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* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Idea: use the first few layers to identify relevant macro-

: features, e.g. ed
Convolutional SATeEs, ©.8., CE8ES

Neura| * Insight: for spatially-structured inputs, many useful

macro-features are shift or location-invariant, e.g., an

Networks

edge in the upper left corner of a picture looks like an

edge in the center

- Strategy: learn a filter for macro-feature detection in a

small window and apply it over the entire image




* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololololo
Filters 1121211
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* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololololo
Filters 1120211 0
0 0 0 1 0
ol2lalal2]0
« |1 41 =
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* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololofolo
Filters 112021 0 -1

0 0 0 1 0

ol2l4lal2]0
« |1 41 =

ol1]/3[3]1]o0
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0x0)+ 0«1+ (O0+x0)+(1*x1)+ (2*—4)
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* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

ololololo]o
Filters ol1l212]1]0 T1Ts 0l-1/-1]0

ol2lala]2]0 215052
« 1 -4 1| =

ol1]/3]3l1]0 221113
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Operation Kernel w Image result g(x,y)

0 0 O
Identity 0 1 0
0

Convolutional

Filters B [2 . ‘i]

Source: https://en.wikipedia.org/wiki/Kernel (image processing)



https://en.wikipedia.org/wiki/Kernel_(image_processing)

Operation Kernel w Image result g(x,y)

0 0 O
Identity 0 1 O
0 0 O
0O -1 O
M O re Sharpen -1 5 -1
. 0O -1 0
Filters
Box blur 1 L
= )
(normalized) 9
1 1 1

Source: https://en.wikipedia.org/wiki/Kernel (image processing)
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Convolutional

Filters

* Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

e Ve
0| t{2f2 1|0 Li-4ft, o1} 0
0(2{4(4(2]|0 i @@@ _ -2|-5|-5]-2
1{3(3]|1]0 2 1-2]-1]3
112(311]0 0[1]9 -1101-5]10
0[1|1|0]|0
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* Convolutions can be represented by a feed forward neural

network where:

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

Convolutional

Filters

- Many fewer weights than a fully connected layer!

* Convolution weights are learned using gradient descent/

backpropagation, not prespecified H



Convolutional

Filters: Padding

- What if relevant features exist at the border of our image?

- Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter

preserves image size and allows every pixel to be the center

0(0|]0]J0]0]0O0]|O0{O

01]0[({0]10]0[0]0]0 0 2 | 2 0
oO(1(2(2(1]0 110]-1]-1]0 {1

0 0 0O 10

01012141412 ]|]0{0 2 |1-2|-5|-5|-2]2

b S 1/-4|1 =

010111313 ]1]01]0 1 (2 (-2]-1 1

010111213 ]1]01{0 0]1]0 1|-1|0|-5/01|1

01]0)J0]1]1]0]01]0O0 0O(2(-1]10 0

0(0|]0]J0]0O]0O0]O0{0O
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0/{0(0]O0(O0]O0
0|1|2|2|1]0 P
0(2|4(|4(2]|0 0 1
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.- 0/1(3|3(1]0 1 -2
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0{0[(0]O0(O0]O0
0|1|2|2|1]0 211
0(2|4(|4(2]|0 0 1
* =
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* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololofo]olo
ol1l21211]0 T
ol2lalal2]0 0 1
* = [0
Downsampling: S EREARA LY B b
: PIINg: ol1(213]1]0
Stride olol1]1]0]o0




Downsampling:

Stride

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0/{0(0]O0|O0O0]O
1(21211
0 0 21-211
012414210 0 1
* = | 0|11
0/1(3]3([1]0 1 -2
11210
0|(1(2]13(1]0
O|0f(1]11(0]0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Many relevant macro-features will tend to span large
portions of the image, so taking strides with the

convolution tends not to miss out on too much

17



Downsampling:

Pooling

- Combine multiple adjacent nodes into a single node

04-14-1|0

-2—-5:;.5??&‘
max

21-21-1]3

1l0]|-5]0
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- Combine multiple adjacent nodes into a single node

— e
pooling 2|3

0|-1]-1| 0
-21-5(-5(-2 max 010
2 1-21-1|3
-1{01(-5]0

Downsampling:

Poolin
5 - Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Protects the network from (slightly) noisy inputs




Light bar stimulus
projected on screen

Recording from visual cortex

NNSEEEGNn

Neuroscience

David Hubel & Torsten Wiesel
(Nobel 1981)

Origins
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C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps C5: layer
6@14x14 120

84

’

Convolutions Subsampling Convolutions  Subsampling

LeNet (LeCun et al., 1998)

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecung8.pdf

F6: layer OUTPUT

10

‘ Full coanection | Gaussian connections

Full connection

21
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C3: f. maps 16@10x10
INPUT C1. feature maps S4: f. maps 16@5x5

A 6@28x28

S2: f. maps
6@14x14

olrfeblN
NNNNHE
SEEHN
I o L B
NWUWRNE

‘ Fu
Convolutions Subsampling Convolutions  Subsampling FUll connection

One of the earliest, most famous deep learning models — achieved remarkable

performance at handwritten digit recognition (< 1% test error rate on MNIST)

Used sigmoid (or logistic) activation functions between layers and mean-pooling, both

of which are pretty uncommon in modern architectures (we mostly use ReLUs now)

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecung8.pdf 22
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INPUT
32x32

C3: f. maps 16@10x10
S4: f. maps 16@5x5

Co: 12yer Fe: layer OUTPUT

C1: feature maps
6@28x28

S2: f. maps
6@14x14

—— |
’ ‘ Full coanection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Channels in hidden layers correspond to different macro-features, which we might

want to manipulate differently - one filter per channel

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecung8.pdf

29


http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

01 23 45 6 7 8 9 10111213 14 15
C3: f. maps 16@10x10 ST XX T X B <
11X X X X X X X X X X
S2: f. maps 21X X X X X X X X X X
6@14x14 3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X
TABLE 1

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

* We can combine these macro-features into a new, interesting, “higher-level” feature
e But we don’t always need to combine all of them!

* Different combinations = multiple output channels

* Common architecture: more output channels and smaller outputs in deeper layers

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecung8.pdf
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C3: f. maps 16@10x10
S4: f. maps 16@5x5

Co: 12yer Fe: layer OUTPUT
84 10

C1: feature maps
INPUT
39532 6@28x28

S2: f. maps
6@14x14

‘ Full coanection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Alright, so what kind of stuff can

we actually do with this thing?

Source: http://vision.stanford.edu/cs598 springo7/papers/Lecung8.pdf
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Common Tasks

in Computer
Vision

* Image Classification

* Object Localization

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation

32



Common Tasks

in Computer
Vision

- Image Classification

* Object Localization

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation

Source: https://proceedings.neurips.cc/paper/2012/file/c399862d3bgdbb76c8436e924a68c4cb-Paper.pdf
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https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

* Image Classification

- Object Localization

Common Tasks * Object Detection

iIn Com puter * Semantic Segmentation =N
Vi S i O n (b) Strong false positive
* Instance Segmentation . . : :

* Given an image, predict a single

* Image Captioning label and a bounding box,

- Image Generation represented as position (x, y)
and height/width (h, w).

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257 34
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* Given an image, for each

* Image Classification _ , .
object predict a bounding box

* Object Localization and a label, I: (x,y,w, h, )
Common Tasks * Object Detection
in Computer R-CNN: Regions with CNN features

Vision

aeroplane? no.

erson? yes.
¥

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Source: https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature Hierarchies 2014 CVPR_paper.pdf



https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf

Input image Ground-truth

* Image Classification

* Object Localization

Common Tasks * Object Detection

In Computer * Semantic Segmentation

Vision * Instance Segmentation
* Image Captioning * Given an image, predict a label
- Image Generation for every pixel in the image

Source: https://openaccess.thecvf.com/content iccv 201g/papers/Noh Learning Deconvolution Network ICCV 2015 paper.pdf 36
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Common Tasks

iIn Computer
Vision

Input image Ground-truth

* Image Classification
* Object Localization

* Object Detection

- Semantic Segmentation

224x224

Unpooling

.\Enpooling
Unpooling

\ -/-’

~npooling

e

Source: https://openaccess.thecvf.com/content iccv 201g/papers/Noh Learning Deconvolution Network ICCV 2015 paper.pdf
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Common Tasks

in Computer
Vision

* Image Classification

* Object Localization

* Object Detection

: . * Predict per-pixel labels as in
* Semantic Segmentation

semantic segmentation, but

" Instance Segmentation differentiate between different

* Image Captioning instances of the same label
 Image Generation e.g., given two people, one
should be labeled person-1 and

one should be labeled person-2

Source: https://openaccess.thecvf.com/content ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf
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Common Tasks

in Computer
Vision

* Image Classification

* Object Localization

* Object Detection
* Semantic Segmentation

* Instance Segmentation

* Image Captioning

* Image Generation
Figure 1. The Mask R-CNN framework for instance segmentation.

Source: https://openaccess.thecvf.com/content ICCV 2017/papers/He Mask R-CNN ICCV 2017 paper.pdf
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- -

«  —— GroundTruth Caption: A little boy runs away from the
- approaching waves of the ocean.

—— iy

~ Generated Caption: A young boy is running on the beach.

* Image Classification

° O b J e Ct LO ca I 1Za t Telg Ground Truth .Captlon: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses

smiles.

Common Tasks * Object Detection

iIn Com puter * Semantic Segmentation

Vision - Take an image as input, and

* Instance Segmentation generate a sentence describing

- Image Captioning it as output

* Image Generation * Dense captioning

generates one description

per bounding box

Source: https://dl.acm.org/doi/pdf/10.1145/3295748
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Input Image

e

Image Encoder

Common Tasks

in Computer
Vision

Language Encoder

-

/M'nlﬁmodal Space

Image-Language
Encoder

* Instance Segmentation
- Image Captioning

* Image Generation

Source: https://dl.acm.org/doi/pdf/10.1145/3295748

Language Decoder

Generated
Captions

* Typical architectures will

combine a CNN and an RNN-

like language model
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Common Tasks

in Computer
Vision

* Instance Segmentation
- Image Captioning

* Image Generation

Source: https://dl.acm.org/doi/pdf/10.1145/3295748

Table 1. An Overview of the Deep-Learning-Based Approaches for Image Captioning

Reference Image Encoder | Language Model Category
Kiros et al. 2014 [69 AlexNet LBL MS, SL, WS, EDA
Kiros et al. 2014 [70 AlexNet, VGGNet | 1. LSTM MS, SL, WS, EDA
2. SC-NLM
Mao et al. 2014 [95] AlexNet RNN MS, SL, WS
Karpathy et al. 2014 [66] | AlexNet DTR MS, SL, WS, EDA
Mao et al. 2015 [94] AlexNet, VGGNet | RNN MS, SL, WS
Chen et al. 2015 [23] VGGNet RNN VS, SL, WS, EDA
Fang et al. 2015 [33] ‘AlexNet, VGGNet | MELM VS, SL, WS, CA
Jia et al. 2015 [59] VGGNet LSTM VS, SL, WS, EDA
Karpathy et al. 2015 [65] | VGGNet RNN MS, SL, WS, EDA
Vinyals et al. 2015 [142] |GoogLeNet LSTM VS, SL, WS, EDA
Xu et al. 2015 [152] AlexNet LST™M VS, SL, WS, EDA, AB
Jin et al. 2015 [61] VGGNet LSTM VS, SL, WS, EDA, AB
Wu et al. 2016 [151] VGGNet LSTM VS, SL, WS, EDA, AB
ilsano et at. 2016 [129] | VGGNet LSTM VS, SL, WS, EDA, AB
Mathews et al. 2016 [97] GoogLeNet LSTM VS, SL, WS, EDA, SC
Wang et al. 2016 [144] AlexNet, VGGNet | LSTM VS, SL, WS, EDA
Johnson et al. 2016 [62] | VGGNet LSTM VS, SL, DC, EDA
Mao et al. 2016 [92] VGGNet LSTM VS, SL, WS, EDA
Wang et al. 2016 [146] | VGGNet LSTM VS, SL, WS, CA
Tran et al. 2016 [135] ResNet MELM VS, SL, WS, CA
Ma et al. 2016 [90] AlexNet LSTM VS, SL, WS, CA
You et al. 2016 [156] GoogLeNet RNN VS, SL, WS, EDA, SCB
Yang et al. 2016 [153] VGGNet LSTM VS, SL, DC, EDA
Anne et al. 2016 [6] VGGNet LSTM VS, SL, WS, CA, NOB
Yao et al. 2017 [155] GooELeNet LST™M VS, SL, WS, EDA, SCB
Lu et al. 2017 [88] ResNet LSTM VS, SL, WS, EDA, AB
Chen et al. 2017 [21] VGGNet, ResNet | LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [41] ResNet LSTM VS, SL, WS, CA, SCB
Pedersoli et al. 2017 [112] | VGGNet RNN VS, SL, WS, EDA, AB
Ren et al. 2017 [119] VGGNet LSTM VS, ODL, WS, EDA
Park etal. 2017 [111] | ResNet LSTM VS, SL, WS, EDA, AB
Wang et al. 2017 [148] ResNet LSTM VS, SL, WS, EDA
Tavakoli et al. 2017 [134] | VGGNet LST™M VS, SL, WS, EDA, AB
Liu et al. 2017 [84] VGGNet LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [39] ResNet LSTM VS, SL, WS, EDA, SC
Dai et al. 2017 [26] VGGNet LSTM VS, ODL, WS, EDA
Shetty et al. 2017 [126] | GoogLeNet LSTM VS, ODL, WS, EDA
Liu et al. 2017 [85] Inception-V3 LSTM VS, ODL, WS, EDA
Gu et al. 2017 [51] VGGNet 1. Language CNN VS, SL, WS, EDA
2. LSTM
Yao et al. 2017 [154] VGGNet LSTM VS, SL, WS, CA, NOB

(Continued)

42


https://dl.acm.org/doi/pdf/10.1145/3295748

Common Tasks

in Computer
Vision

* Image Classification

* Object Localization

* Object Detection

* Semantic Segmentation
* Instance Segmentation
* Image Captioning

* Image Generation?
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Recall:
Transformer
Language

Model

Narwhals\ are/\{ cooler \ than |

RYRARE
[T
NSNS

LL%H_I\_%II//%»II

[ Transformler layer

ransformeer layer

[ Transformf:r layer

1

ol ?’U%%Hﬁ

%

)L
= g

\ 4

Each layer of a

Transformer LM

consists of:

1. causal attention

2. feed-forward neural
network

3. layer normalization

4. residual connections

Each hidden vector
looks back at the
hidden vectors of the
current and previous
timesteps in the

previous layer. a4



Each layer of a
Transformer LM

Narwhals\ are/\{ cooler ) than | consists of:
\ T T 1. causal attention
RecaII: TI | 2. feed-forward neural
—lb k
Transformer toLr L b network
1 ill_ll_L h, |h|3 |h 3. layer normalization
angudge ’H_I J7|‘ /% 4. residual connections
MOdel a_k.a. ransformer layer }
:
Decoder-only D:[iﬁ /Z: Fach hidden vector
Transformer Jansformeriaver | ] ) back at the
D:g{uﬁl . l,%l ' hidden vectors of the
%T/ns'formir la%er %\—r ] current and previous
Eeasliinas v, \/ﬂ_‘ ¥ timesteps in the

previous layer. 4



ldea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to O
KT

X' = softmax (Q

Jax

+M>V

Recall:

[ T1 A,,,s, = softmax(S + M)

Causal w,
Attention
W, 0 —oo —00 —00
0 0 —00 —00
M=10 0 0 -o
0 0 0 0
W” V4 1) V3 V4

X1 X2 X3 X4
T11) 111 11 COIId




Holy cow,
that’s a lot of
new arrows...
do we

always

want/need all
of those?

No...

V1 V-

v

X1 X2 X3 X4
11 I CLI1] OOt

X' =AV =[softmax (Q

KT

Jax

)

11 A = softmax(S)

_ox”

Jax

S
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Holy cow,
that’s a lot of

new arrows...
do we

sometimes
want/need all
of those?

Yes!

V1 1) v
HEN HEN HEN HEN

X1 X2 X3 X4
T11) 111 11 COIId

X' =AV =[softmax(

QK"

Jax

)

11 A = softmax(S)

_ox”

Jax

S
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Encoder-only

Transformer

Transformer layer

[ J ...

[ Transformer layer

—

[ Transformer layer

Each layer of a

Transformer LM

consists of:

1. non-causal attention

2. feed-forward neural
network

3. layer normalization

4. residual connections

Each hidden vector
looks back at the
hidden vectors of
all timesteps in the
previous layer.

49



Okay, but how
would we train

one of these
things?

Transformer layer

[ J ...

—

Transformer layer

Transformer layer }

Each layer of a

Transformer LM

consists of:

1. non-causal attention

2. feed-forward neural
network

3. layer normalization

4. residual connections

Each hidden vector
looks back at the
hidden vectors of
all timesteps in the
previous layer.
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\ENGle
Language

Transformer layer

\VileJe[<]
Pre-training

[ Transformer layer }

—

[ Transformer layer

2

1 1

[ Narwhals || are | | cooler ]

[ J ...

Rather than trying to
predict the next
token, mask out a
few tokens in the
sequence and train
the model to predict
the masked tokens.
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\WENGle
Language W

Transformer layer

\VileJe[<]
Pre-training

[ Transformer layer }

[ Transformer layer }

2

1 1

[ MASK | are | | cooler ]

Rather than trying to
predict the next
token, mask out a
few tokens in the
sequence and train
the model to predict
the masked tokens.
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\ENGle
Language

\VileJe[<]
Pre-training

—log p(w; = Narwhals | ws, w;)

What is this loss?

| Narwhals |

) What is this probability
‘| I|5 distribution?
Hl!!HT!!!”!“!!!H p(w1|'w2,w3)
[ Transformer layer

[ Transformer layer }

[ Transformer layer }

X1 2

L1 (111 [T 11 L1
N\ N N\

[ MASK | are | | cooler ]
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Rather than trying to

predict the next

[£2() ) [£5(,) ] token, mask out a

re few tokens in the
‘I r ‘I ) sequence and train

Masked T T the model to predict
La nguage LMM_I the masked tokens.
MOdel [ Transformer layer } o

[ Transformer layer } pre-training was

popularized by the

BERT language model

[ Transformer layer }

2
L1 (T1T1 O] 11
N N /

\

[ Narwhals | MASK | MASK |




Rather than trying to

predict the next

[£2() ) [£5(,) ] token, mask out a

re few tokens in the
‘I r ‘I ) sequence and train

Masked T T the model to predict
Language To OO !hf ng !hf [T the masked tokens.
MOdel [ Transformer layer }
Pre-training T s ok g

[ Transformer layer } pre-training was

popularized by the

BERT language model

[ Transformer layer }

2
L1 (T1T1 O] 11
N N /
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Supervised

Fine-tuning

[ Transformer layer }

[ Transformer layer }

[ Transformer layer }

X1 2

L1 (I 1 [1] 1T LTl
A A AN A

[ CLS )| Narwhals |[ are | [ cooler |

Prepend a special
class token and fine-
tune the (pre-trained)
model to predict the
label for each

sequence

This model is not
generative but has
been shown to be a
highly effective
discriminator on a

variety of tasks
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Vision

Transformer
(VIT)

MLP
Head
Transformer Encoder
Patch + Position
Embedding el 4 @ﬁ @ﬁ
* Extra learnable
[class] embedding Linear PI'O]BCthH of Flattened Patches

3 e T ik
| &t
.

* Uses 1D positional embeddings

21K, JFT-300M)

Source: https://arxiv.orq/pdf/2010.11929

Transformer Encoder

=

A

L x

MLP

X

Norm

(D—

Multi-Head
Attention

S

Norm

Embedded
Patches

* Instead of words as input, the inputs are PXP pixel patches

* Each patch is embedded linearly into a vector of size 1024

* Pre-trained on a large, supervised dataset (e.g., ImageNet
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Vision

Transformer
(VIT)

Class
Narwhal
Axolotl
Parrot

MLP
head

Transformer Encoder
Patch + Position
Embedding el ‘ ‘ ‘ @ﬁ @ﬁ
* Extra learnable
[class] embedding Linear PI'O]CCthl’l of Flattened Patches

* Uses 1D positional embeddings

Source: https://arxiv.orq/pdf/2010.11929

Transformer Encoder

]

A

L x

MLP

X

Norm

(D—

Multi-Head
Attention

S

Norm

Embedded
Patches

* Instead of words as input, the inputs are PXP pixel patches

* Each patch is embedded linearly into a vector of size 1024

* Can be fine-tuned by learning a new classification head on
some (small) target dataset (e.g., CIFAR-100)
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How can a VIT
learn 2D
positional

information
froma 1D
positional
embedding?

Transformer Encoder

Class r A
Narwhal MLP L x
Axolotl head
Parrot MLP
4
Transformer Encoder Norm
Patch + P
it - 6 4 @15 @15 M
Attention
[1 ] “embe dd ng Linear PI'O]BCthH of Flattened Patches . ’ ’
?\ \' | ﬁ%rl - v ” ,, |— , Norm
—Ed Eiﬂ AR
Embedded
Patches

* Instead of words as input, the inputs are P XP pixel patches
* Each patch is embedded linearly into a vector of size 1024
- Uses 1D positional embeddings

* Can be fine-tuned by learning a new classification head on
some (small) target dataset (e.g., CIFAR-100)

Source: https://arxiv.org/pdf/2010.11929 59
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VGG ViT SDXL

R-CNN Dall-E SDXL
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LeNet AlexNet GANs
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ResNet Stable
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AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

W h d . d Alexey Dosovitskiy*T, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
y I Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*:'
*equal technical contribution, Tequal advising

Transformers
Google Research, Brain Team
ta ke SO |O ng to {adosovitskiy, neilhoulsby}@google.com

ga | n t ra Ct I O n I n When trained on mid-sized datasets such as ImageNet without strong regularization, these mod-
els yield modest accuracies of a few percentage points below ResNets of comparable size. This

seemingly discouraging outcome may be expected: Transformers lack some of the inductive biases

CO I I l p U te r inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well

when trained on insufficient amounts of data.

VI S I O n ? However, the picture changes if the models are trained on larger datasets (14M-300M images). We
find that * Our Vision Transformer (ViT) attains excellent
results when pre-trained at sufficient scale and transferred to tasks with fewer datapoints. When

pre-trained on the public ImageNet-21k dataset or the in-house JFT-300M dataset, ViT approaches
or beats state of the art on multiple image recognition benchmarks. In particular, the best model

reaches the accuracy of 88.55% on ImageNet, 90.72% on ImageNet-ReaL, 94.55% on CIFAR-100,
and 77.63% on the VTAB suite of 19 tasks.

Source: https://arxiv.orq/pdf/2010.11929
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Why did
Transformers
take so long to

gain traction in
computer
vision?

Source: https://arxiv.orq/pdf/2010.11929
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ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Figure 3: Transfer to ImageNet. @ While
large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.
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Wait, hang on:
is this even a

EIEENE
model?

Source: https://arxiv.orq/pdf/2010.11929
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Figure 3: Transfer to ImageNet. @ While
large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.
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Light bar stimulus
projected on screen

Recording from visual cortex

NNSEEEGn

Neuroscience

e &
% |

) T
"

s

| |
= —

O L
o
<.}
aQ
L
c
S
L
Qo‘
_|
o
)
(2]
—+
o)
5
=
wn
M

=
3
z
z

Origins

_ exp(Bt - (ki, M(3)))
aexp(Bt - (kt, Mi(5)))
\

competition between memories

B¢ = coupling strength
ki = output from the controller (DNN)
(., > = similarity measure e.g. cosine distance

Competition between Hopfield net memories is what

we use as a softmax for the attention weights! John Hopfield (Nobel 2024) 67



