 '7 5 b il I io n GPT-3 175B or “GPT-3" 175.0B 96 12283 96 128 32M 0.6 x 1071
Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
* #of cycles=50

petaflop/s-days
(each of which

are 8.64e+19 -
ﬂOpS) N I IIIII

10000

Training Petaflop/s-days

1

A & & #F - F
o L F QSb';? A oF R T N
e & o ey b IS PN & &
& @;3— & &

Pty

& & NP C
L

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models

[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B

is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute

Flgu re from during pre-training. Methodology for these calculations can be found in Appendix D.

https://arxiv.org/pdf/2005.14165.pdf

Efficient Parallelism for Transformers

Transformers can be trained very efficiently!

(This is arguably one of the key reasons they
have been so successful.)

* Batching: Rather than processing one
sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:
1. truncate those sentences that are too long
2. padthe sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, W, w, w, W, w, W, W, W,
1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times
4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop [questioning

Batching: Padding and Truncation

* Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10
* Before collecting them into a batch, we:
1. truncate those sentences that are too long
pad the sentences that are too short

2
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

i w, w, w, w, W, w, w, W, w, W,

1 In the hole in the ground there lived a hobbit
2 It is our choices that show what we truly are
3 It was the best of times it was the worst
4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>
5 The more that you read the more things you will

6 We'll always have each other no matter what happens <PAD>
7 The sun did not shine it was too wet to

8 The important thing is to never stop [questioning| <PAD> <PAD>

Batching: Padding and Truncation

Suppose we have 8 training sentences
* We set our block size (maximum sequence length) to 10

Before collecting them into a batch, we:
1,

truncate those sentences that are too long

2. pad the sentences that are too short

3. convert each token to an integer via a lookup table (vocabulary)

4. convert each token to an embedding vector of fixed length

i w, w, w, W, "

1 2 41 17 19 41 13 42 23 6 16
2 3 20 32 10 40 36 53 51 49 8
3 3 50 41 9 30 46 21 50 41 55
4 1 25 39 6 22 45 0 0 0 0
5 4 26 40 56 34 41 26 44 56 54
6 5 7 15 12 31 28 24 53 14 0
7 4 38 11 29 35 21 50 48 52 47
8 4 18 43 20 47 27 37 33 0 0

Vocabulary:

{
"<PAD>': O,
'Even': 1,
'In': 2,
'It': 3,
'The': 4,
"We'll": 5,
'a': o,
'always': 7,
'are': 8§,
'best': 9,
'what': 53,
'will': 54,
'worst': 55,
'you': 56

16

Batching: Padding and Truncation

Suppose we have 8 training sentences Embeddings:

* We set our block size (maximum sequence length) to 10 {
* Before collecting them into a batch, we:

0 [(TTT]
1. truncate those sentences that are too long ! LLLL
2. padthe sentences that are too short 2 EE:EE%
3. convert each token to an integer via a lookup table (vocabulary) 3 T
4. convert each token to an embedding vector of fixed length 4 [TTT]

> [T

i w, w, w, w, w, w, w, W, w, w,, 6 : (TT1T1]1
, |II'D | | OO | OO | OO | O | O | OO | O | 7 OTT
, |0 |0 | O | O | O | OO O | O | O | O
, I | I | O | O | O | O | O | O | O | 55 : 0T
., |00 OO0 OO OO 00| O O OO | £ c6 - [TTT]
s |0 | OO0 | OO0 O | O 0000 00| 00| 0| O
B)) o)
, | II'h| | O 0| OO0 O O O O O
s | | OO0 O O O O O O O O

Efficient Parallelism for Transformers

Transformers can be trained very efficiently!

(This is arguably one of the key reasons they
have been so successful.)

Batching: Rather than processing one
sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

Scaled Dot-product Attention: can be
easily parallelized because the attention
scores of one timestep do not depend on
other timesteps.

Multi-headed Attention: computes each
head independently, which permits yet
more parallelism.

Matrix multiplication: The core
computation in attention is matrix
multiplication, and specialized hardware
(GPUs and TPUs) makes this very fast.

Model parallelism: For huge models, we
can divide the model over multiple
GPUs/machines.

Key-value caching: The keys and values
are re-used over many timesteps, but we
do not need to cache the queries,
similarity scores, and attention weights.

Key-Value Cache

T//

softmax

/ |

4
X4 =) i,V y
j=1

a, = softmax(sy)

At each timestep, we reuse all
previous keys and values (i.e.
we need to cache them)

But we can get rid of the

queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

19

TOKENIZATION

Tokenization

Word-based Tokenizer:
Input: “Henry is giving a lecture on transformers”

Output: [“henry”’, “is”, “giving”’, “a”, “lecture”, “on”, “transformers”]

Pros/Cons:

* (Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’ and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Word-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”, “is”, <OOV>, “a”, <O0OV>, “on”’, “transformers”’]

Pros/Cons:

* (Can have difficulty trading off between vocabulary size and computational
tractability

* Similar words e.g., “transformers’ and “transformer” can get mapped to
completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

Tokenization

Character-based Tokenizer:
Input: “Henry is givin’ a lectrue on transformers”

1 ” €LY (¢ ” 6 ” €6y ,” “ ” €€ €Ed) €€3)) €6y ,0) (€)Y €€ N9 €€))

Pros/Cons:
* Much smaller vocabularies but a lot of semantic meaning is lost...

* Sequences will be much longer than word-based tokenization, potentially
causing computational issues

* Can do well on logographic languages e.g., Kanji 85

Tokenization
Subword-based Tokenizer:

Input: “Henry is givin’ a lectrue on transformers”

OUtpUtZ [l(henry”, “iS”, “giV”, l(##in”, €€ ¢ ”, “a”, ((IeC” “##true”, “On”, “tranSfOrm”, “##ers)’]

Pros/Cons:

* Split long or rare words into smaller, semantically meaningful components
or subwords

* No out-of-vocabulary words — any non-subword token can be constructed
from other subwords (always includ all characters as subwords)

* Examples algorithms for learning a subword tokenization:
— Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

GREEDY DECODING FOR A LANGUAGE MODEL

Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalisto find the
lowest (total) weight
path from root to a

2 leaf
Greedy Search:
1 * Ateachnode, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

O Computation time:
linear in max path
length

Background: Greedy Search

Goal:

* Search space consists
of nodes and weighted

End edges
States e Goalisto find the
lowest (total) weight
path from root to a

2 leaf
Greedy Search:
1 * Ateachnode, selects
Start the edge with lowest
State (immediate) weight

. Heuristic method of
search (i.e. does not
necessarily find the
best path)

O Computation time:
linear in max path
length

Background: Greedy Search

Goal:

Search space consists
of nodes and weighted
edges

Goal is to find the
lowest (total) weight
path from root to a
leaf

Greedy Search:

At each node, selects
the edge with lowest
(immediate) weight
Heuristic method of
search (i.e. does not
necessarily find the
best path)

Computation time:
linear in max path
length

Greedy Decoding for a Language Model

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Goal:

Search space consists of nodes
(partial sentences) and weighted by
negative log probability

Goal is to find the highest probably
(lowest negative log probability)
path from root to a leaf

Greedy Search:

At each node, selects the edge
with lowest negative log
probability

Heuristic method of search (i.e.
does not necessarily find the best
path)

Computation time: linear in max
path length

Setup:

Assume a
character-based
tokenizer

Each node has all
characters
{a,b,c,...,z} as
neighbors

Start
State

Here we only
show the high
probability
neighbors for
space

Sampling from a Language Model

Goal:

* Search space consists of nodes
(partial sentences) and weighted by
negative log probability

* Goalisto sample a path from root to
a leaf with probability according to
the probability of that path

Ancestral Sampling:

- At each node, randomly pick an
edge with probability (converting
from negative log probability)

- Exact method of sampling,
assuming a locally normalized
distribution (i.e. does not
necessarily find the best path)

0 Computation time: linear in max
path length

	Slide 1: Learning Large Language Models and Decoding
	Slide 2: A Recipe for Machine Learning
	Slide 3: Backpropagation
	Slide 4: Backpropagation
	Slide 5: Learning a Transformer LM
	Slide 6: Language Models
	Slide 7: Language Models
	Slide 8: Language Models
	Slide 9: Language Models
	Slide 10: Language Models
	Slide 11: Efficient Transformers
	Slide 12: Why does efficiency matter?
	Slide 13: Efficient Parallelism for Transformers
	Slide 14: Batching: Padding and Truncation
	Slide 15: Batching: Padding and Truncation
	Slide 16: Batching: Padding and Truncation
	Slide 17: Batching: Padding and Truncation
	Slide 18: Efficient Parallelism for Transformers
	Slide 19: Key-Value Cache
	Slide 20: Tokenization
	Slide 21: Tokenization
	Slide 22: Tokenization
	Slide 23: Tokenization
	Slide 24: Tokenization
	Slide 25: Greedy Decoding for a Language Model
	Slide 26: Background: Greedy Search
	Slide 27: Background: Greedy Search
	Slide 28: Background: Greedy Search
	Slide 29: Greedy Decoding for a Language Model
	Slide 30: Sampling from a Language Model

