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Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sat, Oct 4
– Due: Thu, Oct 23 at 11:59pm

• Quiz 4
– In-class, Mon, Oct 27
– lectures 12 (only the text-to-image topics) – 15 

• Homework 4: Multimodal Foundation Models
– Out: Thu, Oct 23
– Due: Mon, Nov 3 at 11:59pm
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CONDITIONAL IMAGE GENERATION
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Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation
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brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)



Image Editing
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Figure from Saharia et al. (2022)

A variety of tasks involve 
automatic editing of an 
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores 

color to a greyscale image
• Uncropping creates a 

photo-realistic 
reconstruction of a 
missing side of an image



Editing Images with Text

prompt-to-
prompt can edit 
one generated 
image simply by 
adjusting the 
prompt

7

down-weight existing 
descriptor in the prompt

swap one word for another

phrase insertion for style 
change

phrase insertion for content 
change



LATENT DIFFUSION MODEL (LDM)
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Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel 

space
• yet, training typically takes hundreds of GPU 

days 
– 150 – 1000 V100 days [Guided Diffusion] 

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen] 

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided 
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder 

model) that learns an efficient latent space 
that is perceptually equivalent to the data 
space

• keeping the autoencoder fixed, train a 
diffusion model on the latent 
representations of real images z0 = 
encoder(x)
– forward model: latent representation z0 à noise 

zT

– reverse model: noise zT à latent representation 
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent 
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in 

latent space
9
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Latent Diffusion Model (LDM)
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LDM: Autoencoder
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LDM: Autoencoder
• The autoencoder is chosen so that it can project 

high dimensional images (e.g. 1024x1024) down to 
low dimensional latent space and faithfully project 
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a 

Gaussian)
2. a VQGAN (performs vector quantization in the decoder; 

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw 
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all 
subsequent LDM training
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LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion 

model
• The goal is to build up good representations of 

the text prompts such that they inform the latent 
diffusion process
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LDM: with DDPM
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LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder



LDM: with DDPM
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Forward Process:

qφ(z1:T ) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T ) = pθ(zT )
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT ) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT ) ∼ N (0, I), just like pθ(xT ).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do 
we define the 

mean to condition 
on the prompt 

representation?



Properties of forward and exact reverse processes
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Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…



Parameterizing the learned reverse process
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Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…



LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))
prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously 



LDM: Learning the Diffusion Model + LLM
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Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:



Latent Diffusion Model (LDM)
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CROSS-ATTENTION
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
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Wv
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Cross Attention
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q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}
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Cross Attention
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Cross Attention
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q1 q2 q3 q4 Q = YWq ∈ R
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Example: Cross Attention for Translation
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estoy llegando tarde I am running late

for translation:
• m is the number of 

tokens in the source 
language

• n is the number of tokens 
in the target language

• the attention weights for 
a target word define a 
probability distribution 
over the source words



LDM: Cross-Attention
Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt
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LDM: Cross-Attention
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Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt



LDM: Cross-Attention
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Cross-Attention in LDM:
• the query matrix is built 

from a layer of UNet
• the key/value matrices 

are built from the text-
encoder representation 
of the prompt

attention
weights

The actual attention and 
cross-attention blocks are 

multi-head

for LDM:
• m is the number of 

tokens in the text 
prompt

• n is the number of 
dimensions in the latent 
space (if we have 
compression)

• n would be the number 
of pixels in the image (if 
we had no compression)

• the attention weights for 
a (latent) pixel define a 
probability distribution 
over the prompt tokens



LDM: Cross-Attention in Noise Model
• The cross-attention is placed within 

a larger Transformer layer
• The cross-attention modifies the keys and 

values to be the prompt representation
• The queries are the current layer of UNet

40

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752 



Latent Diffusion Model (LDM)
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LDM Results
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Figure from http://arxiv.org/abs/2112.10752 



LDM Results
• The result models obtain 

very high quality FID / IS 
scores with many fewer 
parameters than 
competing models

• The models are much 
more efficient than 
vanilla diffusion models 
because the most 
computationally intensive 
step happens in low 
dimensional latent space, 
instead of high 
dimensional pixel space

43
Figure from http://arxiv.org/abs/2112.10752 



CLASSIFIER-FREE GUIDANCE
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Classifier-free Guidance
• Diffusion models (unlike GANs) 

are great at generating diverse 
samples

• But when diffusion is 
conditioned on some input 
(text, label, etc.) that diversity 
may cause it to stray away 
from the prompt

• Classifier-free guidance helps 
diffusion to adhere to the 
prompt, yielding higher quality 
images

45

Motivation:

• CFG steers generation to increase:

log p(c | z0) ∝ log p(z0 | c)− log p(z0)
where∇z0 log p(c | z0) ∝ ∇z0 log p(z0 | c)−∇z0 log p(z0)

• DeƤne log p(z0) through εθ(zt, t) = εθ(zt, t, ∅)where ∅ is given
anull embeddingandotherwise sharesparameterswithεθ(zt, t, c)

• So we guide the DDPM sampling to high p(c | z0) by:

εθ ← εθ(zt, t, ∅) + w ·∇z0 log p(z0 | c)
∝ εθ(zt, t, ∅) + w · εθ(zt, t, c)

where w > 1 is the scale of the guidance and w = 1 gives
standard sampling

• Larger w⇒ higher p(c | z0), lower diversity.



Classifier-free Guidance
• Diffusion models (unlike GANs) 

are great at generating diverse 
samples

• But when diffusion is 
conditioned on some input 
(text, label, etc.) that diversity 
may cause it to stray away 
from the prompt

• Classifier-free guidance helps 
diffusion to adhere to the 
prompt, yielding higher quality 
images

46

Algorithm 1 Sampling from DDPMwith
ClassiƤer‐free Guidance
1: w = 7.5
2: c = tokenize("a cat with green eyes")
3: c′ = tokenize("")
4: zT ∼ N (0, I)
5: for t ∈ {T, . . . , 1} do
6: εθ ← (1 + w)εθ(zt, t, c)− wεθ(zt, t, c′)
7: ε ∼ N (0, I)
8: ẑ0 ←

(

zt −
√
1− ᾱtεθ

)

/
√
ᾱt

9: µ̂t ← α
(0)
t ẑ0 + α

(t)
t zt

10: zt−1 ← µ̂t + σ2
t ε

11: return x0



Classifier-free Guidance
• Increasing guidance scale yields samples that more closely adhere to the class label
• Guidance scale w increases from the left block of samples to the right block of samples

48
Figure from https://arxiv.org/pdf/2207.12598 

w=0.0 w=3.0



Classifier-free Guidance
• Increasing guidance scale yields samples that more closely adhere to the class label
• Guidance scale w increases from the left block of samples to the right block of samples

49
Figure from https://arxiv.org/pdf/2207.12598 

w=0.0 w=3.0



DIFFUSION WITH TRANSFORMERS
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Diffusion Transformer (DiT)

2015
•UNet introduced 

for medical image 
segmentation

2016-2018
•Numerous UNet

variants used to 
good effect

•pixel-level 
autoregressive 
models

•conditional GANs  
•Pixel-CNN++ set 

the standard 
variant

2020
•UNet used by Ho 

et al. for DDPM to 
good effect

2021
•Dhariwal & Nichol 

include 
conditional 
information via 
Transformer block

2022-2023
•Everyone 

continues using 
UNet for diffusion 
models because it 
seems to work 
well

May 2023
•Diffusion 

Transformer 
shows we don't 
actually need 
UNet

51
Figure from https://arxiv.org/pdf/2212.09748 



Latent Diffusion Model (LDM)
with UNet backbone
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Latent Diffusion Model (LDM)
with Diffusion Transformer backbone

53

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…
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DiT figure from https://arxiv.org/pdf/2212.09748 



Vision Transformer (ViT)
Model:
• model is almost identical to BERT
• instead of words as input the 

inputs are PxP pixel image 
patches, P ∈ {14, 16, 32} (no 
overlap)

• each patch is embedded linearly 
into a vector of size 1024 

• 1D positional embeddings

Training:
• for pre-training, optimize for 

image classification on large 
supervised dataset (e.g. 
ImageNet 21K, JFT-300M)—same 
setup as a CNN

• for fine-tuning, learn a new 
classification head on a small 
dataset (e.g. CIFAR-100)

55

Recall…



Diffusion Transformer (DiT)
• DiT backbone is essentially a 

Vision Transformer (ViT) with 
some tweaks

• Input is a noisy latent, a 
timestep, and a label (or other 
conditional information)

• Output is a mean and covariance 
output, each of fixed size

• After a final layer norm, a linear 
layer is used to convert from a 
sequence of T token 
embeddings to fixed size output

56
Figure from https://arxiv.org/pdf/2212.09748 
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Adaptive LayerNorm
• Within the DiT Block, the 

interesting part is how we 
condition on the label 

• Original DiT paper tries out 
various approaches:
– In-context conditioning
– Cross-attention block
– Adaptive layer norm (adaLN) 

block
– Adaptive layer norm with zero 

initialization strategy (adaLN-
Zero)

• adaLN-Zero is the best approach 
empirically
– key insight: learn an MLP that 

outputs the scale and shift 
parameters for LayerNorm and 
residual connections

57
Figure from https://arxiv.org/pdf/2212.09748 
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GFLOPS and FID
GFLOPS
Definition: GFLOPS are a 
hardware-independent measure 
of the computation cost of a 
model
• A FLOP is one floating-point 

operation (like a single 
addition, multiplication, etc. on 
real numbers).

• 1 GFLOP = 10⁹ FLOPs.
• GFLOPs measure how much 

computation a model requires 
for one forward pass (or 
sometimes per image/sample)

FID
Definition: Fréchet Inception Distance: a standard metric 
used to evaluate the quality of generated images
• To compute:

1. Pass both real and generated images through a pretrained 
Inception-v3 network.

2. Collect the activations (features) from a mid-level layer (often 
the pool3 layer)

3. Model these feature sets as multivariate Gaussians with 
means 𝜇! , 𝜇"and covariances 𝛴! , 𝛴"

4. Compute the Fréchet distance between the two Gaussians:

• Interpretation:
– Lower FID → generated images are more similar to real images 

(better quality and diversity).
– Higher FID → larger gap between generated and real 

distributions (worse quality).
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Diffusion Transformer
• Decreasing the patch size of a DiT 

increases the GFLOPs even 
though it does not increase the 
number of parameters

• So DiT studies the relationship 
between FID performance and 
GFLOPs (rather than FID and # of 
param.s)

• Question: How much does the 
total computation increase if we 
drop the patch size from p=4 to 
p=2?

• Of course, we can also increase 
the number of model parameters 
just by increasing the size of the 
Transformer
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Results: Diffusion Transformer
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Results: Diffusion Transformer
Scaling results:
1. GFLOPs and FID are strongly 

correlated (i.e. if we increase 
GFLOPs then we get better FID 
score)

2. Larger DiT models are more 
compute efficient than smaller DiT 
models during training (i.e., if we 
use the same amount of training 
computation for both, the larger 
DiT does better at test time than 
the smaller DiT)

3. The DiT beats a latent diffusion 
model (LDM) with a UNet backbone 
even at the same amount of 
compute:
– LDM-4 (103.6 Gflops)
– DiT-XL/2 (118.6 Gflops)
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PROMPT-TO-PROMPT
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Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing 
with text: change part of the prompt,  
keep the random seed fixed (e.g. the 
noise at the start of diffusion), and 
then run diffusion sampler 

– Problem: the entire structure of the 
image may change dramatically

– Doesn’t feel like “editing” at all, more 
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based 

image editing typically require an 
image mask as well

– the mask specifies which part of the 
image should remain unchanged

– then the text prompt informs how 
the unmasked part should be 
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

67
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818 
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here the composition 
remains consistent 

across images

the composition is 
inconsistent in various 
ways: the background, 

whole cake vs. single slice, 
how much cake is in view



Prompt-to-Prompt
Prompt-to-Prompt:
• Goal: edit images with text only and do not 

require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original prompt and 

store the attention weights and cross-
attention weights (from the pixels back to the 
text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention weights 
from the previous run

– exactly how to copy in the attention weights 
depends on the type of edit

• Inference only: no training is involved! we 
only modify how the samples are drawn from 
the pre-trained latent diffusion model

69
Figure from http://arxiv.org/abs/2208.01626

the composition remains consistent across images, 
but with only the text for guidance (no mask)



Latent Diffusion Model (LDM)
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Prompt-to-prompt: (1) assumes we have a pretrained latent diffusion model
and (2) does no parameter estimation



LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously Prompt-to-prompt modifies the cross attention in LDM, which looks at both the 

text encoding and the (latent) representation of the image



Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do 

not require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original 

prompt and store the attention weights 
and cross-attention weights (from the 
pixels back to the text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention 
weights from the previous run

– exactly how to copy in the attention 
weights depends on the type of edit

• Inference only: no training is involved! 
we only modify how the samples are 
drawn from the pre-trained latent 
diffusion model
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Prompt-to-Prompt: 
Editing Cross Attention

1. encode the original 
prompt y

2. run diffusion on y and 
obtain attention weights 
AT-1,…,A1

3. encode the modified 
prompt y*

4. run diffusion again 
a) reuse the noise zT from the 

original run
b) use the attention weights 

from the original run until 
timestep 𝜏
AT-1,…,At

c) then switch to using 
attention weights from 
this current run
A*t-1,…,A*1 

d) regardless of which 
attention weights, you still 
attend to y*
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ŷ
latent space (or pixel space)

AT-1 AT-2 At At-1 A1y



Prompt-to-Prompt: 
Editing Cross Attention

1. encode the original 
prompt y

2. run diffusion on y and 
obtain attention weights 
AT-1,…,A1

3. encode the modified 
prompt y*

4. run diffusion again 
a) reuse the noise zT from the 

original run
b) use the attention weights 

from the original run until 
timestep 𝜏
AT-1,…,At

c) then switch to using 
attention weights from 
this current run
A*t-1,…,A*1 

d) regardless of which 
attention weights, you still 
attend to y*

77

zT-1 zztzt+1…
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Prompt-to-Prompt: 
Editing Cross Attention
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Question:
Why do we use from the original attention 
weights for a while before swapping to the 
new attention weights?

Answer:



Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do 

not require the user to provide a mask
• Key Idea: 

– given pre-trained latent diffusion model
– run diffusion model with original 

prompt and store the attention weights 
and cross-attention weights (from the 
pixels back to the text) 

– re-run diffusion with edited prompt, but 
(carefully) copy in the cross-attention 
weights from the previous run

– exactly how to copy in the attention 
weights depends on the type of edit

• Inference only: no training is involved! 
we only modify how the samples are 
drawn from the pre-trained latent 
diffusion model
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Algorithm 1 Prompt‐to‐Prompt image editing
1: Input: A source prompt y, a target prompt y∗, and a random seed s.
2: Output: A source image xsrc and an edited image xdst.
3: zT ∼ N (0, I) a unit Gaussian random variable with random seed s;
4: z∗

T
← z′

T
;

5: for t = T, T − 1, . . . , 1 do
6: zt−1,At ← DM(zt, y, t, s);
7: A∗

t
← DM(z∗

t
, y∗, t, s);

8: Ât ← Edit(At,A∗

t
, t);

9: z∗
t−1
← DM(z∗

t
, y∗, t, s, t){A← Ât};

10: return (z0, z∗0)

Edit(At,A∗

t
, t) :=

{

A∗

t
if t < τ

At otherwise.



new A*

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length 

encoder

• e.g. length = 77, if we use CLIP 
encoder

• orange cat sitting <PAD> <PAD> 
…<PAD>

– However, the words might not align 
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for 

“orange” to both “big” and “tabby” 
in the new attention weights 82
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CLIP (the text encoder for Prompt to Prompt)

83
Figure from Radford et al. (2021) 
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Prompt-to-Prompt Results
• word/phrase cross-attention swapping automatically identifies the regions of the image that 

need to remain constant and those that should be adapted
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Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt 
Results

• varying the moment of the 
attention swap to A* allows us 
to see the effect of our cross-
attention manipulation
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Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt Results
• So far we’ve 

focused on 
swapping one 
word/phrase for 
another

• Prompt-to-prompt 
supports different 
types of edits

• Different types of 
edits are achieved 
through different 
manipulations of 
cross-attention 
weights
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phrase insertion for style 
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phrase insertion for content 
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