
Learning Large
Language Models

and Decoding

1

10-423/10-623 Generative AI

Pat Virtue and Matt Gormley
Lecture 3

Jan. 22, 2025

Slide credit: Matt Gormley and Henry Chai

Machine Learning Department
School of Computer Science
Carnegie Mellon University

v2

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

2

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Example:
Neural Network

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

3

x1

z1

x2 x3 xM

y

z2 zD
…

…

Example:
Neural Network

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation

4

x1

z1

x2 x3 xM

y

z2 zD
…

…

This whole
“Backward” columns
is now computed for
us automatically by

AutoDiff

LEARNING A TRANSFORMER LM

5

Language Models

6

1. Given training data:

2. Choose Decision function

But what is the task?

Data
I am Sam .
I am Sam .
Sam I am .
That Sam-I-am .
That Sam-I-am !
I do not like that Sam-I-am
Do you like green eggs and ham
I do not like them , Sam-I-am .
I do not like green eggs and ham .
Would you like them here or there ?
I would not like them here or there .
I would not like them anywhere .
I do not like green eggs and ham .
I do not like them , Sam-I-am .
Would you like them in a house ?
Would you like them with a mouse ?
I do not like them in a house .
I do not like them with a mouse .
I do not like them here or there .

Language Models

7

1. Given training data:
Data
I am Sam .
I am Sam .
Sam I am .
That Sam-I-am .
That Sam-I-am !
I do not like that Sam-I-am
Do you like green eggs and ham
I do not like them , Sam-I-am .
I do not like green eggs and ham .
Would you like them here or there ?
I would not like them here or there .
I would not like them anywhere .
I do not like green eggs and ham .
I do not like them , Sam-I-am .
Would you like them in a house ?
Would you like them with a mouse ?
I do not like them in a house .
I do not like them with a mouse .
I do not like them here or there .

Language Models

8

2. Choose Decision function

2. Choose each of these:

– Decision function

– Loss function

Language Models

9

Language Models

10

1. Given training data: 3. Define goal:

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

EFFICIENT TRANSFORMERS

11

Why does efficiency matter?

Case Study: GPT-3

• # of training
tokens = 500
billion

• # of
parameters =
175 billion

• # of cycles = 50
petaflop/s-days
(each of which
are 8.64e+19
flops)

12
Figure from https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they
have been so successful.)
• Batching: Rather than processing one

sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

• Scaled Dot-product Attention: can be
easily parallelized because the attention
scores of one timestep do not depend on
other timesteps.

• Multi-headed Attention: computes each
head independently, which permits yet
more parallelism.

• Matrix multiplication: The core
computation in attention is matrix
multiplication, and specialized hardware
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we
can divide the model over multiple
GPUs/machines.

• Key-value caching: The keys and values
are re-used over many timesteps, but we
do not need to cache the queries,
similarity scores, and attention weights.

13

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning

14

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens <PAD>

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning <PAD> <PAD>

15

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 2 41 17 19 41 13 42 23 6 16

2 3 20 32 10 40 36 53 51 49 8

3 3 50 41 9 30 46 21 50 41 55 of times

4 1 25 39 6 22 45 0 0 0 0

5 4 26 40 56 34 41 26 44 56 54 know

6 5 7 15 12 31 28 24 53 14 0

7 4 38 11 29 35 21 50 48 52 47 play

8 4 18 43 20 47 27 37 33 0 0

16

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Vocabulary:
{

 '<PAD>': 0,

 'Even': 1,

 'In': 2,

 'It': 3,

 'The': 4,

 "We'll": 5,

 'a': 6,

 'always': 7,

 'are': 8,

 'best': 9,

 …

 'what': 53,

 'will': 54,

 'worst': 55,

 'you': 56

}

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1

2

3 of times

4

5 know

6

7 play

8

Batching: Padding and Truncation
• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Embeddings:
{

 0 :

 1 :

 2 :

 3 :

 4 :

 5 :

 6 :

 7 :

 …

 55 :

 56 :

}

Efficient Parallelism for Transformers
Transformers can be trained very efficiently!
(This is arguably one of the key reasons they
have been so successful.)
• Batching: Rather than processing one

sentence at a time, Transformers take in
a batch of B sentences at a time. The
computation is identical for each batch
and is trivially parallelized.

• Scaled Dot-product Attention: can be
easily parallelized because the attention
scores of one timestep do not depend on
other timesteps.

• Multi-headed Attention: computes each
head independently, which permits yet
more parallelism.

• Matrix multiplication: The core
computation in attention is matrix
multiplication, and specialized hardware
(GPUs and TPUs) makes this very fast.

• Model parallelism: For huge models, we
can divide the model over multiple
GPUs/machines.

• Key-value caching: The keys and values
are re-used over many timesteps, but we
do not need to cache the queries,
similarity scores, and attention weights.

18

Key-Value Cache

• At each timestep, we reuse all
previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

19

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

Wv

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

TOKENIZATION

20

Tokenization

Pros/Cons:

• Can have difficulty trading off between vocabulary size and computational
tractability

• Similar words e.g., “transformers” and “transformer” can get mapped to
completely disparate representations

• Typos will typically be out-of-vocabulary (OOV)

21
Slide adapted from Henry Chai

Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”]

Word-based Tokenizer:

Tokenization

Pros/Cons:

• Can have difficulty trading off between vocabulary size and computational
tractability

• Similar words e.g., “transformers” and “transformer” can get mapped to
completely disparate representations

• Typos will typically be out-of-vocabulary (OOV)

22
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”, “is”, <OOV>, “a”, <OOV>, “on”, “transformers”]

Word-based Tokenizer:

Tokenization

Pros/Cons:

• Much smaller vocabularies but a lot of semantic meaning is lost…

• Sequences will be much longer than word-based tokenization, potentially
causing computational issues

• Can do well on logographic languages e.g., Kanji 漢字

23
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, …]

Character-based Tokenizer:

Tokenization

Pros/Cons:

• Split long or rare words into smaller, semantically meaningful components
or subwords

• No out-of-vocabulary words – any non-subword token can be constructed
from other subwords (always includ all characters as subwords)

• Examples algorithms for learning a subword tokenization:

– Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

24
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lec” “##true”, “on”, “transform”, “##ers”]

Subword-based Tokenizer:

GREEDY DECODING FOR A LANGUAGE MODEL

25

Background: Greedy Search

26

Start
State

End
States

2

4
3
1

7

3
3
5

4

1
2
2

3

5
6
4

7

8
9
8

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Background: Greedy Search

27

Start
State

End
States

2

4
3
1

7

3
3
5

4

1
2
2

3

5
6
4

7

8
9
8

9

9
1
9

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Background: Greedy Search

28

Start
State

End
States

Greedy Search:
• At each node, selects

the edge with lowest
(immediate) weight

• Heuristic method of
search (i.e. does not
necessarily find the
best path)

• Computation time:
linear in max path
length

2

4
3
1

7

3
3
5

4

1
2
2

3

5
6
4

7

8
9
8

9

9
1
9

7

1
3
5

2

1
2
2

5

3
1
5

Goal:
• Search space consists

of nodes and weighted
edges

• Goal is to find the
lowest (total) weight
path from root to a
leaf

Setup:
• Assume a

character-based
tokenizer

• Each node has all
characters
{a,b,c,…,z} as
neighbors

• Here we only
show the high
probability
neighbors for
space

Greedy Decoding for a Language Model

29

t

Start
State

Greedy Search:

• At each node, selects the edge
with lowest negative log
probability

• Heuristic method of search (i.e.
does not necessarily find the best
path)

• Computation time: linear in max
path length

o

f

m

r

2

4
3
1

b

a

c

3
3
5

c

n

m

z

4

1
2
2

s

q

b

c

3

5
6
4

f

i

p

7

8
9
8

c

a

e

w

9
1
9

b

r

c

d

7

1
3
5

c

q

r

z

2

1
2
2

k

y

h

z

5

3
1
5

Goal:
• Search space consists of nodes

(partial sentences) and weighted by
negative log probability

• Goal is to find the highest probably
(lowest negative log probability)
path from root to a leaf

7

d

y

9

Setup:
• Assume a

character-based
tokenizer

• Each node has all
characters
{a,b,c,…,z} as
neighbors

• Here we only
show the high
probability
neighbors for
space

Sampling from a Language Model

30

t

Start
State

Ancestral Sampling:

• At each node, randomly pick an
edge with probability (converting
from negative log probability)

• Exact method of sampling,
assuming a locally normalized
distribution (i.e. does not
necessarily find the best path)

• Computation time: linear in max
path length

o

f

m

r

2

4
3
1

b

a

c

3
3
5

c

n

m

z

4

1
2
2

s

q

b

c

3

5
6
4

f

i

p

7

8
9
8

c

a

e

w

9
1
9

b

r

c

d

7

1
3
5

c

q

r

z

2

1
2
2

k

y

h

z

5

3
1
5

Goal:
• Search space consists of nodes

(partial sentences) and weighted by
negative log probability

• Goal is to sample a path from root to
a leaf with probability according to
the probability of that path

7

d

y

9

	Slide 1: Learning Large Language Models and Decoding
	Slide 2: A Recipe for Machine Learning
	Slide 3: Backpropagation
	Slide 4: Backpropagation
	Slide 5: Learning a Transformer LM
	Slide 6: Language Models
	Slide 7: Language Models
	Slide 8: Language Models
	Slide 9: Language Models
	Slide 10: Language Models
	Slide 11: Efficient Transformers
	Slide 12: Why does efficiency matter?
	Slide 13: Efficient Parallelism for Transformers
	Slide 14: Batching: Padding and Truncation
	Slide 15: Batching: Padding and Truncation
	Slide 16: Batching: Padding and Truncation
	Slide 17: Batching: Padding and Truncation
	Slide 18: Efficient Parallelism for Transformers
	Slide 19: Key-Value Cache
	Slide 20: Tokenization
	Slide 21: Tokenization
	Slide 22: Tokenization
	Slide 23: Tokenization
	Slide 24: Tokenization
	Slide 25: Greedy Decoding for a Language Model
	Slide 26: Background: Greedy Search
	Slide 27: Background: Greedy Search
	Slide 28: Background: Greedy Search
	Slide 29: Greedy Decoding for a Language Model
	Slide 30: Sampling from a Language Model

