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Reminders
� Announcements: 

� HW1 released 9/8, due 9/22 at 11:59 PM 

� Recitation on 9/12 (this Friday) will be on HW1 topics
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Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image
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Convolutional 
Filters

� Images can be represented as matrices: each element 

corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗
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Convolutional 
Filters

� Images can be represented as matrices: each element 

corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

=

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 1 + 1 ∗ −4
+ 2 ∗ 1 + 0 ∗ 0 + 2 ∗ 1 + 4 ∗ 0 = 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0
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Convolutional 
Filters

� Images can be represented as matrices: each element 

corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 2 ∗ −4
+ 2 ∗ 1 + 2 ∗ 0 + 4 ∗ 1 + 4 ∗ 0 = −1

0 -1
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Convolutional 
Filters

� Images can be represented as matrices: each element 

corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

=

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗
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Convolutional 
Filters

Source: https://en.wikipedia.org/wiki/Kernel_(image_processing) 8

https://en.wikipedia.org/wiki/Kernel_(image_processing)


More 
Filters

Source: https://en.wikipedia.org/wiki/Kernel_(image_processing) 9

https://en.wikipedia.org/wiki/Kernel_(image_processing)


� Images can be represented as matrices: each element 

corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Convolutional 
Filters 0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0	|	1	|	0

0	|	1	|	0

1	|	-4	|	1

=
0 1 0

1 -4 1

0 1 0
∗
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� Convolutions can be represented by a feed forward neural 

network where:

1. Nodes in the input layer are only connected to 
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/ 

backpropagation, not prespecified

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

Convolutional 
Filters

11



� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be 
applied “everywhere” e.g. a padding of 1 with a 3x3 filter 
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0 1 2 2 1 0
1 0 -1 -1 0 1
2 -2 -5 -5 -2 2
1 2 -2 -1 3 1
1 -1 0 -5 0 1
0 2 -1 0 2 0
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2 -2

� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1

1 -2
∗

-2 -2 1
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large 

portions of the image, so taking strides with the 
convolution tends not to miss out on too much

Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0 1 1

1 2 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0
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Downsampling: 
Pooling

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

𝑚𝑎𝑥
00 0

� Combine multiple adjacent nodes into a single node
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0

2 3
𝑚𝑎𝑥
pooling

Downsampling: 
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs
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Neuroscience 
Origins

20

David Hubel & Torsten Wiesel 

(Nobel 1981) 



LeNet (LeCun et al., 1998)
Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 21

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


• Used sigmoid (or logistic) activation functions between layers and mean-pooling, both 

of which are pretty uncommon in modern architectures (we mostly use ReLUs now)
Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• One of the earliest, most famous deep learning models – achieved remarkable 

performance at handwritten digit recognition (< 1% test error rate on MNIST) 
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http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 29

• Channels in hidden layers correspond to different macro-features, which we might 

want to manipulate differently → one filter per channel

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• We can combine these macro-features into a new, interesting, “higher-level” feature 

• But we don’t always need to combine all of them! 
• Different combinations → multiple output channels
• Common architecture: more output channels and smaller outputs in deeper layers
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http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 31

Alright, so what kind of stuff can 
we actually do with this thing?

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation
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Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

33Source: https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

34Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 

� Given an image, predict a single 

label and a bounding box, 

represented as position (𝑥, 𝑦) 
and height/width ℎ,𝑤 .

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257


� Given an image, for each 

object predict a bounding box 
and a label, 𝑙: (𝑥, 𝑦, 𝑤, ℎ, 𝑙)

Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

35Source: https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf 

https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

36Source: https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf 

� Given an image, predict a label 

for every pixel in the image

https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

37Source: https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf 

� Given an image, predict a label 

for every pixel in the image

https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

38Source: https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

� Predict per-pixel labels as in 

semantic segmentation, but 
differentiate between different 
instances of the same label 

e.g., given two people, one 
should be labeled person-1 and 

one should be labeled person-2

https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

39Source: https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

40Source: https://dl.acm.org/doi/pdf/10.1145/3295748 

� Take an image as input, and 
generate a sentence describing 
it as output 

� Dense captioning 
generates one description 

per bounding box

https://dl.acm.org/doi/pdf/10.1145/3295748


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

41Source: https://dl.acm.org/doi/pdf/10.1145/3295748 

� Typical architectures will 
combine a CNN and an RNN-
like language model

https://dl.acm.org/doi/pdf/10.1145/3295748


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation

42Source: https://dl.acm.org/doi/pdf/10.1145/3295748 

https://dl.acm.org/doi/pdf/10.1145/3295748


Common Tasks 
in Computer 
Vision

� Image Classification

� Object Localization

� Object Detection

� Semantic Segmentation

� Instance Segmentation

� Image Captioning

� Image Generation?
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Recall: 
Transformer 
Language 
Model

44

Each layer of a 
Transformer LM 
consists of:
1. causal attention
2. feed-forward neural 

network
3. layer normalization
4. residual connections

Each hidden vector 
looks back at the 
hidden vectors of the 
current and previous 
timesteps in the 
previous layer.

ℎ1 ℎ2 ℎ3 ℎ4

Narwhals are cooler than

…

Transformer layer

Transformer layer

Transformer layer

𝒙1 𝒙2 𝒙3 𝒙4



Recall: 
Transformer 
Language 
Model a.k.a.
Decoder-only 
Transformer

45

ℎ1 ℎ2 ℎ3 ℎ4

Narwhals are cooler than

…

Transformer layer

Transformer layer

Transformer layer

𝒙1 𝒙2 𝒙3 𝒙4

Each layer of a 
Transformer LM 
consists of:
1. causal attention
2. feed-forward neural 

network
3. layer normalization
4. residual connections

Each hidden vector 
looks back at the 
hidden vectors of the 
current and previous 
timesteps in the 
previous layer.



Recall: 
Causal 
Attention

46

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋! = softmax
𝑄𝐾"

𝑑#
+𝑀 𝑉

𝐴$%&# = softmax 𝑆 + 𝑀

Idea: we can effectively delete or “mask” some of these 

arrows by selectively setting attention weights to 0 

𝑀 =

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0



Holy cow, 
that’s a lot of 
new arrows… 
do we 
always 
want/need all 
of those?

No…

47

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋! = 𝐴𝑉 = 	softmax
𝑄𝐾"

𝑑#
𝑉

𝑆 =
𝑄𝐾"

𝑑#

𝑉 = 𝑋𝑾'

𝐾 = 𝑋𝑾#

𝑄 = 𝑋𝑾(



Holy cow, 
that’s a lot of 
new arrows… 
do we 
sometimes 
want/need all 
of those?

Yes!

48

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝐴 = softmax 𝑆

𝑋! = 𝐴𝑉 = 	softmax
𝑄𝐾"

𝑑#
𝑉

𝑆 =
𝑄𝐾"

𝑑#

𝑉 = 𝑋𝑾'

𝐾 = 𝑋𝑾#

𝑄 = 𝑋𝑾(



Encoder-only 
Transformer

49

Each layer of a 
Transformer LM 
consists of:
1. non-causal attention
2. feed-forward neural 

network
3. layer normalization
4. residual connections

Each hidden vector 
looks back at the 
hidden vectors of 
all timesteps in the 
previous layer.

ℎ1 ℎ2 ℎ3 ℎ4

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer



Okay, but how 
would we train 
one of these 
things?

50

ℎ1 ℎ2 ℎ3 ℎ4

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

Each layer of a 
Transformer LM 
consists of:
1. non-causal attention
2. feed-forward neural 

network
3. layer normalization
4. residual connections

Each hidden vector 
looks back at the 
hidden vectors of 
all timesteps in the 
previous layer.



Masked 
Language 
Model
Pre-training

51

ℎ1 ℎ2 ℎ3 ℎ4

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

Narwhals are cooler

Rather than trying to 
predict the next 
token, mask out a 
few tokens in the 
sequence and train 
the model to predict 
the masked tokens.



Masked 
Language 
Model
Pre-training

52

ℎ2

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

MASK are

ℓ) ⋅,⋅

Narwhals

cooler

Rather than trying to 
predict the next 
token, mask out a 
few tokens in the 
sequence and train 
the model to predict 
the masked tokens.

𝐽



Masked 
Language 
Model
Pre-training

53

ℎ2

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

MASK are

ℓ) ⋅,⋅

Narwhals
What is this probability 
distribution?

What is this loss?

cooler

𝐽



Masked 
Language 
Model
Pre-training

54

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

Narwhals MASK MASK

ℓ* ⋅,⋅

are

ℎ3 ℎ4

ℓ+ ⋅,⋅

cooler

Rather than trying to 
predict the next 
token, mask out a 
few tokens in the 
sequence and train 
the model to predict 
the masked tokens.

This kind of 
pre-training was 
popularized by the 
BERT language model 

𝐽



Masked 
Language 
Model
Pre-training

55

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

Narwhals MASK MASK

ℓ* ⋅,⋅

𝐽

are

ℎ3 ℎ4

ℓ+ ⋅,⋅

cooler

Rather than trying to 
predict the next 
token, mask out a 
few tokens in the 
sequence and train 
the model to predict 
the masked tokens.

This kind of 
pre-training was 
popularized by the 
BERT language model 



Supervised 
Fine-tuning

56

…

𝒙1 𝒙2 𝒙3 𝒙4

Transformer layer

Transformer layer

Transformer layer

Narwhals

𝐽,"

ℓ," ⋅,⋅

𝑦∗ =	REAL

Prepend a special 
class token and fine-
tune the (pre-trained) 
model to predict the 
label for each 
sequence

This model is not 
generative but has 
been shown to be a 
highly effective 
discriminator on a 
variety of tasks

are coolerCLS

ℎ1



Vision 
Transformer 
(ViT)

57

� Instead of words as input, the inputs are 𝑃×𝑃 pixel patches

� Each patch is embedded linearly into a vector of size 1024 

� Uses 1D positional embeddings

� Pre-trained on a large, supervised dataset (e.g., ImageNet 
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Vision 
Transformer 
(ViT)

58

� Instead of words as input, the inputs are 𝑃×𝑃 pixel patches

� Each patch is embedded linearly into a vector of size 1024 

� Uses 1D positional embeddings

� Can be fine-tuned by learning a new classification head on 
some (small) target dataset (e.g., CIFAR-100)

MLP 
head

Class
Narwhal
Axolotl
Parrot

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


How can a ViT 
learn 2D 
positional 
information 
from a 1D 
positional 
embedding?

59

� Instead of words as input, the inputs are 𝑃×𝑃 pixel patches

� Each patch is embedded linearly into a vector of size 1024 

� Uses 1D positional embeddings

� Can be fine-tuned by learning a new classification head on 
some (small) target dataset (e.g., CIFAR-100)

MLP 
head

Class
Narwhal
Axolotl
Parrot

Source: https://arxiv.org/pdf/2010.11929 

https://arxiv.org/pdf/2010.11929


Language 
Modelling: 
Timeline

60

2000

n-grams

2010

RNN LMs

2017

Transformer
LMs

2018

ELMO
BERT
GPT

2019

GPT-2
RoBERTa

2020

GPT-3

2021

InstructGPT
LaMDA

2022

Palm
ChatGPT
BLOOM

2023

Llama
GPT-4
Falcon
Mistral



Language 
Modelling: 
Timeline
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2000

n-grams

2010

RNN LMs

2017

Transformer
LMs

2018

ELMO
BERT
GPT

2019

GPT-2
RoBERTa

2020

GPT-3

2021

InstructGPT
LaMDA

2022

Palm
ChatGPT
BLOOM

2023

Llama
GPT-4
Falcon
Mistral



Language 
Modelling: 
Timeline

62

1998

LeNet

2009

ImageNet

2012

AlexNet

2013

VAEs

2014

VGG
R-CNN
GANs

2015

Diffusion 
models
ResNet

2017

Transformer

2020

DDPM

2021

ViT
Dall-E
CLIP

2022

Dall-E 2
Imagen
Stable 
diffusion

2023

SDXL
SDXL 
Turbo



Why did 
Transformers 
take so long to 
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Wait, hang on: 
is this even a 
generative 
model? 
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Neuroscience 
Origins
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David Hubel & Torsten Wiesel 

(Nobel 1981) 

John Hopfield (Nobel 2024)
Competition between Hopfield net memories is what 

we use as a softmax for the attention weights!


