10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Efficient Attention (FlashAttention)

Matt Gormley & Pat Virtue
Lecture 18

Mar. 24, 2025

Reminders

* Homework 4: Visual Language Models
— Out: Thu, Mar 13
— Due: Mon, Mar 24 at 11:59pm

* Exam
— Date: In-class, Monday, Mar 31
— Time: 75 minutes, taking up the whole class time
— Covered Material: Lectures 1 - 15 (same as Quiz 1 — Quiz 4)
— You may bring one sheet of notes (front and back)

— Format of questions: Unlike the Quiz questions, which were all
multiple choice, Exam questions will include open-ended questions as
well

— Check Piazza for seat assighment

Why do we care about FlashAttention?

* The algorithm is performing exact attention, so we see no
reduction in perplexity or quality of the model

* The key metric is runtime

Model implementations

OpenWebText (ppl)

Training time (speedup)

GPT-2 small - Huggingface [87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM |[77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)

GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

TILING FOR MATRIX MULTIPLICATION

Tiling for Matrix Multiplication

A B C

* Matrix multiplication
computes each output
value as a dot-product of a
row/column pair from the

M N
input matrices Cij = Z Z Aim B

Tiling for Matrix Multiplication

A B C

 We can view the
computation as
decomposing if we
consider subsets of
rows/columns

0(1,1):(3,3) = A(1,1):(3,9) X B(1,1):(9,3)

* Tiling capitalizes

 Eachoutput tile is X

Tiling for Matrix Multiplication

B C

on this
decomposition

computed by
multiplying a pair
of input tiles and
adding it to the

\il

appropri.ate Coo Cor
output tile C = [Cm C11]
A= [A _BOO BOl- \With each Cz'j c R3S
@ @' b= glo gll : ApoBoo + Aop1Bio + Ag2Bag
with each A;; € R S Co1 = AooBo1 + Ao1 B11 + A2 Boy

with each B;; € R**3
Cro = A10Boo + A11B1o + A12 B2

Ci1 = A10Bo1 + A11B11 + A12 B9

11

Tiling for Matrix Multiplication ..., e

Tiling enables

matrix

multiplication of

two very large | X
matrices to |

capitalize on the |

small amount of

fast memory ona

device (e.g. GPU)

Start by putting
the input AN | kY A
matrices and | ‘— | :

storage for the
output matrix ! | | 1 |
into large/slow X Y 7 |
memory . |
Do the primary small/fast memory
computation in

slow/fast memory

Coo = AgoBoo + Ao1Bio + Ag2Bao

X = Ayo
Y = Boo
/Z =XY
X = Ap1
Y = Bjo
Z =14+ XY

X = Ap2
Y = Ba
=7+ XY

COO — Z 12

Tiling for Self-Attention?

* |t would be great if we could directly use tiling for self-
attention

* Unfortunately, whereas the addition in matrix multiplication
is associative, the softmax in self-attention is not!

X' = softmax(QK” /+/di)V

ONLINE SOFTMAX

d J
The standard RegUIar S()ftrnda)(ﬂz M{EV
softmax 1 f /77‘

computation is P / P X

used heavily L c / & [
throughout deep . {
learnin &

Yet, often we Yi = Algorithm 1 Naive softmax
need to compute Z eTj 1: dO «— 0

softmax on very —1 9. f 1.Vd

large logits J= . Ol'] — 1, 0

To avoid issues of 3: dj — dj—l + e%i
overflow when 4: end for

raising e to some i)

large power, we 5: fOl' 1 (_ 1, Y dO

can use the safe 6: Y; et

softmax instead 7. end for dv

Every deep
learning library
implements this

Figure from https://arxiv.org/pdf/1805.02867

15

Safe Softmax

e The standard

softmax
computation is
used heavily Algorithm 2 Safe softmax
throughout deep p m%x:c 1: Mg + —00 Vi
learning il o e _
need to compu:‘l.’leZ m‘fa.xa:k 3: My < max(mk_l . xk)
softmax on very Z e k=l 4: end for
* To avoid issues of ‘ oy 5: dy (_ 0
overflow when QX(_ ¢ 6: for 7 + 1,V do
raising e to some . . , , Ti—my
largeiower we J N — WMy I dJ N dj_l gy L
: ¢ 4 8: end for
can use the safe i .
softmax instead - 0- for 1 «— 1. V do
* Everydeep eTi—my
learning library 10: Yi < dv
implements this 11: end for

16
Figure from https://arxiv.org/pdf/1805.02867

The problem with the usual
safe softmax is that it requires
three iterations, with each
one accessing memory

Online softmax reduces this
to only two iterations through
the data!

This results in not only a 1.33x
apparent speedup, but also a
1.3x speedup in practice
because of reduced memory
bandwidth requirements

Figure from https://arxiv.org/pdf/1805.02867

Online Softmax

Algorithm 3 Safe softmax with online normalizer calculation

o, 20 el e S el e

mp < —0O0 J .y
d()(—O é\); 26)% !
for j — 1,V do / =1

m; — max (mj_l,frj).
dj < dj—l X eMi—17Mj 4 e%i™M

end for
for: < 1,V do
P e:z:,i—mv
Yi < dv
end for

17

The problem with the usual
safe softmax is that it requires
three iterations, with each
one accessing memory

Online softmax reduces this
to only two iterations through
the data!

This results in not only a 1.33x
apparent speedup, but also a
1.3x speedup in practice
because of reduced memory
bandwidth requirements

Figure from https://arxiv.org/pdf/1805.02867

Online Softmax

6- 1010
o
=
o
3
5)
e 4.10%
2
Q
S
2
88
2.1010
—a— Naive
#— Online
—o— Safe Online/Safe
Ll | | (el Pl 1 |
102 103 104 10°

Vector size V

=
oo

ok
(@)

g
N

d
[N]

b

=
o0

Performance improvement

Figure 1: Benchmarking softmax, Tesla V100, fp32, batch size 4000 vectors

18

Online Softmax

v j—my

Theorem 1. The lines 1-6 of the algorithm 3 compute my = m‘z;x xp anddy =) i=1 e’

k=1
Proof. We will use a proof by induction.
O Base case: V =1

mq <1

1
=maxZTk
k=1

dl et

1
— te'—ml
Zj=1

The theorem holds for V = 1.

Figure from https://arxiv.org/pdf/1805.02867

by line 4 of the algorithm 3

by line 5 of the algorithm 3

19

Online Softmax

Theorem 1. The lines 1-6 of the algorithm 3 compute my = rg‘éic xp anddy =) i=1 e’

Proof. We will use a proof by induction.

O Inductive step: We assume the theorem statement holds for V' = § — 1, that is the lines 1-6

. S—1 - , ,
of the algorithm 3 compute mg_1 = maxzi and dg_1 = S_ lezi—ms—1_ Let’s see
g p k j=1
=1 -

what the algorithm computes for V' = S

mg < max (mg_1,Zg) by line 4 of the algorithm 3
= max(fi@%c Tp,Tg) by the inductive hypothesis
— maxz
T k=1 k
dg «—dg_1 X e™S"17™MS 4 gTSTMS by line 5 of the algorithm 3
S—1
= (Z e l) X eMe-1TIS 4 B TIS by the inductive hypothesis
J:

:§ S lezj 711§;+ezs—ms
Jj=1
q

— § : e:l:j—ms
j=1

The inductive step holds as well. O
Figure from https://arxiv.org/pdf/1805.02867

20

FLASHATTENTION

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!

* Introduced at HAET Workshop @ ICML July 2022
* Published @ NeurlPS Dec 2022

FlashAttention: Fast and Memory-Efficient
Exact Attention with 10-Awareness

Tri Dao, Dan Fu ({trid, danfu}@cs.stanford.edu)
7/23/22 HAET Workshop @ ICML 2022

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Ruda, Christopher Ré. Flash Attention: Fast and
Memory-Efficient Exact Attention with |0-Awareness. arXiv preprint arXiv:2205.14135.
https://github.com/HazyResearch/flash-attention.

Figure from https://slideslive.com/38988230/flashattention-fast-and-memoryefficient-exact-attention-with-ioawareness

FlashAttention

* One of the most impactful ideas in ML recently

* Even though many people probably don’t even know they are using it!
* Introduced at HAET Workshop @ ICML July 2022

* Published @ NeurlPS Dec 2022

Massive adoption (4 months)

O PyTorch
@OpenAI

¥ OO Meta

HUGGING FACE

t. |
A stabiltv.o \

~=+/ [N mosaic™

Figure from https://awaisrauf.github.io/deepCuriosity/Attending-NeurlPS2023 Figure from https://neurips.cc/virtual/2022/poster/54008

23

GPU Memory

Memory is arranged
hierarchicaly

 GPU SRAM is small, and
supports the fastest access

* GPU HBM is larger but with
much slower access

* CPU DRAM is huge, but the
slowest of all

Figure from https://arxiv.org/pdf/2205.14135

S\ SRAM: 19TB/s (20 MB)
SRAM

GPU
HBM

HBM: 1.5 TB/s (40 GB)

WETLE Y TSV DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

24

GPU Memory and Transformers

Transformer training is Table 1. Proportions for operator classes in PyTorch.
usually memory-bound ;
Y a)’;rix multiypli cation Operator class % flop % Runtime
E?_IBESSUP 99% of the A Tensor contraction 99.80 61.0
. But onlv takes ub 61% Stat. normalization 0.17 235
of the runtire D00 O Element-wise 003 135
* Lots of time is wasted
moving data around Attention on GPT-2
on the GPU I Matmul
* Instead of doing s
computation R Dropout
£104 .
E Softmax
= 5. 7 Fused
Mask Kernel
- —
Matmul
0. 1 -
PyTorch FlashAttention

Figure from https://arxiv.org/pdf/2007.00072 Figure from https://arxiv.org/pdf/2205.14135

Operator Fusion

Version A: Usually, we compute a neural
network one layer one at a time by moving
the layer input to GPU SRAM (fast/small),
doing some computation, then returning

the output to GPU HBM (slow/large)

Com)ourfa

7.

X\ = g‘_((\/\ N\&mor‘y s

)('L = %\‘L(XD - ;T_.I_I
JANIANIVAN

Ky = %(xb AAA

A X
Q%Xz,

><L{=§Lr(>‘5\) Q0 Q0Q

/j?y;

DY}

HOM

SKAM

Figure from https://horace.io/brrr_intro.html

Xﬁ:;{(

Version B: Operator fusion instead moves
the original input to GPU SRAM (fast/small),
does a whole sequence of layer
computations without ever touching HBM,
and then returns the final layer output to
GPU HBM (slow/large)

50

5 (

5\(\/)
)

)

Mevmor y

oM

o o O A

Compile

2 |

SO Tt

SKAM

26

Operator Fusion

Version A: Usually, we compute a neural Version B: Operator fusion instead moves
network one layer one at a time by moving the original input to GPU SRAM (fast/small),
the layer input to GPU SRAM (fast/small), does a whole sequence of layer

doing some computation, then returning computations without ever touching HBM,
the output to GPU HBM (slow/large) and then returns the final layer output to

GPU HBM (slow/large)

Version A is exactly how standard attention is implemented

S=QK" e RV*N P =softmax(S) e RV, 0 =PV e RV*9,

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

28
Figure from https://arxiv.org/pdf/2205.14135

()N

Standard Attention P
Uk e s D N

Version A is exactly how standard attention is implemented

Qu\vs

S=QK" e RV*N = P =gsoftmax(S) e RV*N, 0 =PV e RVX4,
J— —_—

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q,K by blocks from HBM, compute S = QK', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Figure from https://arxiv.org/pdf/2205.14135

29

FlashAttention

* Two key ideas are combined to obtain FlashAttention

* Both are well-established ideas, so the interesting part is
how they are put together for attention

1. Tiling: compute the attention weights block by block so that we
don’t have to load everything into SRAM at once

2. Recomputation: don’t ever store the full attention matrix, but
just recompute the parts of it you need during the backward pass

FlashAttention: Tiling

Outer Loop S :-Q KT ' i{\/u'Jtz{
iﬂ%o '%ZZ kﬁocﬁcs

Copy Block to SRAM
Outer Loop

Inner Loop
doo1 131n0

doo J2uuj

\ J
Output to HBM O.L = PCD \/3

O — sm(QK")V:Nxd

EE—— — (
Dz_, 4 = C\:\m\q‘njﬁoﬂmx(Qq K-—Lr) Vz

Inner Loop

FlashAttention

31
Figure from https://arxiv.org/pdf/2205.14135

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q, K,V € RV*4 in HBM, on-chip SRAM of size M.
1: Set block sizes B, = [M] B, = min ([41] d).
2: Initialize O = (0)yxa € RV*, £ = (0)xy € RN, m = (—o0)ny € RN in HBM.
3: Divide Q into 7, = ’-Bl'} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Bij blocks
Ki,....,Ky. and Vy,..., V., of size B, X d each.
4: Divide O into T, blocks Oy, ...,0O of size B, X d each, divide ¢ into T, blocks ¢;, ..., {r. of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

5: for 1 < j <T.do

6: Load K;,V; from HBM to on-chip SRAM.

7. for1<i<T, do

8: Load Q;, O;, ¢;,m; from HBM to on-chip SRAM.

9: On chip, compute §;; = Q,-K? € RBrxBe,

10: On chip, compute m;; = rowmax(S;;) € RBr, 15,-1- = exp(S;; — m;j) € RBr*Be (pointwise), f,, =
rowsum(P; ;) € RBr,

11: On chip, compute m*" = max(m;,m;;) € RB" , Y =™ MY 4 MM g j € RBr.

new

12: Write O, « dlagg&w"")‘ll diag(£;)e™ """ 0; + €m‘f_m P11V]) to HBM.
13: Write &; « £, m; < m*" to HBM. T =

14: end for
15: end for
16: Return O.

FlashAttention: Tiling
5 KT

(K(ZZ)T J

- Output
\'/ A 1
y o -"_.ym
Stored in HBM } 4 '
_____ } AP = exp(5?®) = (\O! 2 | 1 @
Computed in SRAM ‘ ETF)) 0 Rescaling to
(not materialized in HBM) | V‘vz) A(Z.’ correct
| o g v
A ! o @ v@) denominator
R S ® -

1) = Z exp(S‘»”)i 12 = (1) 4 Z exp(S"“)i

i i

Figure from http://arxiv.org/abs/2307.08691

34

FlashAttention: Tiling

One of the key challenges is how to compute the softmax since it is inherently going to
require working with multiple blocks

2,300 w (=3 300 e %gl=3), xplo) e (@] J)=exl Dl rexp(-2)

rﬁ*:ovr numerical stability, the softmax of vector x € R? is computed as:
- X
m(x) := max Xxj, f(x) = [Xi—m(x) exB_""(x)] , l(x) = Zf(x),f, softmax(x) := A).
_ l > i {(x)
For vectors x(l (2) € RB, we can decompose the softmax of the concatenated x = [x 1) x(z)] e R?8 a
\ﬂiﬁ[_l s RS 1 W (O
' PN (1) FJ‘LL
m(x) = m([x(l) X(Z)]) = max(m(x l)),m(x(z))), f(x) = [m(x'))— m(’c)f()t(l)) eMm(x m(r)f(x(Z))]
[(x) — f([X(l) x(2)]) — em(x(1))—1'7'1(x_)£(x(l)) + em(x‘z))—m(x)f(x(Q)) Soft.max(x) _ f(X)
’ | f(x)

Therefore if we keep track of some extra statistics (m(x), €(x)), we can compute softmax one block at a time

36
Figure from https://arxiv.org/pdf/2205.14135

Reconstruction for a Feed-Forward MLP

RN

?(O o o O ?orwqri -
—l-’or“d‘é 2 =Q_(N|X-\\9\3

— 6([A)IX +LD i :Sogw(Mz‘z{— bz\

‘-[— 50§th< W, Z + b?) Rock ward
Eg e wié - {L&\-z\\()\ \—S/ 57 = |

S/ Sy=T—(ST)y = T
ﬁ/&z_— oY/8y- /52 F—: (Wi x+ EDJ
XS/AX = Xg/éz })Z/éx éd/éx = t:[

38

FlashAttention: Reconstruction

kﬂf N

FlashAttention

Algorithm 1 FLASHATTENTION

Require: Matrices Q,K,V € RV*4 in HBM, on-chip SRAM of size M.

1:
2:
3:

10:

11:

12:
13:
14:
15:
16:

Set block sizes B, = [M] B, = min ([££].4).
Initialize O = (0)yxq € RY*4 £ = (0)y € RNV, m = (-0)y € RN in HBM.
Divide Q into 7, = [Bﬁ} blocks Qq,...,Qr of size B, X d each, and divide K,V in to T, = [Biw blocks

Ki,....,Ky. and Vy,..., V., of size B, X d each.
Divide O into 7, blocks Oy,...,Or. of size B, X d each, divide ¢ into 7, blocks ¢;,...,{r, of size B, each,
divide m into T, blocks m,...,mr,. of size B, each.

for 1 <j<T.do
Load K, V; from HBM to on-chip SRAM.
for1<i<T, do
Load Q;, O;, ¢;,m; from HBM to on-chip SRAM.
On chip, compute S;; = Q,,-K? € RBrxBe,
On chip, compute 7m;; = rowmax(S;;) € R, f’,-j = exp(S;; — m;j) € RE*Be (pointwise), f,, =
rowsum(P; ;) € RBr,
On chip, compute m*" = max(m;,m;;) € RBr v = eMiTM Y g i m Y f,, € RB.
Write O; « diag(¢€2<%)~! (diag(¢;)e™ """ 0, + e™i~""""P; V) to HBM.
Write €; « £V, m; < m?*¥ to HBM.
end for
end for
Return O.

42

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Attention Standard FLASHATTENTION
GFLOPs 66.6 5.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 (.3
~ Effect of Block Size
9/ N\ 2
77 jm "':"Tr-. a
4_‘ ‘b‘t‘f'_\ll - (:) -
?;Q 1 R =
U Runtime —
2 24 4. 781> | =
N 4(5(@;. ' 2 ®
= €5 —
T 64 128 256 512 | 2
Block Size

43

FlashAttention: Results

* The algorithm is
performing exact
attention, so we see no
reduction in perplexity
or quality of the model

* The key metricis
runtime

Model implementations

OpenWebText (ppl)

Training time (speedup)

GPT-2 small - Huggingface |8%] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5x%)
GPT-2 medium - Huggingface [87] 14.2 21.0 days (1.0x)

GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8x%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

44

