10-423/10-623 Generative Al

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Homework 2 Recitation
Diffusion Models
Variational Inference

Sept. 26, 2025

Agenda

1. HW2 Starter Code Overview
- U-Net review
- Forward/reverse process algorithms

2. HW2 Written Overview

- Review of Diffusion Models
- Fréchet Inception Distance (FID)
- Evidence Lower Bound (ELBO) and reparameterization

3. Helpful functions & practice reading documentation

%

Homework 2 Starter Code Overview
follow along on the HW2 handout!

File overview

v handout
s datapt 1. diffusion.py: the only file you modify
= — 2. main.py: run code locally
o2 3. requirements.txt; make a conda

® main.py environment with this

requirements.txt run_in colab.ipynb: run code with GPUs
run in kaggle.ipynb: A
trainer.py: train loop, Trainer class
unet.py: U-Net Model
utils.py: helper functions, wandb logging

® run_in_colab.ipynb

® run_in_kaggle.ipynb

0 NO LA

@ test_diffusion.py

@ trainer.py
@ unet.py

http://diffusion.py
http://main.py
http://trainer.py
http://unet.py
http://utils.py

Key ingredients to implementing this diffusion model

1. The U-Net itself -> done

2. Noise scheduler
3. Training algorithm (forward)

4. Sampling algorithm

In diffusion.py, you'll write 6 functions to implement
steps 2-4. More on this later...

%

http://diffusion.py

U-Nets and Diffusion Algorithms

sometimes the conceptual is the hardest part

&

Diffusion Model Analogy - forward process (adding noise)

The forward process uses a noise scheduler

» Control the amount of noise Y We.adopt the improved
we add in each step of the cosine-based variance
diffusion forward process schedule, introduced in

(Nichol & Dhariwal, 2021)

1.0 4 —— linear
cosine

0.8 A

- : o7 _ /(%)
' a; = cli ,0.001,1) ,a¢ = =—%,
=k (at_l) "7 F(0)
t/T ‘
02- where f(t) = cos (/1_:;8 - g) :

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

%

Diffusion Model Analogy - reverse process (denoising)

4 64 4 64
input input input
. output P output P output
maﬁz > ‘ *| segmentation maﬂz Wl e e segmentation maﬂz *1*1 il segmentation
& map 3l 8 2 map 3 # & map
§ B E ‘EE 5 B g ds:
|
I -
+
. 1
I’I‘I =»conv 3x3, ReLU = conv 3x3, ReLU 3 I’I’I = conv 3x3, ReLU
. . " ‘ | R copy and crop copy and crop B f 2 A copy and_crn‘l\
e e #n x pool 2x2 # m: x pool 2x2 > - S # max pool =, 4 .
4 : 3 2 4 convax2 - $u sonv2x2 E 2 4 up-conv 2x2
- vixi) : o x1 - conv 1x1
S

U-Net models the denoising function

« U-Net removes a little bit of

noise at each step of the
mage oo olofo{ 2 e [EVErSe process
)(’o"u""_) e gum O | , o
e doniae i » We're training the U-Net model
: ot .
.ﬂ, ol *m.ﬂ.] to be good at this so our
t ot output images come out well
EE B omosr
..D e e ¥ max pool 2x2 .
o P vz o J-Net can capture multi-scale

=» cOnv 1x1

features

10

How do we train a denoising U-Net model?

Algorithm 1 Training

1:
2:

3
4.
3s
6
-

repeat
xo ~ q(%o)
t ~ Uniform({1, ...,T})
e ~N(0,I)
Xs < /X + /1 — aye > forward diffusion process
Take optimizer step on L; loss, Vy|le — €g(x¢,t)||1
until converged

%

4,

Sample a training image
Pick a random time step

Run forward diffusion to
generate a noisy version of
Image at that time step

Use our model to predict the
noise that was added

Calculate the loss between
the actual noise and the
predicted noise

11

How do we generate images with a U-Net model?

Algorithm 2 Sampling

1: x7 ~N(0,1)
2: fort=1T,...,1do

32 z~N(0,I)ift > 1,elsez =0
4: €t — €9(x¢,1) > predicted noise
. o L (3 —vI—G ; :
5: X0+ 75 (x¢ — VI — auer) > estlmat.ed X0
6: X clamp(fco, -1, 1) > rectify Xg
7: iy — ‘/atgl_;;:t‘l)xt + —Wf{o > posterior mean of z;_1
8: o2 11%%:—1(1 — o) > posterior variance of ;1
9: X¢—1 < Wt + 012 > reverse diffusion process
return xg

%

1.

Start from a noisy “image”
(sample image-shaped
noise from a normal
distribution)

Denoise inaloop for T
timesteps

12

How do we generate images with a U-Net model?

Idea #2: Choose uy based on q(x;—1 | x¢,Xg), i.e. we
want pg(x¢,t) to be close to fi,(x¢,%0). Here are
three ways we could parameterize this:

Option A: Learnanetwork thatapproximates i, (x¢,X9) Option B: Learnanetwork that approximates the

directly from x; and ¢: real xo from only x; and ¢:
Ho(xz,t) = UNety(xs,) Ho(xe, t) = o) xg (%o,) + ',
wheretis treated as an extra featurein UNet where xéo) (x¢,t) = UNetg(x¢, 1)

Option C: Learnanetworkthatapproximatesthe
€ that gave rise to x; from xg in the forward
process from x; and ¢:

gy) = aﬁo)xéo) (xe,t) + oV x,

0 — _
where Xg)(Xta t) = (x¢ — V1 — asep(xs, t)) /v @ Option Cis the best
where €4(x;,t) = UNetg(xy,t) empirically

13

How do we generate images with a U-Net model?

Algorithm 1 Sampling (Option C)

1. X~ ./\/‘(0, I)
2 fort € {1,...,T} do
3: e ~ N(0,1)
4:)A(U — (XO + (1 — &t)eg(xt,t)) /‘\/@t
:)¢ (1)
5 W, < o "Xg+ o "Xy
6: X1 4 [L; + o€
7: return xg
oy = clip (_O‘t ,0.001, 1) i, =
Qt—1

h t) =
where f(t) cos(T s

%

f(t)
f(0)°

t/T+s w

2

).

Intuition;

Given noise, use U-Net to predict
what some “original” x0 would be.
Use this to estimate the mean and
variance from q(x:—1|x¢,Xo)

Use this mean + variance to sample
a slightly denoised image (by just
one timestep, t-1), then repeat
process in loop

14

Sampling an image

After training, our goal is that
our model can revert images
with any amount of noise t=n
to the previous step t=n-1

This allows us to generate
images by repeatedly
denoising them, one
timestep at a time

15

Functions that you'll write

* Training
- Forward
- P loss
- Q_sample

» Sampling
- Sample
- P_sample_loop
- P_sample

16

Flags

and (optionally) FID calculation

Description Parameter Default Value
Directory from which to load data | data_path (See starter notebook)
Number of iterations to train the | train_steps (See handout below)
model

Enable FID calculation f£i.d (See handout below)
Frequency of periodic save, sample | save_and_sample_every | (See handout below)

Table 2: Useful parameters for run_in_colab/kaggle.ipynb

Description Parameter Default Value
Dataloader worker threads dataloader_workers 16
Directory where the model is stored | save_folder ./results/

Path of a trained model

load_path

./results/model.pt

Table 3: Additional parameters for run_in_colab/kaggle. ipynb.

You likely won’t need to change

these.
Description Parameter Default Value
Model image size image_size 32
Model batch size batch_size 32
Data domain of AFHQ dataset data_class cat
Number of steps of diffusion pro- | time_steps 50
cess, T'
Number of output channels of the | unet_dim 16
first layer in U-Net
Learning rate in training learning_rate le-3
U-Net architecture unet_dim mults [1,2,4,8]

Table 4: Additional parameters for run_in_colab/kaggle. ipynb.

from default values for this homework.

These won’t need to be changed

17

General advice: you will be training for a while

. Start early! This is the homework with the most train time

. GPUs are a necessity. The experiments we ask you to run will take
2-3 hours on a Colab T4 GPU, and you will likely be re-running
these experiments as you debug

. Test your code for a few timesteps (locally or GPU)

. See writeup for guidance on setup for Colab/Kaggle

Colab Pro is FREE for students

Pay As You Go

$9.99 for 100 Compute Units

$49.99 for 500 Compute Units

You currently have O compute units.

Compute units expire after 90 days.

Purchase more as you need them.

v No subscription required.

Only pay for what you use.

v/ Faster GPUs

Upgrade to more powerful GPUs.

Recommended

Colab Pro

$9.99 per month

Colab Pro for Education

No cost for students and educators

v 100 compute units per month

Compute units expire after 90 days.

Purchase more as you need them.

v/ Faster GPUs
Upgrade to more powerful GPUs.

v/ More memory

Access our highest memory machines.

Colab Pro+

$49.99 per month

¢ Limited time offer of an additional 100
compute units, totaling 600 per month.

All of the benefits of Pro, plus:
v/ An additional 466 500 compute units per
month

Compute units expire after 90 days.

Purchase more as you need them.

v/ Faster GPUs

Priority access to upgrade to more
powerful premium GPUs.

v/ Background execution

With compute units, your actively running
notebook will continue running for up to

Colab Enterprise

Pay for what you use

Integrated

Tightly integrated with Google Cloud
services like BigQuery and Vertex Al.

Enterprise notebook storage

Replace your usage of Google Drive
notebooks with GCP notebooks, stored
and shared within your cloud console.

Productive

Generative Al powered code completion
and generation.

19

Homework 2 Written Overview

going over a few key topics!

%

20

Diffusion Models

forward! ...reverse!

Diffusion Models

po (Xt | Xt41)

image recovery...

t

ISINg IS NO

Deno

lon

image generat

S

I

t

m
N

Frechet Inception Distance (FID)

one way to evaluate image generation models

&

24

%

How do we evaluate these models?

Why is evaluating GANs hard?

,Lj

Classifier

e

Uh... looks

https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI

FID - Frechet Inception Distance

How do we measure the quality of a generated image?

l//w/:mll

4

Target image distribution

Model generated image distribution

26

%

FID Inception Model

Input: 299x299x3, Output:8x8x2048

|

DGO NS

Convolution Input: Output:
AvgPool 299x299x3 8x8x2048
MaxPool

#m Concat

== Dropout

Fully connected

am Softmax

48 layers
SOTA in 2015 on ImageNet top-5 error
Named after an internet meme

Final part:8x8x2048 -> 1001

27

1.

Putting it all together

Summary

Extract the features from
real images and generated
Images using an Inceptionv3
model.

2. Find the distance between

the two distribution of
features

Code snippet

Python 3.7.10 (default, Feb 26 2021, 18:47:35)
[GCC 7.3.08] :: Anaconda, Inc. on linux
Type “help"”, "copyright™, "credits"” or "license" for more information.

28

FID

83
(N

Empirical examples of FID score

The closer the image is to
the target distribution, the
lower the FID score

FID ranges between 0 and
infinity

We use FID to track the
quality of our generated
Images in HW2

29

Evidence Lower BOund (ELBO)
the workhorse of VAES

&

30

What is ELBO?

2 a0y 108 Dg (x | 2)] — Dk (qe (2 | %) || p(2))

reconstruction error KL-divergence

You are a crime scene reporter!

Your job is to reproduce
details of the crime scene in
your article.

You must be very accurate and
not overly stray from the
details of the scene.

%

You are a viral crime scene reporter!

BUT:

You also want your article to
have the most clicks and views!

How would you do this?

%

Reconstruction Error

bz~q(z]x) llogpg(x | z)]

reconstruction error

You write the best possible
detective report that explains
the crime scene.

34

What is ELBO?

2 a0y 108 Dg (x | 2)] — Dk (qe (2 | %) || p(2))

reconstruction error KL-divergence

KL Divergence

While staying consistent
with what you generally
know about getting the most
clicks and views (the prior) :)

QQ
L@

Di1(q6(z | ¥) || p(2))

KL-divergence

36

Okay...this sounds great...but how does this
connect to VAEs and the bigger picture??

Lz~q(z]x) [108299 (X | Z)] o DKL(qu(Z | X) ” p(Z))

reconstruction error KL-divergence

Deriving the Variational Autoencoder

1. Problem: Cannot sample from an autoencoder.
Solution: Define a decoder that we can sample from:
pg(ZT) - N(O, I)
po(x | 2z) ~ N(ug(z),%6(z)) where ug(z) and Xy (z) are neural
nets.

2. Problem: Intractable to maximize data likelihood with this de-
coder:

6 = argming log pp(x) = argming [pe(x | z)pe(z)dz

Solution: Maximize a lower bound (ELBO) instead by introduc-
ing an encoder distribution:

qp(2 | X) ~ N (pg(x), Lo (x))
9, ¢ = argmaxyg 4 ELBO(Q¢,p9) Where-logpg (X) > ELBO(qu,,pQ)

38

Evidence Lower BOund (ELBO)

Jensen’s Inequality

39

Evidence Lower BOund (ELBO)

ELBO via Jensen’s Inequality

We use marginalization
To make latent variable
appear

log p(x) = log / p(x

40

Evidence Lower BOund (ELBO)

ELBO via Jensen’s Inequality

We need this term for

1 —] d
Og p(a:) 08 / p (:13, <) ~ the expectation of Jensen’s

- [

41

Evidence Lower BOund (ELBO)

ELBO via Jensen’s Inequality

logp(x) = log/p(a:,z)dz

We cancel out to preserve
The equality

42

Evidence Lower BOund (ELBO)

ELBO via Jensen’s Inequality

It is a concave function!

43

Evidence Lower BOund (ELBO)

ELBO via Jensen’s Inequality

We use Jensen’s to swap log
and expectation

44

Evidence Lower BOund (ELBO)

ELBO is your best friend

ELBO

Evidence Lower BOund (ELBO)

ELBO is your best friend

ELBO

log p(x) > / q(z)log pga(z)z)dz

p(z, Z)}

q(2)

= [, [log

The Reparameterization Trick

Reparameterization is a method of generating random
numbers by transforming some base distribution p(e)
to a desired distribution pe(z)

e ~ p(le) — g(€;0) — pe(2)

47

The Reparameterization Trick

Reparameterization is a method of generating random
numbers by transforming some base distribution p(€)
to a desired distribution pe(z)

e ~p(€)l— g(€;0) — pe(2)

A simple distribution to sample from

48

The Reparameterization Trick

Reparameterization is a method of generating random
numbers by transforming some base distribution p(e)
to a desired distribution pe(z)

e ~ p(e) —g(€;0))— po(2)

A simple transformation

49

The Reparameterization Trick

Gaussian Distribution:

We want samples from = ~ N (u,0°I)

50

The Reparameterization Trick

Gaussian Distribution

e ~ N(0,TI)

51

The Reparameterization Trick

Gaussian Distribution

e ~ N(0,TI)

r = U+ 0€

The Reparameterization Trick

Gaussian Distribution

e ~ N(0,TI)

r = U+ 0€
x ~ N(p, 1)

Helpful Functions and Methods

you may enjoy the homework more with these

X

54

noise like

Why do we want to use
noise_like as opposed to
def noise_like(self, shape, device): torCh,randn?

Generates noise with the same shape as the input.
Args:

shape: The shape of the noise.

device: The device on which to create the noise.

Returns:
The generated noise.
noise lambda: torch.randn(shape, device=device)
noise()

noise like

def noise_like(self, shape, device):

Generates noise with the same shape as the input.
Args:
shape: The shape of the noise.

device: The device on which to create the noise.

Returns:
The generated noise.

noise = lambda: torch.randn(shape, device=device)
noise()

Why do we want to use
noise_like as opposed to
torch.randn?

To stay consistent, decrease
randomness across
submissions.

56

extract
Why/when should we use

extract?

def extract(a, t, x_shape):
This function abstracts away the tedious indexing that would otherwise have
to be done to properly compute the diffusion equations from lecture. This
is necessary because we train data in batches, while the math taught in
lecture only considers a single sample.

To use this function, consider the example
alpha_t * x

To compute this in code, we would write
extract(alpha, t, x.shape) * x

Args:
a: 1D tensor containing the value at each time step.
t: 1D tensor containing a batch of time indices.
x_shape: The reference shape.

Returns:
The extracted tensor.

b, *x_ = t.shape

out = a.gather(-1, t)

return out.reshape(b, *((1,) * (len(x_shape) - 1)))

extract
Why/when should we use

extract?

def extract(a, t, x_shape):

: : : : :) Algorithm 1 Training
This function abstracts away the tedious indexing that would otherwise have

to be done to properly compute the diffusion equations from lecture. This
is necessary because we train data in batches, while the math taught in
lecture only considers a single sample.

1: repeat

2 xp~ q(Xo)

3 t ~ Uniform({1,...,7'})
4: e ~N(0,I)
5: Y,
6

7

To use this function, consider the example
alpha_t * x

To compute this in code, we would write
extract(alpha, t, x.shape) * x

Xt —|vouxo + W1 — e > forward diffusion process
Take optimizer step on L; loss, Vgl||€ — €p(x¢,t)||1
until converged

Args: Algorithm 2 Sampling

a: 1D tensor containing the value at each time step. 1: xp ~ N(0,1)

t: 1D tensor containing a batch of time indices. 2 fort="T,...,1do

x_shape: The reference shape. 3. z ~N(0,I)ift > 1,elsez =0
Gatld 4: € < €9(x¢,1) > predicted noise
- The extracted tensor. s %o %Ext _ mﬁt) > estimated g
b, *_ = t.shape 6: Xo < clamp(xp,—1,1) > rectify Xq
out = a.gather(-1, t) T [y %xt + ‘/6‘%(;:0“).&0 > posterior mean of x;_
return out.reshape(b, *((1,) * (len(x_shape) - 1))) 8: 0t2 z | 1;:3;_;1 1— at) > posterior variance of z;_;

0: X¢_1 ¢ Py + 04z > reverse diffusion process
return xg

58

extract

def extract(a, t, x_shape):

This function abstracts away the tedious indexing that would otherwise have
to be done to properly compute the diffusion equations from lecture. This
is necessary because we train data in batches, while the math taught in
lecture only considers a single sample.

To use this function, consider the example
alpha_t * x

To compute this in code, we would write
extract(alpha, t, x.shape) * x

Args:
a: 1D tensor containing the value at each time step.
t: 1D tensor containing a batch of time indices.
x_shape: The reference shape.

Returns:
The extracted tensor.

b, *x_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))

Why/when should we use
extract?

» Allows us to pre-calculate
important values and extract
just the timesteps we need

 Less computationally
expensive than recalculating
every time

59

torch.cumprod

TORCH.CUMPROD

torch.cumprod (input, dim, %, dtype=None, out=None) — Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if input is a vector of size N, the result will also be a vector of size N, with elements.
Yi =1 X Ty X T3 X =+ X T

Parameters

e input (Tensor) - the input tensor.

o dim (int) - the dimension to do the operation over

Keyword Arguments

o dtype (torch.dtype , optional) - the desired data type of returned tensor. If specified, the input
tensor is casted to dtype before the operation is performed. This is useful for preventing data type
overflows. Default: None.

o out (7ensor, optional) - the output tensor.

What does the following code
snippet return?

60

torch.cumprod

TORCH.CUMPROD

torch.cumprod (input, dim, %, dtype=None, out=None) — Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if input is a vector of size N, the result will also be a vector of size N, with elements.
Yi =1 X Ty X T3 X =+ X T

Parameters

o input (Tensor) - the input tensor.

o dim (int) - the dimension to do the operation over

Keyword Arguments

o dtype (torch.dtype , optional) - the desired data type of returned tensor. If specified, the input
tensor is casted to dtype before the operation is performed. This is useful for preventing data type
overflows. Default: None.

o out (7ensor, optional) - the output tensor.

What does the following code
snippet return?

Output:
tensor([[1, 2, 3, 4, 5]11)

61

torch.cumprod

TORCH.CUMPROD

torch.cumprod (input, dim, %, dtype=None, out=None) — Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if input is a vector of size N, the result will also be a vector of size N, with elements.
Yi =1 X Ty X T3 X =+ X T

Parameters

e input (Tensor) - the input tensor.

o dim (int) - the dimension to do the operation over

Keyword Arguments

o dtype (torch.dtype , optional) - the desired data type of returned tensor. If specified, the input
tensor is casted to dtype before the operation is performed. This is useful for preventing data type
overflows. Default: None.

o out (7ensor, optional) - the output tensor.

What does the following code
snippet return?

62

torch.cumprod

TORCH.CUMPROD

torch.cumprod (input, dim, %, dtype=None, out=None) — Tensor

Returns the cumulative product of elements of input in the dimension dim.

For example, if input is a vector of size N, the result will also be a vector of size N, with elements.
Yi =1 X Ty X T3 X =+ X T

Parameters

o input (Tensor) - the input tensor.

o dim (int) - the dimension to do the operation over

Keyword Arguments

o dtype (torch.dtype , optional) - the desired data type of returned tensor. If specified, the input
tensor is casted to dtype before the operation is performed. This is useful for preventing data type
overflows. Default: None.

o out (7ensor, optional) - the output tensor.

What does the following code
snippet return?

Output:
tenSOI’([[11 21 61 241 120]])

63

torch.clamp

TORCH.CLAMP

torch.clamp (input, min=None, max=None, *, out=None) — Tensor

Clamps all elements in input into the range [min, max J]. Letting min_value and max_value be min and max,
respectively, this returns:

¥; = min(max(z;, min_value,), max_value,)

If min is None , there is no lower bound. Or, if max is None there is no upper bound.

* NOTE

If min is greater than max torch.clamp(..., min, max) setsall elementsin input to the value of max .

Parameters

e input (Tensor) - the input tensor.
e min (Number or Tensor, optional) - lower-bound of the range to be clamped to

e max (Number or Tensor, optional) - upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code
snippet return?

64

torch.clamp

What does the following code
TORCH.CLAMP snippet return?

torch.clamp (input, min=None, max=None, *, out=None) — Tensor

Clamps all elements in input into the range [min, max]. Letting min_value and max_value be min and max,
respectively, this returns:

¥; = min(max(z;, min_value,), max_value,)

If min is None , there is no lower bound. Or, if max is None there is no upper bound.

* NOTE

If min is greater than max torch.clamp(..., min, max) setsall elementsin input to the value of max .

Parameters

e input (7ensor) - the input tensor.

e min (Number or Tensor, optional) - lower-bound of the range to be clamped to

o max (Number or Tensor, optional) - upper-bound of the range to be clamped to TypeError: Clamp() received an invalid Combination Of
Keyword Arguments arguments - got (numpy.ndarray, max=int, min=int),
o (SRR PR ~the UL TaeSt but expected one of: * (Tensor input, Tensor min,

Tensor max, *, Tensor out) * (Tensor input, Number
min, Number max, *, Tensor out)

65

torch.clamp

TORCH.CLAMP

torch.clamp (input, min=None, max=None, *, out=None) — Tensor

Clamps all elements in input into the range [min, max J]. Letting min_value and max_value be min and max,
respectively, this returns:

¥; = min(max(z;, min_value,), max_value,)

If min is None , there is no lower bound. Or, if max is None there is no upper bound.

* NOTE

If min is greater than max torch.clamp(..., min, max) setsall elementsin input to the value of max .

Parameters

e input (Tensor) - the input tensor.
e min (Number or Tensor, optional) - lower-bound of the range to be clamped to

e max (Number or Tensor, optional) - upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code
snippet return?

66

torch.clamp

TORCH.CLAMP

torch.clamp (input, min=None, max=None, *, out=None) — Tensor

Clamps all elements in input into the range [min, max J]. Letting min_value and max_value be min and max,
respectively, this returns:

¥; = min(max(z;, min_value,), max_value,)

If min is None , there is no lower bound. Or, if max is None there is no upper bound.

* NOTE

If min is greater than max torch.clamp(..., min, max) setsall elementsin input to the value of max .

Parameters

e input (Tensor) - the input tensor.
e min (Number or Tensor, optional) - lower-bound of the range to be clamped to

e max (Number or Tensor, optional) - upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) - the output tensor.

What does the following code
snippet return?

Output:
tensor([[4, 4, 4], [4, 5, 6], [6, 6, 6]])

67

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int...) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments

e out (7ensor, optional) - the output tensor.

o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).

e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.

e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will
be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

68

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int..) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments
e out (7ensor, optional) - the output tensor.
o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).
e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.
e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will

be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

Output:

TypeError: full() received an invalid combination of arguments - got
(int, int, int), but expected one of: * (tuple of ints size, Number
fill_value, *, tuple of names names, torch.dtype dtype, torch.layout
layout, torch.device device, bool pin_memory, bool requires_grad) *
(tuple of ints size, Number fill_value, *, Tensor out, torch.dtype
dtype, torch.layout layout, torch.device device, bool pin_memory,
bool requires_grad)

69

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int...) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments

e out (7ensor, optional) - the output tensor.

o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).

e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.

e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will
be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

70

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int..) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments

e out (7ensor, optional) - the output tensor.

o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).

e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.

e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will
be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

Output:

tensor([[True, True, True], [True, True,
True]])

71

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int...) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments

e out (7ensor, optional) - the output tensor.

o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).

e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.

e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will
be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

72

torch.full

TORCH.FULL

torch.full(size, £i11_value, *, out=None, dtype=None, layout=torch. strided,
device=None, requires_grad=False) — Tensor

Creates a tensor of size size filled with £il1_value . The tensor’s dtype is inferred from £ill_value.

Parameters

e size (int...) - alist, tuple, or torch.Size of integers defining the shape of the output tensor.

o fill_value (Scalar) - the value to fill the output tensor with.

Keyword Arguments
e out (7ensor, optional) - the output tensor.
o dtype (torch.dtype , optional) - the desired data type of returned tensor. Default: if None , uses a
global default (see torch.set_default_tensor_type()).
e layout (torch.layout , optional) - the desired layout of returned Tensor. Default: torch.strided.
e device (torch.device, optional) - the desired device of returned tensor. Default: if None, uses the
current device for the default tensor type (see torch.set_default_tensor_type()). device will

be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
¢ requires_grad (bool, optional) - If autograd should record operations on the returned tensor.

Default: False.

What does the following code
snippet return?

Output:
tensor(True)

73

¢

Thanks everyone!
happy diffusing! -Natalie, Rithvik, Irene, Ziming

74

