
Efficient Attention (FlashAttention)

1

10-423/10-623 Generative AI

Matt Gormley & Pat Virtue
Lecture 18

Mar. 24, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders
• Homework 4: Visual Language Models
– Out: Thu, Mar 13
– Due: Mon, Mar 24 at 11:59pm

• Exam
– Date: In-class, Monday, Mar 31
– Time: 75 minutes, taking up the whole class time
– Covered Material: Lectures 1 – 15 (same as Quiz 1 – Quiz 4)
– You may bring one sheet of notes (front and back)
– Format of questions: Unlike the Quiz questions, which were all

multiple choice, Exam questions will include open-ended questions as 
well

– Check Piazza for seat assignment

4



Why do we care about FlashAttention?
• The algorithm is performing exact attention, so we see no 

reduction in perplexity or quality of the model
• The key metric is runtime

7



TILING FOR MATRIX MULTIPLICATION
Background

8



Tiling for Matrix Multiplication

9

x =

A B C

Cij =

M∑

m=1

N∑

n=1

AimBnj

• Matrix multiplication 
computes each output 
value as a dot-product of a 
row/column pair from the 
input matrices



Tiling for Matrix Multiplication

10

x =

A B C

C(1,1):(3,3) = A(1,1):(3,9) ×B(1,1):(9,3)

• We can view the 
computation as 
decomposing if we 
consider subsets of 
rows/columns



Tiling for Matrix Multiplication

11

x =

A B C

A =

[

A00 A01 A02

A10 A11 A12

]

with eachAij ∈ R
3×3

B =





B00 B01

B10 B11

B20 B21





with eachBij ∈ R
3×3

C =

[

C00 C01

C10 C11

]

with each Cij ∈ R
3×3

C00 = A00B00 +A01B10 +A02B20

C01 = A00B01 +A01B11 +A02B21

C10 = A10B00 +A11B10 +A12B20

C11 = A10B01 +A11B11 +A12B21

• Tiling capitalizes 
on this 
decomposition

• Each output tile is 
computed by 
multiplying a pair 
of input tiles and 
adding it to the 
appropriate 
output tile



Tiling for Matrix Multiplication

12

x =

A B C• Tiling enables 
matrix 
multiplication of 
two very large 
matrices to 
capitalize on the 
small amount of 
fast memory on a 
device (e.g. GPU)

• Start by putting 
the input 
matrices and 
storage for the 
output matrix 
into large/slow 
memory

• Do the primary 
computation in 
slow/fast memory

C00 = A00B00 +A01B10 +A02B20

large/slow memory

small/fast memory

X Y Z

X = A00

Y = B00

Z = XY

X = A01

Y = B10

Z = Z +XY

X = A02

Y = B20

Z = Z +XY

C00 = Z



Tiling for Self-Attention?

• It would be great if we could directly use tiling for self-
attention

• Unfortunately, whereas the addition in matrix multiplication 
is associative, the softmax in self-attention is not!

13

X′ = softmax(QKT /
√

dk)V



ONLINE SOFTMAX
Background

14



Regular Softmax

15
Figure from https://arxiv.org/pdf/1805.02867 

• The standard 
softmax 
computation is 
used heavily 
throughout deep 
learning

• Yet, often we 
need to compute 
softmax on very 
large logits

• To avoid issues of 
overflow when 
raising e to some 
large power, we 
can use the safe 
softmax instead

• Every deep 
learning library 
implements this



Safe Softmax

16
Figure from https://arxiv.org/pdf/1805.02867 

• The standard 
softmax 
computation is 
used heavily 
throughout deep 
learning

• Yet, often we 
need to compute 
softmax on very 
large logits

• To avoid issues of 
overflow when 
raising e to some 
large power, we 
can use the safe 
softmax instead

• Every deep 
learning library 
implements this



Online Softmax

17
Figure from https://arxiv.org/pdf/1805.02867 

• The problem with the usual 
safe softmax is that it requires 
three iterations, with each 
one accessing memory

• Online softmax reduces this 
to only two iterations through 
the data!

• This results in not only a 1.33x 
apparent speedup, but also a 
1.3x speedup in practice 
because of reduced memory 
bandwidth requirements



Online Softmax

18
Figure from https://arxiv.org/pdf/1805.02867 

• The problem with the usual 
safe softmax is that it requires 
three iterations, with each 
one accessing memory

• Online softmax reduces this 
to only two iterations through 
the data!

• This results in not only a 1.33x 
apparent speedup, but also a 
1.3x speedup in practice 
because of reduced memory 
bandwidth requirements



Online Softmax

19
Figure from https://arxiv.org/pdf/1805.02867 



Online Softmax

20
Figure from https://arxiv.org/pdf/1805.02867 



FLASHATTENTION

21



FlashAttention
• One of the most impactful ideas in ML recently
• Even though many people probably don’t even know they are using it!
• Introduced at HAET Workshop @ ICML July 2022
• Published @ NeurIPS Dec 2022

22

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness



FlashAttention
• One of the most impactful ideas in ML recently
• Even though many people probably don’t even know they are using it!
• Introduced at HAET Workshop @ ICML July 2022
• Published @ NeurIPS Dec 2022

23

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

Figure from https://neurips.cc/virtual/2022/poster/54008 Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurIPS2023 



GPU Memory

Memory is arranged 
hierarchicaly
• GPU SRAM is small, and 

supports the fastest access
• GPU HBM is larger but with 

much slower access
• CPU DRAM is huge, but the 

slowest of all

24
Figure from https://arxiv.org/pdf/2205.14135



GPU Memory and Transformers
Transformer training is 
usually memory-bound
• Matrix multiplication 

takes up 99% of the 
FLOPS

• But only takes up 61% 
of the runtime

• Lots of time is wasted 
moving data around 
on the GPU 

• Instead of doing 
computation

25
Figure from https://arxiv.org/pdf/2007.00072 Figure from https://arxiv.org/pdf/2205.14135



Operator Fusion
Version A: Usually, we compute a neural 
network one layer one at a time by moving 
the layer input to GPU SRAM (fast/small), 
doing some computation, then returning 
the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves 
the original input to GPU SRAM (fast/small), 
does a whole sequence of layer 
computations without ever touching HBM, 
and then returns the final layer output to 
GPU HBM (slow/large)

26
Figure from https://horace.io/brrr_intro.html



Operator Fusion
Version A: Usually, we compute a neural 
network one layer one at a time by moving 
the layer input to GPU SRAM (fast/small), 
doing some computation, then returning 
the output to GPU HBM (slow/large)

Version B: Operator fusion instead moves 
the original input to GPU SRAM (fast/small), 
does a whole sequence of layer 
computations without ever touching HBM, 
and then returns the final layer output to 
GPU HBM (slow/large)

28

Version A is exactly how standard attention is implemented

Figure from https://arxiv.org/pdf/2205.14135



Standard Attention

29

Version A is exactly how standard attention is implemented

Figure from https://arxiv.org/pdf/2205.14135

K Q S PV O



FlashAttention

• Two key ideas are combined to obtain FlashAttention
• Both are well-established ideas, so the interesting part is 

how they are put together for attention
1. Tiling: compute the attention weights block by block so that we 

don’t have to load everything into SRAM at once
2. Recomputation: don’t ever store the full attention matrix, but 

just recompute the parts of it you need during the backward pass

30



FlashAttention: Tiling

31
Figure from https://arxiv.org/pdf/2205.14135



FlashAttention

33



FlashAttention: Tiling

34
Figure from http://arxiv.org/abs/2307.08691



FlashAttention: Tiling
One of the key challenges is how to compute the softmax since it is inherently going to 
require working with multiple blocks

36
Figure from https://arxiv.org/pdf/2205.14135



Reconstruction for a Feed-Forward MLP

38



FlashAttention: Reconstruction

40



FlashAttention

42



FlashAttention: Results
• The algorithm is 

performing exact 
attention, so we see no 
reduction in perplexity 
or quality of the model

• The key metric is 
runtime

43



FlashAttention: Results
• The algorithm is 

performing exact 
attention, so we see no 
reduction in perplexity 
or quality of the model

• The key metric is 
runtime

44


