
Homework 2 Recitation
Diffusion Models

Variational Inference

1

10-423/10-623 Generative AI

Sept. 26, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Agenda
1. HW2 Starter Code Overview

– U-Net review
– Forward/reverse process algorithms

2. HW2 Written Overview
– Review of Diffusion Models
– Fréchet Inception Distance (FID)
– Evidence Lower Bound (ELBO) and reparameterization

3. Helpful functions & practice reading documentation

2

3

Homework 2 Starter Code Overview
follow along on the HW2 handout!

File overview

1. diffusion.py: the only file you modify
2. main.py: run code locally
3. requirements.txt: make a conda

environment with this
4. run_in_colab.ipynb: run code with GPUs
5. run_in_kaggle.ipynb: ^
6. trainer.py: train loop, Trainer class
7. unet.py: U-Net Model
8. utils.py: helper functions, wandb logging

4

http://diffusion.py
http://main.py
http://trainer.py
http://unet.py
http://utils.py

Key ingredients to implementing this diffusion model

5

1. The U-Net itself -> done
2. Noise scheduler
3. Training algorithm (forward)
4. Sampling algorithm

In diffusion.py, you’ll write 6 functions to implement
steps 2-4. More on this later…

http://diffusion.py

6

U-Nets and Diffusion Algorithms
sometimes the conceptual is the hardest part

Diffusion Model Analogy - forward process (adding noise)

7

The forward process uses a noise scheduler

8

• We adopt the improved
cosine-based variance
schedule, introduced in
(Nichol & Dhariwal, 2021)

• Control the amount of noise
we add in each step of the
diffusion forward process

Diffusion Model Analogy - reverse process (denoising)

9

✨ ✨✨

U-Net models the denoising function

10

• U-Net removes a little bit of
noise at each step of the
reverse process

• We’re training the U-Net model
to be good at this so our
output images come out well

• U-Net can capture multi-scale
features

How do we train a denoising U-Net model?

11

1. Sample a training image
2. Pick a random time step
3. Run forward diffusion to

generate a noisy version of
image at that time step

4. Use our model to predict the
noise that was added

5. Calculate the loss between
the actual noise and the
predicted noise

12

1. Start from a noisy “image”
(sample image-shaped
noise from a normal
distribution)

2. Denoise in a loop for T
timesteps

12

How do we generate images with a U-Net model?

1313

How do we generate images with a U-Net model?

14

Intuition:
Given noise, use U-Net to predict
what some “original” x0 would be.
Use this to estimate the mean and
variance from

Use this mean + variance to sample
a slightly denoised image (by just
one timestep, t-1), then repeat
process in loop

14

How do we generate images with a U-Net model?

Sampling an image

15

t=4 t=3

t=1 t=0

After training, our goal is that
our model can revert images
with any amount of noise t=n
to the previous step t=n-1

This allows us to generate
images by repeatedly
denoising them, one
timestep at a time

• Training
– Forward
– P_loss
– Q_sample

• Sampling
– Sample
– P_sample_loop
– P_sample

1616

Functions that you’ll write

1717

Flags

General advice: you will be training for a while
● Start early! This is the homework with the most train time

● GPUs are a necessity. The experiments we ask you to run will take
2-3 hours on a Colab T4 GPU, and you will likely be re-running
these experiments as you debug

● Test your code for a few timesteps (locally or GPU)

● See writeup for guidance on setup for Colab/Kaggle

18

Colab Pro is FREE for students

19

20

Homework 2 Written Overview
going over a few key topics!

21

Diffusion Models
forward! …reverse!

Diffusion Models

22

(Exact) Reverse Process:

Denoising is not image recovery…
…it’s image generation!

23

24

Fréchet Inception Distance (FID)
one way to evaluate image generation models

How do we evaluate these models?

25

Source

https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI

FID – Fréchet Inception Distance
How do we measure the quality of a generated image?

26

Target image distribution Model generated image distribution

26

FID Inception Model

48 layers
SOTA in 2015 on ImageNet top-5 error

Named after an internet meme

27

Putting it all together

Summary
1. Extract the features from

real images and generated
images using an Inceptionv3
model.

2. Find the distance between
the two distribution of
features

Code snippet

2828

Empirical examples of FID score

2929

The closer the image is to
the target distribution, the
lower the FID score

FID ranges between 0 and
infinity

We use FID to track the
quality of our generated
images in HW2

30

Evidence Lower BOund (ELBO)
the workhorse of VAEs

What is ELBO?

31

KL-divergencereconstruction error

You are a crime scene reporter!

Your job is to reproduce
details of the crime scene in
your article.

You must be very accurate and
not overly stray from the
details of the scene.

32

You are a viral crime scene reporter!

BUT:

You also want your article to
have the most clicks and views!

How would you do this?

33

Reconstruction Error

34

reconstruction error

You write the best possible
detective report that explains
the crime scene.

What is ELBO?

35

KL-divergencereconstruction error

KL Divergence

36

KL-divergence

While staying consistent
with what you generally
know about getting the most
clicks and views (the prior) :)

Okay…this sounds great…but how does this
connect to VAEs and the bigger picture??

37

KL-divergencereconstruction error

38

Evidence Lower BOund (ELBO)

39

 Jensen’s Inequality

39

Evidence Lower BOund (ELBO)

40

 ELBO via Jensen’s Inequality

We use marginalization
To make latent variable

appear

40

Evidence Lower BOund (ELBO)

41

 ELBO via Jensen’s Inequality

We need this term for
the expectation of Jensen’s

41

Evidence Lower BOund (ELBO)

42

 ELBO via Jensen’s Inequality

We cancel out to preserve
The equality

42

Evidence Lower BOund (ELBO)

43

 ELBO via Jensen’s Inequality

It is a concave function!

43

Evidence Lower BOund (ELBO)

44

 ELBO via Jensen’s Inequality

We use Jensen’s to swap log
 and expectation

44

Evidence Lower BOund (ELBO)

45

 ELBO

ELBO is your best friend

45

Evidence Lower BOund (ELBO)

46

 ELBO

ELBO is your best friend

Maximize this

46

The Reparameterization Trick

47

Reparameterization is a method of generating random
numbers by transforming some base distribution
to a desired distribution

47

The Reparameterization Trick

48

Reparameterization is a method of generating random
numbers by transforming some base distribution
to a desired distribution

48

A simple distribution to sample from

The Reparameterization Trick

49

Reparameterization is a method of generating random
numbers by transforming some base distribution
to a desired distribution

49

A simple transformation

The Reparameterization Trick

50

Gaussian Distribution:

We want samples from

50

The Reparameterization Trick

51

Gaussian Distribution

We sample standard Normal

51

The Reparameterization Trick

52

Gaussian Distribution

We sample standard Normal

52

We apply linear transformation

The Reparameterization Trick

53

Gaussian Distribution

We sample standard Normal

53

We apply linear transformation

Transformed sample comes from
the desired Gaussian distribution

54

Helpful Functions and Methods
you may enjoy the homework more with these

55

Why do we want to use
noise_like as opposed to
torch.randn?

noise_like

55

56

Why do we want to use
noise_like as opposed to
torch.randn?

To stay consistent, decrease
randomness across
submissions.

noise_like

56

5757

extract
Why/when should we use
extract?

5858

extract
Why/when should we use
extract?

59

Why/when should we use
extract?

• Allows us to pre-calculate
important values and extract
just the timesteps we need

• Less computationally
expensive than recalculating
every time

59

extract

60

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)

60

torch.cumprod

61

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)

Output:
tensor([[1, 2, 3, 4, 5]])

61

torch.cumprod

62

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)

62

torch.cumprod

63

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)

Output:
tensor([[1, 2, 6, 24, 120]])

63

torch.cumprod

torch.clamp

64

What does the following code
snippet return?

import torch
import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)

64

65

What does the following code
snippet return?

import torch
import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)

TypeError: clamp() received an invalid combination of
arguments - got (numpy.ndarray, max=int, min=int),
but expected one of: * (Tensor input, Tensor min,
Tensor max, *, Tensor out) * (Tensor input, Number
min, Number max, *, Tensor out)

65

torch.clamp

66

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8,
9]])
y = torch.clamp(x, min=4, max=6)
print(y)

66

torch.clamp

67

What does the following code
snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8,
9]])
y = torch.clamp(x, min=4, max=6)
print(y)

Output:
tensor([[4, 4, 4], [4, 5, 6], [6, 6, 6]])

67

torch.clamp

68

What does the following code
snippet return?

import torch

x1 = torch.full(2, 3, 3)
x2 = torch.ones(2,3) * 3

print(x1 == x2)

68

torch.full

69

What does the following code
snippet return?

import torch

x1 = torch.full(2, 3, 3)
x2 = torch.ones(2,3) * 3

print(x1 == x2)

Output:
TypeError: full() received an invalid combination of arguments - got
(int, int, int), but expected one of: * (tuple of ints size, Number
fill_value, *, tuple of names names, torch.dtype dtype, torch.layout
layout, torch.device device, bool pin_memory, bool requires_grad) *
(tuple of ints size, Number fill_value, *, Tensor out, torch.dtype
dtype, torch.layout layout, torch.device device, bool pin_memory,
bool requires_grad) 69

torch.full

70

What does the following code
snippet return?

import torch

x1 = torch.full((2, 3), 3)
x2 = torch.ones(2,3) * 3

print(x1 == x2)

70

torch.full

71

What does the following code
snippet return?

import torch

x1 = torch.full((2, 3), 3)
x2 = torch.ones(2,3) * 3

print(x1 == x2)

Output:

tensor([[True, True, True], [True, True,
True]])

71

torch.full

72

What does the following code
snippet return?

import torch

x1 = torch.full((2,3), 3)
x2 = torch.ones(2,3) * 3

print((x1 == x2).all())

72

torch.full

73

What does the following code
snippet return?

import torch

x1 = torch.full((2,3), 3)
x2 = torch.ones(2,3) * 3

print((x1 == x2).all())

Output:
tensor(True)

73

torch.full

74

Thanks everyone!
happy diffusing! -Natalie, Rithvik, Irene, Ziming

✨
✨

