
Latent Diffusion Model
+ Diffusion Transformer

+ Prompt to Prompt

1

10-423/10-623/10-723 Generative AI

Matt Gormley & Aran Nayebi
Lecture 14

Oct. 20, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sat, Oct 4
– Due: Thu, Oct 23 at 11:59pm

• Quiz 4
– In-class, Mon, Oct 27
– lectures 12 (only the text-to-image topics) – 15

• Homework 4: Multimodal Foundation Models
– Out: Thu, Oct 23
– Due: Mon, Nov 3 at 11:59pm

3

CONDITIONAL IMAGE GENERATION

4

Image Generation
• Class-conditional generation
• Super resolution
• Image Editing
• Style transfer
• Text-to-image (TTI) generation

5

sea anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023)

Image Editing

6
Figure from Saharia et al. (2022)

A variety of tasks involve
automatic editing of an
image:
• Inpainting fills in the (pre-

specified) missing pixels
• Colorization restores

color to a greyscale image
• Uncropping creates a

photo-realistic
reconstruction of a
missing side of an image

Editing Images with Text

prompt-to-
prompt can edit
one generated
image simply by
adjusting the
prompt

7

down-weight existing
descriptor in the prompt

swap one word for another

phrase insertion for style
change

phrase insertion for content
change

LATENT DIFFUSION MODEL (LDM)

8

Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel

space
• yet, training typically takes hundreds of GPU

days
– 150 – 1000 V100 days [Guided Diffusion]

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder

model) that learns an efficient latent space
that is perceptually equivalent to the data
space

• keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z0 =
encoder(x)
– forward model: latent representation z0 à noise

zT

– reverse model: noise zT à latent representation
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in

latent space
9

Latent Diffusion Model 14

Latent Diffusion Model (LDM)

15

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Autoencoder

16

z

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• The autoencoder is chosen so that it can project

high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a

Gaussian)
2. a VQGAN (performs vector quantization in the decoder;

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all
subsequent LDM training

17

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion

model
• The goal is to build up good representations of

the text prompts such that they inform the latent
diffusion process

18

prompt space

LLM

τθ

orange cat

ŷ

y

LDM: with DDPM

19

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: with DDPM

20

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

LDM: with DDPM

21

Forward Process:

qφ(z1:T) = q(z0)
T∏

t=1

qφ(zt | zt−1)

(Learned) Reverse Process:

pθ(z1:T) = pθ(zT)
T∏

t=1

pθ(zt−1 | zt, τθ(y))

q(z0) = data distribution
qφ(zt | zt−1) ∼ N (

√
αtzt−1, (1− αt)I)

pθ(zT) ∼ N (0, I)
pθ(zt−1 | zt, τθ(y)) ∼ N (µθ(zt, t, τθ(y)),Σθ(zt, t))

Noise schedule:

We choose αt to follow a fixed schedule s.t. qφ(xT) ∼ N (0, I), just like pθ(xT).

Herewe let z0 = z, the output of the encoder from our autoencoder

Question: How do
we define the

mean to condition
on the prompt

representation?

Properties of forward and exact reverse processes

22

Property #1:

q(xt | x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
t∏

s=1

αs

⇒ we can sample xt from x0 at any timestep t

efÏciently in closed form

⇒ xt =
√
ᾱtx0 + (1− ᾱt)εwhere ε ∼ N (0, I)

Property #2: Estimating q(xt−1 | xt) is intractable
because of its dependence on q(x0). However,
conditioning on x0 we can efÏciently work with:

q(xt−1 | xt, x0) = N (µ̃q(xt, x0),σ
2
t I)

where µ̃q(xt, x0) =

√
ᾱt(1− αt)

1− ᾱt

x0 +

√
αt(1− ᾱt)

1− ᾱt

xt

= α
(0)
t x0 + α

(t)
t xt

σ
2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt

Property #3: Combining the two previous prop‐
erties, we can obtain a different parameteriza‐
tion of µ̃q which has been shown empirically to
help in learning pθ.

Rearranging xt =
√

ᾱtx0 + (1 − ᾱt)ε we have
that:

x0 = (x0 + (1− ᾱt)ε) /
√

ᾱt

Substituting this definition of x0 into property
#2’s definition of µ̃q gives:

µ̃q(xt, x0) = α
(0)
t x0 + α

(t)
t xt

= α
(0)
t

(

(x0 + (1− ᾱt)ε) /
√

ᾱt

)

+ α
(t)
t xt

=
1

√

αt

(

xt −
(1− αt)
√

1− ᾱt

ε

)

Recall…

Parameterizing the learned reverse process

23

Recall: pθ(xt−1 | xt) ∼ N (µθ(xt, t),Σθ(xt, t))

Laterwewill showthatgivena train‐
ing sample x0, we want

pθ(xt−1 | xt)

to be as close as possible to

q(xt−1 | xt, x0)

Intuitively, thismakes sense: if the
learned reverseprocess is supposed
to subtract away the noise, then
wheneverwe’reworkingwith a spe‐
cific x0 it should subtract it away
exactly as exact reverseprocesswould
have.

Idea #1: Rather than learn Σθ(xt, t) just use what we
knowabout q(xt−1 | xt, x0) ∼ N (µ̃q(xt, x0),σ

2
t I):

Σθ(xt, t) = σ2
t I

Idea #2: Choose µθ based on q(xt−1 | xt, x0), i.e. we
want µθ(xt, t) to be close to µ̃q(xt, x0). Here are
three ways we could parameterize this:

Option C: Learnanetwork that approximates the
ε that gave rise to xt from x0 in the forward
process from xt and t:

µθ(xt, t) = α
(0)
t x(0)

θ (xt, t) + α
(t)
t xt

where x(0)
θ (xt, t) = (x0 + (1− ᾱt)εθ(xt, t)) /

√
ᾱt

where εθ(xt, t) = UNetθ(xt, t)

Recall…

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))
prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously

LDM: Learning the Diffusion Model + LLM

26

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T)
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:

Latent Diffusion Model (LDM)

27

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

CROSS-ATTENTION

28

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

29

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

values

keys

queries

scores

attention weights

Cross Attention

30

q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

vj = WT
v xj , ∀j ∈ {1, . . . ,m}

st,j = kT
j qt/

√
d, ∀j, t

kj = WT
k xj , ∀j ∈ {1, . . . ,m}

Wv

values

keys

queries

scores

attention weightsat = softmax(st), ∀t

y′

t =

m∑

j=1

at,jvj , ∀t

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3

x1 x2 x3

y’4

Cross Attention

34

q1 q2 q3 q4 qt = WT
q yt, ∀t ∈ {1, . . . , n}

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

vj = WT
v xj , ∀j ∈ {1, . . . ,m}

st,j = kT
j qt/

√
d, ∀j, t

kj = WT
k xj , ∀j ∈ {1, . . . ,m}

Wv

values

keys

queries

scores

attention weightsat = softmax(st), ∀t

y′

t =

m∑

j=1

at,jvj , ∀t

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

Cross Attention

35

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

values

keys

queries

scores

attention weightsA = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

Example: Cross Attention for Translation

36

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

values

keys

queries

scores

attention weightsA = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

estoy llegando tarde I am running late

for translation:
• m is the number of

tokens in the source
language

• n is the number of tokens
in the target language

• the attention weights for
a target word define a
probability distribution
over the source words

LDM: Cross-Attention
Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

37

q1 q2 q3 q4 Q = YWq ∈ R
n×d

v1 v2 v3

softmax

k1 k2 k3

y1 y2 y3 y4

Wk

Wq

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

Wv

A = softmax(S)

Y = AV = softmax(QKT /
√

d)V

s2 s3 s4

x1 x2 x3

y’4

s1

a2 a3 a4a1

y’3y’ 2y’1

big orange cat

LDM: Cross-Attention

38

q1 q2 q3 q4

Q = YWq ∈ R
n×d

y1 y2 y3 y4

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

(attention weights)A = softmax(S)

Y = AV = softmax(QKT /
√

d)Vy’4

a2 a3 a4a1

y’3y’ 2y’1

v1

v2

v3

k1

k2

k3

x1

x2

x3

b
i
g

o
r
a
n
g
e

c
a
t

Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

LDM: Cross-Attention

39

q1 q2 q3 q4

Q = YWq ∈ R
n×d

y1 y2 y3 y4

V = XWv ∈ R
m×d

S = QKT /
√
d ∈ R

n×m

K = XWk ∈ R
m×d

(attention weights)A = softmax(S)

Y = AV = softmax(QKT /
√

d)Vy’4

a2 a3 a4a1

y’3y’ 2y’1

v1

v2

v3

k1

k2

k3

x1

x2

x3

b
i
g

o
r
a
n
g
e

c
a
t

Cross-Attention in LDM:
• the query matrix is built

from a layer of UNet
• the key/value matrices

are built from the text-
encoder representation
of the prompt

attention
weights

The actual attention and
cross-attention blocks are

multi-head

for LDM:
• m is the number of

tokens in the text
prompt

• n is the number of
dimensions in the latent
space (if we have
compression)

• n would be the number
of pixels in the image (if
we had no compression)

• the attention weights for
a (latent) pixel define a
probability distribution
over the prompt tokens

LDM: Cross-Attention in Noise Model
• The cross-attention is placed within

a larger Transformer layer
• The cross-attention modifies the keys and

values to be the prompt representation
• The queries are the current layer of UNet

40

Transformer Layer inside UNet

Figure from http://arxiv.org/abs/2112.10752

Latent Diffusion Model (LDM)

41

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM Results

42
Figure from http://arxiv.org/abs/2112.10752

LDM Results
• The result models obtain

very high quality FID / IS
scores with many fewer
parameters than
competing models

• The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high
dimensional pixel space

43
Figure from http://arxiv.org/abs/2112.10752

CLASSIFIER-FREE GUIDANCE

44

Classifier-free Guidance
• Diffusion models (unlike GANs)

are great at generating diverse
samples

• But when diffusion is
conditioned on some input
(text, label, etc.) that diversity
may cause it to stray away
from the prompt

• Classifier-free guidance helps
diffusion to adhere to the
prompt, yielding higher quality
images

45

Motivation:

• CFG steers generation to increase:

log p(c | z0) ∝ log p(z0 | c)− log p(z0)
where∇z0 log p(c | z0) ∝ ∇z0 log p(z0 | c)−∇z0 log p(z0)

• DeƤne log p(z0) through εθ(zt, t) = εθ(zt, t, ∅)where ∅ is given
anull embeddingandotherwise sharesparameterswithεθ(zt, t, c)

• So we guide the DDPM sampling to high p(c | z0) by:

εθ ← εθ(zt, t, ∅) + w ·∇z0 log p(z0 | c)
∝ εθ(zt, t, ∅) + w · εθ(zt, t, c)

where w > 1 is the scale of the guidance and w = 1 gives
standard sampling

• Larger w⇒ higher p(c | z0), lower diversity.

Classifier-free Guidance
• Diffusion models (unlike GANs)

are great at generating diverse
samples

• But when diffusion is
conditioned on some input
(text, label, etc.) that diversity
may cause it to stray away
from the prompt

• Classifier-free guidance helps
diffusion to adhere to the
prompt, yielding higher quality
images

46

Algorithm 1 Sampling from DDPMwith
ClassiƤer‐free Guidance
1: w = 7.5
2: c = tokenize("a cat with green eyes")
3: c′ = tokenize("")
4: zT ∼ N (0, I)
5: for t ∈ {T, . . . , 1} do
6: εθ ← (1 + w)εθ(zt, t, c)− wεθ(zt, t, c′)
7: ε ∼ N (0, I)
8: ẑ0 ←

(

zt −
√
1− ᾱtεθ

)

/
√
ᾱt

9: µ̂t ← α
(0)
t ẑ0 + α

(t)
t zt

10: zt−1 ← µ̂t + σ2
t ε

11: return x0

Classifier-free Guidance
• Increasing guidance scale yields samples that more closely adhere to the class label
• Guidance scale w increases from the left block of samples to the right block of samples

48
Figure from https://arxiv.org/pdf/2207.12598

w=0.0 w=3.0

Classifier-free Guidance
• Increasing guidance scale yields samples that more closely adhere to the class label
• Guidance scale w increases from the left block of samples to the right block of samples

49
Figure from https://arxiv.org/pdf/2207.12598

w=0.0 w=3.0

DIFFUSION WITH TRANSFORMERS

50

Diffusion Transformer (DiT)

2015
•UNet introduced

for medical image
segmentation

2016-2018
•Numerous UNet

variants used to
good effect

•pixel-level
autoregressive
models

•conditional GANs
•Pixel-CNN++ set

the standard
variant

2020
•UNet used by Ho

et al. for DDPM to
good effect

2021
•Dhariwal & Nichol

include
conditional
information via
Transformer block

2022-2023
•Everyone

continues using
UNet for diffusion
models because it
seems to work
well

May 2023
•Diffusion

Transformer
shows we don't
actually need
UNet

51
Figure from https://arxiv.org/pdf/2212.09748

Latent Diffusion Model (LDM)
with UNet backbone

52

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

Latent Diffusion Model (LDM)
with Diffusion Transformer backbone

53

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

latent space

D
iff

us
io

n
Tr

an
sf

or
m

er

DiT figure from https://arxiv.org/pdf/2212.09748

Vision Transformer (ViT)
Model:
• model is almost identical to BERT
• instead of words as input the

inputs are PxP pixel image
patches, P ∈ {14, 16, 32} (no
overlap)

• each patch is embedded linearly
into a vector of size 1024

• 1D positional embeddings

Training:
• for pre-training, optimize for

image classification on large
supervised dataset (e.g.
ImageNet 21K, JFT-300M)—same
setup as a CNN

• for fine-tuning, learn a new
classification head on a small
dataset (e.g. CIFAR-100)

55

Recall…

Diffusion Transformer (DiT)
• DiT backbone is essentially a

Vision Transformer (ViT) with
some tweaks

• Input is a noisy latent, a
timestep, and a label (or other
conditional information)

• Output is a mean and covariance
output, each of fixed size

• After a final layer norm, a linear
layer is used to convert from a
sequence of T token
embeddings to fixed size output

56
Figure from https://arxiv.org/pdf/2212.09748

D
iff

us
io

n
Tr

an
sf

or
m

er

Adaptive LayerNorm
• Within the DiT Block, the

interesting part is how we
condition on the label

• Original DiT paper tries out
various approaches:
– In-context conditioning
– Cross-attention block
– Adaptive layer norm (adaLN)

block
– Adaptive layer norm with zero

initialization strategy (adaLN-
Zero)

• adaLN-Zero is the best approach
empirically
– key insight: learn an MLP that

outputs the scale and shift
parameters for LayerNorm and
residual connections

57
Figure from https://arxiv.org/pdf/2212.09748

D
iff

us
io

n
Tr

an
sf

or
m

er

Adaptive LayerNorm
• Within the DiT Block, the

interesting part is how we
condition on the label

• Original DiT paper tries out
various approaches:
– In-context conditioning
– Cross-attention block
– Adaptive layer norm (adaLN)

block
– Adaptive layer norm with zero

initialization strategy (adaLN-
Zero)

• adaLN-Zero is the best approach
empirically
– key insight: learn an MLP that

outputs the scale and shift
parameters for LayerNorm and
residual connections

58
Figure from https://arxiv.org/pdf/2212.09748

D
iff

us
io

n
Tr

an
sf

or
m

er

GFLOPS and FID
GFLOPS
Definition: GFLOPS are a
hardware-independent measure
of the computation cost of a
model
• A FLOP is one floating-point

operation (like a single
addition, multiplication, etc. on
real numbers).

• 1 GFLOP = 10⁹ FLOPs.
• GFLOPs measure how much

computation a model requires
for one forward pass (or
sometimes per image/sample)

FID
Definition: Fréchet Inception Distance: a standard metric
used to evaluate the quality of generated images
• To compute:

1. Pass both real and generated images through a pretrained
Inception-v3 network.

2. Collect the activations (features) from a mid-level layer (often
the pool3 layer)

3. Model these feature sets as multivariate Gaussians with
means 𝜇! , 𝜇"and covariances 𝛴! , 𝛴"

4. Compute the Fréchet distance between the two Gaussians:

• Interpretation:
– Lower FID → generated images are more similar to real images

(better quality and diversity).
– Higher FID → larger gap between generated and real

distributions (worse quality).

59

Diffusion Transformer
• Decreasing the patch size of a DiT

increases the GFLOPs even
though it does not increase the
number of parameters

• So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

• Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

• Of course, we can also increase
the number of model parameters
just by increasing the size of the
Transformer

60

Results: Diffusion Transformer
• Decreasing the patch size of a DiT

increases the GFLOPs even
though it does not increase the
number of parameters

• So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

• Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

• Of course, we can also increase
the number of model parameters
just by increasing the size of the
Transformer

61

Results: Diffusion Transformer
• Decreasing the patch size of a DiT

increases the GFLOPs even
though it does not increase the
number of parameters

• So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

• Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

• Of course, we can also increase
the number of model parameters
just by increasing the size of the
Transformer

62

Results: Diffusion Transformer
Scaling results:
1. GFLOPs and FID are strongly

correlated (i.e. if we increase
GFLOPs then we get better FID
score)

2. Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

3. The DiT beats a latent diffusion
model (LDM) with a UNet backbone
even at the same amount of
compute:
– LDM-4 (103.6 Gflops)
– DiT-XL/2 (118.6 Gflops)

63

Results: Diffusion Transformer
Scaling results:
1. GFLOPs and FID are strongly

correlated (i.e. if we increase
GFLOPs then we get better FID
score)

2. Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

3. The DiT beats a latent diffusion
model (LDM) with a UNet backbone
even at the same amount of
compute:
– LDM-4 (103.6 Gflops)
– DiT-XL/2 (118.6 Gflops)

64

Results: Diffusion Transformer
Scaling results:
1. GFLOPs and FID are strongly

correlated (i.e. if we increase
GFLOPs then we get better FID
score)

2. Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

3. The DiT beats a latent diffusion
model (LDM) with a UNet
backbone even at the same amount
of compute:
– LDM-4 (103.6 Gflops)
– DiT-XL/2 (118.6 Gflops)

65

PROMPT-TO-PROMPT

66

Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the
noise at the start of diffusion), and
then run diffusion sampler

– Problem: the entire structure of the
image may change dramatically

– Doesn’t feel like “editing” at all, more
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based

image editing typically require an
image mask as well

– the mask specifies which part of the
image should remain unchanged

– then the text prompt informs how
the unmasked part should be
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

67
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818

Background: Image Editing
• Fixing the Random Seed:

– A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the
noise at the start of diffusion), and
then run diffusion sampler

– Problem: the entire structure of the
image may change dramatically

– Doesn’t feel like “editing” at all, more
like generation of unrelated images

• Mask-based Image Editing:
– standard approaches to text-based

image editing typically require an
image mask as well

– the mask specifies which part of the
image should remain unchanged

– then the text prompt informs how
the unmasked part should be
adapted (e.g. by a diffusion model)

– (Example: Blended Diffusion)

68
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818

here the composition
remains consistent

across images

the composition is
inconsistent in various
ways: the background,

whole cake vs. single slice,
how much cake is in view

Prompt-to-Prompt
Prompt-to-Prompt:
• Goal: edit images with text only and do not

require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original prompt and

store the attention weights and cross-
attention weights (from the pixels back to the
text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention weights
from the previous run

– exactly how to copy in the attention weights
depends on the type of edit

• Inference only: no training is involved! we
only modify how the samples are drawn from
the pre-trained latent diffusion model

69
Figure from http://arxiv.org/abs/2208.01626

the composition remains consistent across images,
but with only the text for guidance (no mask)

Latent Diffusion Model (LDM)

70

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

Prompt-to-prompt: (1) assumes we have a pretrained latent diffusion model
and (2) does no parameter estimation

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

µθ(zt, t, τθ(y)) = UNet(zt, t, τθ(y))
prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously Prompt-to-prompt modifies the cross attention in LDM, which looks at both the

text encoding and the (latent) representation of the image

Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do

not require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original

prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

– exactly how to copy in the attention
weights depends on the type of edit

• Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

75
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt:
Editing Cross Attention

1. encode the original
prompt y

2. run diffusion on y and
obtain attention weights
AT-1,…,A1

3. encode the modified
prompt y*

4. run diffusion again
a) reuse the noise zT from the

original run
b) use the attention weights

from the original run until
timestep 𝜏
AT-1,…,At

c) then switch to using
attention weights from
this current run
A*t-1,…,A*1

d) regardless of which
attention weights, you still
attend to y*

76

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space (or pixel space)

AT-1 AT-2 At At-1 A1y

Prompt-to-Prompt:
Editing Cross Attention

1. encode the original
prompt y

2. run diffusion on y and
obtain attention weights
AT-1,…,A1

3. encode the modified
prompt y*

4. run diffusion again
a) reuse the noise zT from the

original run
b) use the attention weights

from the original run until
timestep 𝜏
AT-1,…,At

c) then switch to using
attention weights from
this current run
A*t-1,…,A*1

d) regardless of which
attention weights, you still
attend to y*

77

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space (or pixel space)

LLM

τθ

tabby cat

ŷ∗

y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y

Prompt-to-Prompt:
Editing Cross Attention

78

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space

LLM

τθ

tabby cat
y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y
Decoder

x̃D

pixel space

Decoder

x̃D

5. if running in latent space,
then use decoder to
recover pixel space
representation

ŷ∗

79

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ
latent space

LLM

τθ

tabby cat
y∗

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)

z1…zT

AT-1 AT-2 At At-1 A1

A*
t-1 A*

1AT-1 AT-2 At

y
Decoder

x̃D

pixel space

Decoder

x̃D
ŷ∗

Question:
Why do we use from the original attention
weights for a while before swapping to the
new attention weights?

Answer:

Prompt-to-Prompt: Editing Cross Attention
Prompt-to-Prompt:
• Goal: edit images with text only and do

not require the user to provide a mask
• Key Idea:

– given pre-trained latent diffusion model
– run diffusion model with original

prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

– re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

– exactly how to copy in the attention
weights depends on the type of edit

• Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

81
Figure from http://arxiv.org/abs/2208.01626

Algorithm 1 Prompt‐to‐Prompt image editing
1: Input: A source prompt y, a target prompt y∗, and a random seed s.
2: Output: A source image xsrc and an edited image xdst.
3: zT ∼ N (0, I) a unit Gaussian random variable with random seed s;
4: z∗

T
← z′

T
;

5: for t = T, T − 1, . . . , 1 do
6: zt−1,At ← DM(zt, y, t, s);
7: A∗

t
← DM(z∗

t
, y∗, t, s);

8: Ât ← Edit(At,A∗

t
, t);

9: z∗
t−1
← DM(z∗

t
, y∗, t, s, t){A← Ât};

10: return (z0, z∗0)

Edit(At,A∗

t
, t) :=

{

A∗

t
if t < τ

At otherwise.

new A*

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 82

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

A*
.,2 A*

.,3 A*
.,4A*

.,1

y∗

y
<PAD>

A.,4

CLIP (the text encoder for Prompt to Prompt)

83
Figure from Radford et al. (2021)

edited Â
with same

shape as A*

A.,1 A.,2 A.,3A.,1

original A

Attention Swapping
• Problem: What if At and A*t are not the same shape?
• Solution: Swap in just the appropriate parts!

– The dimension in latent space will always remain constant (e.g. 1024)
– The dimension in text prompt space also remain constant if we use a fixed length

encoder

• e.g. length = 77, if we use CLIP
encoder

• orange cat sitting <PAD> <PAD>
…<PAD>

– However, the words might not align
properly!

• Example:
– we replace “orange” with “big tabby”
– then copy the attention weights for

“orange” to both “big” and “tabby”
in the new attention weights 84

orange cat sitting

big tabby cat sitting

A.,1 A.,2 A.,3

y∗

y
<PAD>

A.,4

Prompt-to-Prompt Results
• word/phrase cross-attention swapping automatically identifies the regions of the image that

need to remain constant and those that should be adapted

96
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt
Results

• varying the moment of the
attention swap to A* allows us
to see the effect of our cross-
attention manipulation

97
Figure from http://arxiv.org/abs/2208.01626

Prompt-to-Prompt Results
• So far we’ve

focused on
swapping one
word/phrase for
another

• Prompt-to-prompt
supports different
types of edits

• Different types of
edits are achieved
through different
manipulations of
cross-attention
weights

98

down-weight existing
descriptor in the prompt

swap one word for another

phrase insertion for style
change

phrase insertion for content
change

Figure from http://arxiv.org/abs/2208.01626

