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Agenda
1. HW2 Starter Code Overview

– U-Net review
– Forward/reverse process algorithms

2. HW2 Written Overview
– Review of Diffusion Models
– Fréchet Inception Distance (FID)
– Evidence Lower Bound (ELBO) and reparameterization

3. Helpful functions & practice reading documentation
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Homework 2 Starter Code Overview
follow along on the HW2 handout!



File overview

1. diffusion.py: the only file you modify
2. main.py: run code locally
3. requirements.txt: make a conda 

environment with this
4. run_in_colab.ipynb: run code with GPUs 
5. run_in_kaggle.ipynb: ^
6. trainer.py: train loop, Trainer class
7. unet.py: U-Net Model
8. utils.py: helper functions, wandb logging
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http://diffusion.py
http://main.py
http://trainer.py
http://unet.py
http://utils.py


Key ingredients to implementing this diffusion model
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1. The U-Net itself -> done
2. Noise scheduler
3. Training algorithm (forward)
4. Sampling algorithm

In diffusion.py, you’ll write 6 functions to implement 
steps 2-4. More on this later…

http://diffusion.py
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U-Nets and Diffusion Algorithms
sometimes the conceptual is the hardest part



Diffusion Model Analogy - forward process (adding noise)
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The forward process uses a noise scheduler 
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• We adopt the improved 
cosine-based variance 
schedule, introduced in 
(Nichol & Dhariwal, 2021)

• Control the amount of noise 
we add in each step of the 
diffusion forward process



Diffusion Model Analogy - reverse process (denoising)

9

✨ ✨✨



U-Net models the denoising function
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• U-Net removes a little bit of 
noise at each step of the 
reverse process

• We’re training the U-Net model 
to be good at this so our 
output images come out well

• U-Net can capture multi-scale 
features 



How do we train a denoising U-Net model?
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1. Sample a training image
2. Pick a random time step
3. Run forward diffusion to 

generate a noisy version of 
image at that time step

4. Use our model to predict the 
noise that was added

5. Calculate the loss between 
the actual noise and the 
predicted noise  
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1. Start from a noisy “image” 
(sample image-shaped 
noise from a normal 
distribution)

2. Denoise in a loop for T 
timesteps
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How do we generate images with a U-Net model?
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How do we generate images with a U-Net model?
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Intuition:
Given noise, use U-Net to predict 
what some “original” x0 would be. 
Use this to estimate the mean and 
variance from

Use this mean + variance to sample 
a slightly denoised image (by just 
one timestep, t-1), then repeat 
process in loop
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How do we generate images with a U-Net model?



Sampling an image
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t=4 t=3

t=1 t=0

After training, our goal is that 
our model can revert images 
with any amount of noise t=n 
to the previous step t=n-1

This allows us to generate 
images by repeatedly 
denoising them, one 
timestep at a time



• Training
– Forward
– P_loss
– Q_sample

• Sampling
– Sample
– P_sample_loop
– P_sample
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Functions that you’ll write



1717

Flags



General advice: you will be training for a while
● Start early! This is the homework with the most train time

● GPUs are a necessity. The experiments we ask you to run will take 
2-3 hours on a Colab T4 GPU, and you will likely be re-running 
these experiments as you debug

● Test your code for a few timesteps (locally or GPU)

● See writeup for guidance on setup for Colab/Kaggle 
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Colab Pro is FREE for students
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Homework 2 Written Overview
going over a few key topics!
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Diffusion Models
forward! …reverse!



Diffusion Models
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(Exact) Reverse Process:



Denoising is not image recovery…
…it’s image generation!
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Fréchet Inception Distance (FID)
one way to evaluate image generation models



How do we evaluate these models?
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Source

https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI


FID – Fréchet Inception Distance
How do we measure the quality of a generated image?
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Target image distribution Model generated image distribution
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FID Inception Model

48 layers
SOTA in 2015 on ImageNet top-5 error 

Named after an internet meme
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Putting it all together

Summary
1. Extract the features from 

real images and generated 
images using an Inceptionv3 
model.

2. Find the distance between 
the two distribution of 
features

Code snippet
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Empirical examples of FID score
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The closer the image is to 
the target distribution, the 
lower the FID score

FID ranges between 0 and 
infinity

We use FID to track the 
quality of our generated 
images in HW2
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Evidence Lower BOund (ELBO)
the workhorse of VAEs



What is ELBO?
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KL-divergencereconstruction error



You are a crime scene reporter!

Your job is to reproduce 
details of the crime scene in 
your article. 

You must be very accurate and 
not overly stray from the 
details of the scene. 
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You are a viral crime scene reporter!

BUT:

You also want your article to 
have the most clicks and views!

How would you do this?

33



Reconstruction Error
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reconstruction error

You write the best possible 
detective report that explains 
the crime scene.



What is ELBO?
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KL-divergencereconstruction error



KL Divergence

36

KL-divergence

While staying consistent 
with what you generally 
know about getting the most 
clicks and views (the prior) :)



Okay…this sounds great…but how does this 
connect to VAEs and the bigger picture??
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KL-divergencereconstruction error



38



Evidence Lower BOund (ELBO)

39

    Jensen’s Inequality
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Evidence Lower BOund (ELBO)

40

    ELBO via Jensen’s Inequality

We use marginalization 
To make latent variable 

appear
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Evidence Lower BOund (ELBO)
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    ELBO via Jensen’s Inequality

We need this term for 
the expectation of Jensen’s

41



Evidence Lower BOund (ELBO)
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    ELBO via Jensen’s Inequality

We cancel out to preserve
The equality
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Evidence Lower BOund (ELBO)
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    ELBO via Jensen’s Inequality

It is a concave function!
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Evidence Lower BOund (ELBO)
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    ELBO via Jensen’s Inequality

We use Jensen’s to swap log
 and expectation
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Evidence Lower BOund (ELBO)
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    ELBO

ELBO is your best friend
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Evidence Lower BOund (ELBO)
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    ELBO

ELBO is your best friend

Maximize this 
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The Reparameterization Trick
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Reparameterization is a method of generating random 
numbers by transforming some base distribution         
to a desired distribution
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The Reparameterization Trick
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Reparameterization is a method of generating random 
numbers by transforming some base distribution         
to a desired distribution
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A simple distribution to sample from



The Reparameterization Trick
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Reparameterization is a method of generating random 
numbers by transforming some base distribution         
to a desired distribution
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A simple transformation 



The Reparameterization Trick
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Gaussian Distribution: 

We want samples from  
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The Reparameterization Trick
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Gaussian Distribution

We sample standard Normal
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The Reparameterization Trick
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Gaussian Distribution

We sample standard Normal

52

We apply linear transformation



The Reparameterization Trick
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Gaussian Distribution

We sample standard Normal
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We apply linear transformation

Transformed sample comes from 
the desired Gaussian distribution
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Helpful Functions and Methods
you may enjoy the homework more with these
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Why do we want to use 
noise_like as opposed to 
torch.randn? 

noise_like
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Why do we want to use 
noise_like as opposed to 
torch.randn? 

To stay consistent, decrease 
randomness across 
submissions.

noise_like
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extract
Why/when should we use 
extract? 
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extract
Why/when should we use 
extract? 
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Why/when should we use 
extract? 

• Allows us to pre-calculate 
important values and extract 
just the timesteps we need

• Less computationally 
expensive than recalculating 
every time
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extract
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)
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torch.cumprod
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 0)
print(y)

Output:
tensor([[1, 2, 3, 4, 5]])

61

torch.cumprod
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)
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torch.cumprod
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3, 4, 5]])
y = torch.cumprod(x, 1)
print(y)

Output:
tensor([[ 1, 2, 6, 24, 120]]) 
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torch.cumprod



torch.clamp
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What does the following code 
snippet return?

import torch
import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)
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What does the following code 
snippet return?

import torch
import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = torch.clamp(x, min=4, max=6)
print(y)

TypeError: clamp() received an invalid combination of 
arguments - got (numpy.ndarray, max=int, min=int), 
but expected one of: * (Tensor input, Tensor min, 
Tensor max, *, Tensor out) * (Tensor input, Number 
min, Number max, *, Tensor out)
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torch.clamp
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 
9]])
y = torch.clamp(x, min=4, max=6)
print(y)
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torch.clamp
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What does the following code 
snippet return?

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 
9]])
y = torch.clamp(x, min=4, max=6)
print(y)

Output:
tensor([[4, 4, 4], [4, 5, 6], [6, 6, 6]])
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torch.clamp
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What does the following code 
snippet return?

import torch

x1 = torch.full(2, 3, 3)
x2 = torch.ones(2,3) * 3 

print(x1 == x2)
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torch.full



69

What does the following code 
snippet return?

import torch

x1 = torch.full(2, 3, 3)
x2 = torch.ones(2,3) * 3 

print(x1 == x2)

Output:
TypeError: full() received an invalid combination of arguments - got 
(int, int, int), but expected one of: * (tuple of ints size, Number 
fill_value, *, tuple of names names, torch.dtype dtype, torch.layout 
layout, torch.device device, bool pin_memory, bool requires_grad) * 
(tuple of ints size, Number fill_value, *, Tensor out, torch.dtype 
dtype, torch.layout layout, torch.device device, bool pin_memory, 
bool requires_grad) 69

torch.full
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What does the following code 
snippet return?

import torch

x1 = torch.full((2, 3), 3)
x2 = torch.ones(2,3) * 3 

print(x1 == x2)
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torch.full



71

What does the following code 
snippet return?

import torch

x1 = torch.full((2, 3), 3)
x2 = torch.ones(2,3) * 3 

print(x1 == x2)

Output:

tensor([[True, True, True], [True, True, 
True]]) 
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torch.full
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What does the following code 
snippet return?

import torch

x1 = torch.full((2,3), 3)
x2 = torch.ones(2,3) * 3

print((x1 == x2).all())
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torch.full
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What does the following code 
snippet return?

import torch

x1 = torch.full((2,3), 3)
x2 = torch.ones(2,3) * 3

print((x1 == x2).all())

Output:
tensor(True)
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torch.full
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Thanks everyone!
happy diffusing! -Natalie, Rithvik, Irene, Ziming

✨
✨


