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Reminders

* Homework 3: Applying and Adapting LLMs
— Out: Sat, Oct 4
— Due: Thu, Oct 23 at 11:59pm
* Quiz 4
— In-class, Mon, Oct 27
— lectures 12 (only the text-to-image topics) - 15

 Homework 4: Multimodal Foundation Models

— Out: Thu, Oct 23
— Due: Mon, Nov 3 at 11:59pm




CONDITIONAL IMAGE GENERATION



Image Generation

“A sunset behind
a mountain range”

* (lass-conditional generation
* Super resolution

* Image Editing '

* Style transfer \ l

* Text-to-image (TTI) generation [ Super J { RE { Style }
resolution transfer

Seéa anemone

brain coral

slug

goldfinch

Figure from Razavi et al. (2019) Figure from Bie et al. (2023) :



Image Editing

A variety of tasks involve

automatic editing of an

image:

* Inpainting fills in the (pre-
specified) missing pixels

* Colorization restores
color to a greyscale image

* Uncropping creates a
photo-realistic
reconstruction of a
missing side of an image

Inpainting

Colorization

Uncropping

Figure from Saharia et al. (2022)



prompt-to-
prompt can edit
one generated
image simply by
adjusting the
prompt

Editing Images with Text

down-weight existing
descriptor in the prompt

“clildren drawing of a castle next to a river.”

phrase insertion for style
change

swap one word for another

Pl N e S 7.
“Photo of a cat riding on a l')(\lcyclc
ar

“a cake with.decorations.”
Jelly bedng

phrase insertion for content
change




LATENT DIFFUSION MODEL (LDM)



Latent Diffusion Model

Motivation:

diffusion models typically operate in pixel
space

yet, training typically takes hundreds of GPU
days

— 150 — 1000 V100 days [Guided Diffusion]
(Dhariwal & Nichol, 2021)

— 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]
(Sharia et al., 2022)

inference is also slow

— 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

— 15 seconds per image

Key Idea:

train an autoencoder (i.e. encoder-decoder
model) that learns an efficient latent space
that is perceptually equivalent to the data
space

keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z, =

encoder(x)
— forward model: l[atent representation z, = noise
Z7
— reverse model: noise z; = latent representation
ZO

to generate an image:
— sample noise z;

— apply reverse diffusion model to obtain a latent
representation z,

— decode the latent representation to an image x

condition on prompt via cross attention in
latent space



Latent Diffusion Model




UNet w/cross

attention

Latent Diffusion Model (LDM)
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LDM: Autoencoder

latent space pixel space




LDM: Autoencoder

* The autoencoderis chosen so that it can project
high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

* The original LDM paper considers two options:

1. a VAE-like model (regularizes the noise towards a
Gaussian)

2. aVQGAN (performs vector quantization in the decoder;
i.e., it uses a discrete codebook)

* This model is trained ahead of time just on raw
images (no text prompts) and then frozen

e The frozen encoder-decoder can be reused for all
subsequent LDM training

latent space

pixel space

17




LDM: the Prompt Model

* The prompt model is just a Transformer LM

* We learn its parameters alongside the diffusion
model

* The goal is to build up good representations of
the text prompts such that they inform the latent
diffusion process




JJ LDM: with DDPM

UNet w/cross
attention
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LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process:
q(zo) = data distribution

Qe (2t | 2t—1) ~ N(Vayzi—1, (1 — ap)l)

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:
T

po(z1.7) = po(zr) | [ po(zi—1 | 26, 70(v)) po(zr) ~ N(0,1)
t=1 po(zt—1 | 2, 79(y)) ~ N(po(ze,t, 70(y)), Xo(2e, 1))



LDM: with DDPM

Noise schedule:

We choose a; to follow a fixed schedule s.t. g4 (x7) ~ N (0, I), just like pg(x7).

Here we let zg = z, the output of the encoder from our autoencoder

Forward Process: QLIEStiOI‘l: How do
q(zo) = data| we define the
mean to condition
Z 7+ ~J N
ToBe | %2-1) Y on the prompt
representation?

T
%ZlT —QZOH Zt’Ztl

(Learned) Reverse Process:

po(zr) = po(ar) [[ po(@1 | 2, 70(1)) po(zr) ~ N0, 1) Q
=1 Po(zi—1 | 26, 7o (y)) ~ N (1o(2¢,t,70(y)), Xo(2¢, 1))



Properties of forward and exact reverse proces

Property #1:
q(x¢ | x0) ~ N (Vauixo, (1 — a)I)

t
where a; = H Qg
s=1

= we can sample x; from x( at any timestep ¢
efficiently in closed form

= x; = /X + (1 — a;)e where € ~ N(0,1)

Property #2: Estimating q(x;_1 | x;) isintractable
because of its dependence on ¢(x(). However,
conditioning on xy we can efficiently work with:

q(x¢—1 | X¢,%0) = N (fig(x¢,X0), 071)

— -
where fio (x1. x0) = \/Ozif( = Oét)XO N \/ozi( = &t)xt
- e - e

(0)

t
= oy "X —|—a§ )xt

o2 (1—a1)(1 — o)
¢ 1— ay

Property #3: Combining the two previous prop-
erties, we can obtain a different parameteriza-
tion of [, which has been shown empirically to
help in learning py.

Rearranging x; = y/ayxg + (1 — a;)e we have
that:

xg = (X0 + (1 — a¢)€) [/

Substituting this definition of xy into property
#2’s definition of 1, gives:

fiq(X¢,X0) = ago)xo + agt)xt

— a{” ((x0 + (1 — @)e) /Var) + oix,




Parameterizing the learned reverse process
Recall: pp(x¢—1 | x¢) ~ N (pg(xt,t), Xo(xt, 1))

Later we will show that given a train-
ing sample xq, we want

pe(Xt—l | Xt)

to be as close as possible to

Q(Xt—l ‘ Xt XO)

Intuitively, this makes sense: if the
learned reverse processis supposed

to subtract away the noise, then
whenever we’re working with a spe-
cific x¢ it should subtract it away
exactly as exact reverse process would
have.

Idea #1: Rather than learn ¥y (x;,t) just use what we

know about ¢(x;_1 | x¢,%xg) ~ N{( ,o21):

EQ(Xt,t) = 0'752]:

Idea #2: Choose g based on g(x;_1 | x¢,Xg), i.e. we

want pg(x¢, t) to be close to fi,(x¢,%o). Here are
three ways we could parameterize this:

Option C: Learnanetworkthat approximatesthe
e that gave rise to x; from xg in the forward
process from x; and ¢:

to(xg,t) = ago)xéo) (x¢,1) + ozit)xt

where x{” (x;, ) = (xo + (1 — a)eg (x4, 1)) /v
where €y(x;,t) = UNetg(xy, t)



LDM: Noise Model
1o (Ztv t, Ty (y)) — f(UNEt(Ztv t, Ty (y)))

AN

NN  The noise model
includes cross
o t [ ]
"‘I”r%i > Nt bt et gggiﬂfamaﬁon attention (
e EEEIL ) to the
representation of
the prompt text

* During training we
optimize both the
parameters of the

=» conv 3x3, RelLU

copy and crop UNet noise model
¥ max pool 2x2
# up-conv 2x2 and the parameters
=» conv 1x1
of the LLM

simultaneously



LDM: Learning the Diffusion Model + LLM

Given a training sample zg, wewant  Objective Function:
po(zi—1 | 2¢,70(y)) Lipy = Eg(a),y,e~N(0,1) [Hf_f()(«f t,mo(y))|5 }

to be as close as possible to

Algorithm 1 Training

Q(Zt—l ‘ Zt,Zo) 1: initialize 6

2: foree {1,...,E}do
for zg,y € Ddo
t ~ Uniform(1,...,7T)

Intuitively, this makes sense: if the
learnedreverse process is supposed 3
to subtract away the noise, then

whenever we’re working with a spe- e ~N(0,1)
Xi < \/O_étXO + 1 — Ol €

cific zg it should subtract it away
exactly as exact reverse process would
have.

Kt(ﬁ) — ||€ — €9<Xt7 t TQ(Y))HQ
60— Vyl,(0)

Y B A




UNet w/cross

attention

Latent Diffusion Model (LDM)
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CROSS-ATTENTION



Scaled Dot-Product Attention

/ _— . .
Xy = A4,5V;

j=1

ay = softmax(sy)

Q\Z 0 515 =k aa/Vdy

_ wl.
k1 2 k3 k4 T
10/ Oy 11 O kj = Wi x;
v1 VZ/ V3 V4 T
T IO OO OO v, = Wi X;
X

X3 X,

2
CrrrJ ey ey tiffd

attention weights

scores
queries
keys

values



Cross Attention

m
’ /
Ys y; = g at v, vt

| L | ;
— 71=1

Y ay A
: ] a; = softmax(s;),Vt attention weights
[ softmax ]
N
Sgp Sgp 54,3 T \/— '
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Wi

Cross Attention

’

Y4

Y y> Y3 Y4
1] 1] 1] 1]

m
/ § :

yt — at,jvj,Vt
J=1

a; = softmax(s;),Vt attention weights
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q+ — Wgyt,Vt c {1, e ,n}
k, = W.x;,Vje{l,...,m}

vi =Wix; Vjiec{l,...,m}
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Wi

Cross Attention
Y = AV = softmax(QK” /Vd)V

Y.
(1]

Y
(1]

VE

Ys4

A = softmax(S)

S = QKT /Vd e RV™
Q — qu c RnXd
I(:::)(Vvk EfHinXd

V = XWU c Rde

attention weights

scores
queries
keys

values



Example: Cross Attention for Translation

for translation:

m is the number of
tokens in the source

language

n is the number of tokens
in the target language

the attention weights for | ./
a target word definea |

probability distribution
over the source words
Wk /I:/’;'::/:;
A AT
=T
_______________________ s 0l
:l k1 k2 ,l,//:,:k;
oD OO [T
w, e ]
v, v, V3 \
I O O
X, X5 X3
(TTT] i ry) il
estoy llegando tarde

Y

Y

[T

-7
-
/-
-

-
-
-~

Y-
(1]

am

Y3
1]

running

Ys4

late

Y = AV = softmax(QK” /Vd)V

A = softmax(S)

S = QKT /Vd e RV™
Q=YW, c R"*

K = XW, ¢ R™*4

V =XW, € R"*¢

attention weights

scores
queries
keys

values



Cross-Attention in LDM:

" the query matrixs buit LDM: Cross-Attention
rom a fayer ot UNet Y = AV = softmax(QK” /Vd)V

* the key/value matrices Y
are built from the text- D;FD
encoder representation
of the prompt A
A A = softmax(S)
/, /’ S,
’I /// .. ’
A~ S — CQI(jﬂ/\/;iGE RNXMm
g
W /,I//’/'?f—ﬂ"‘:_ ——————— — n X d
: AT Om Ol Ol OO Q=YW,eR
ik, k., /0K mXxd
mnnunsgann w, K=XW;eR
w, I A [
v v, Vs ' . mXd
O] O O V=XW, eR
X X, X; Y1 Y2 Y5 Ya

(T11] CCI11 Corr1 [l 11 1] 1]

big orange cat




Cross-Attention in LDM:

the query matrix is built
from a layer of UNet

the key/value matrices
are built from the text-

of the prompt--~~

o | e RN
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encoder representation

LDM: Cross-Attention

1

Y = AV = softmax(QK” /Vd)V

Y y’; Y.,

(T11 [1T1J [

a, j J A = softmax(S) (attention weights)
O O ]

_ nxd
] 0 — Q= YWq cR
/ ﬂ K = ka c Rmxd

q. qs q, L m d
(T [0 CCLO V=XW, e R™*
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Cross-Attention in LDM:

the query matrix is built
from a layer of UNet

the key/value matrices
are built from the text-
encoder representatiori
of the prompt--"~

X1 V1

iShue;

\'P

abuevIio

O

e

for LDM:

m is the number of
tokens in the text
prompt

n is the number of
dimensions in the latent
space (if we have
compression)

n would be the number
of pixels in the image (if
we had no compression)
the attention weights for
a (latent) pixel define a
probability distribution
over the prompt tokens

LDM: Cross-Attention|.
Yy’ Y y y Y=AV
L, oo oo |3||| T X
R A
> O 0 0 O] :
attention
> [ O . O S = QK'|+
weights
Q=YW
&D [] [] [] /
K=X
q1|:|:]:| c|I2||| |q3||| ?4||| V=X

The actual attention and
cross-attention blocks are
multi-head




LDM: Cross-Attention in Noise Model

* The cross-attention is placed within
a larger Transformer layer

Transformer Layer inside UNet

il'lput Rh XwXc
LayerNorm RhxwXxec
Convlixl th wXd-nyp
Reshape Rhur Xd-n h
SelfAttention RA-wXxd-np
h-wxd-n;
xT { MLP R 0
Rh-w Xd-nyp
CrossAttention
Reshape ]Rh XwXd-n A
Convlixl RAhXwXc

Figure from http://arxiv.org/abs/2112.10752

The cross-attention modifies the keys and
values to be the prompt representation

The queries are the current layer of UNet

Attention(Q, K, V') = softmax (Q\I/{(_IT) -V, with
Q=W pi(z), K=WY  19(y), V=W - 74(
2 Q pi(zt), K - To(Y), v To(y).

Here, p;(z:) € RNV*d: denotes a (flattened) intermediate
representation of the UNet implementing ¢y and IfV‘(}) €
Réxd W) e RI*4- & Wi € R?*9" are learnable pro-

jection matrices [36,97]. See Fig. 3 for a visual depiction.
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UNet w/cross

attention

Latent Diffusion Model (LDM)
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LDM Results

Text-to-Image Synthesis on LAION. 1.45B Model.

‘A street sign that reads ‘A zombie in the 'An image of an animal "‘An illustration of a slightly ‘A painting of a 'A watercolor painting of a ‘A shirt with the inscription:

“Latent Diffusion” ' style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I' love generative models!” '

LATENT
DIFFUSION

Generative

'DIFFUSION
R P Models!

3 €
.".’_ur\ s e

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [7%] database. Samples generated with 200 DDIM steps and = 1.0. We use unconditional guidance [32] with s = 10.0.

42
Figure from http://arxiv.org/abs/2112.10752



The result models obtain
very high quality FID /IS
scores with many fewer
parameters than
competing models

The models are much
more efficient than
vanilla diffusion models
because the most
computationally intensive
step happens in low
dimensional latent space,
instead of high
dimensional pixel space

Figure from http://arxiv.org/abs/2112.10752

LDM Results

Text-Conditional Image Synthesis

Method FID | ISt Nparams

CogView' [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 75M

GLIDE* [5Y] 12.24 E 6B 277 DDIM steps, c.f.g. [12] s = 3
Make-A-Scene™ [20] 11.84 - 4B c.f.g for AR models [V5] s = 5
LDM-KL-8 2331 20.03+033 1.45B 250 DDIM steps
LDM-KL-8-G* 1263 30.29+0.42 1.45B 250 DDIM steps, c.f.g. [12] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the
256 x 256-sized MS-COCO [51] dataset: with 250 DDIM [#4]
steps our model 1s on par with the most recent diffusion [5Y] and
autoregressive [26] methods despite using significantly less pa-
rameters. '/*:Numbers from [109]/ [26]
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CLASSIFIER-FREE GUIDANCE



Classifier-free Guidance

. Diffusion models (unlike GANs) ~ Metivation:
are great at generating diverse
samples log p(c | zg) o logp(zg | ¢) — log p(zo)

e But when diffusion is where V,, logp(c | z9) xx V,, logp(zg | ¢) — V,, logp(zo)
conditioned on some input
(text, label, etc.) that diversity
may cause it to stray away
from the prompt

e CFG steers generation to increase:

e Definelog p(zo) through €y(z;,t) = €p(z4,t, D) where Q) is given
anullembedding and otherwise shares parameters with €y (z;, t,

e So we guide the DDPM sampling to high p(c | z¢) by:

€o < €9(z4,1,0) +w - Vy,, logp(zo | ©)

* C(lassifier-free guidance helps
x €g(z¢,t,0) + w - €9(24,t, )

diffusion to adhere to the

prompt, yielding higher quality
images where w > 1 is the scale of the guidance and w = 1 gives
standard sampling

e Larger w = higher p(c | zg), lower diversity.



Classifier-free Guidance

 Diffusion models (unlike GANs) Algorithm 1 Sampling from DDPM with
are great at generating diverse Classifier-free Guidance
samples 1 w=7.9 | ” | "
. But when diffusion i 2: c,—_tokenl.ze( "a" cat with green eyes")
o . 3: ¢ = tokenize("")
conditioned on some input 4 77 ~ N(0,1)
(text, label, etc.) that diversity s: fort € {T,...,1} do
may cause it to stray away 6: €9+ (1 4+ w)eg(zs,t,¢) — weg(ze, t, )
from the prompt 72 e~N(0,I)
* C(lassifier-free guidance helps 8 2o+ (2 — VI—dueg) Vo

fy — a§0)20 + oz,gt)zt

0

diffusion to adhere to the
prompt, yielding higher quality 10: 71 < [l +O7€
images 11: return xj




Classifier-free Guidance

* Increasing guidance scale yields samples that more closely adhere to the class label
* Guidance scale w increases from the left block of samples to the right block of samples

Figure from https://arxiv.org/pdf/2207.12598
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Classifier-free Guidance

* Increasing guidance scale yields samples that more closely adhere to the class label
* Guidance scale w increases from the left block of samples to the right block of samples

Figure from https://arxiv.org/pdf/2207.12598
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DIFFUSION WITH TRANSFORMERS



2015
¢ UNet introduced

for medical image

segmentation

Diffusion Transformer (DiT)

2016-2018

¢ Numerous UNet
variants used to
good effect

e pixel-level
autoregressive
models

e conditional GANs

o Pixel-CNN++ set
the standard
variant

Figure from https://arxiv.org/pdf/2212.09748

2020

e UNet used by Ho
et al. for DDPM to
good effect

2021
¢ Dhariwal & Nichol

include
conditional
information via
Transformer block

2022-2023

* Everyone

continues using
UNet for diffusion
models because it
seems to work
well

May 2023

e Diffusion
Transformer
shows we don't
actually need
UNet

51



UNet w/cross
attention

Latent Diffusion Model (LDM)
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DiT figure from https://arxiv.org/pdf/2212.09748



Class
Bl (+— Neaq
Transformer Encoder
P"n'fn'iﬁe:m"" - 4 @3] é@ﬁ ‘Eﬁ @I'tJ E’ﬁ‘ @15 Multi-Head
[ 1 1 pivons 2 ng Linear PrOJectlon of Flattened Patches .Atte’ntlon’
V. . .. é ﬁ Norm
ISion ==—> IINII Il
Transformer o
(ViT) * Instead of words as input, the inputs are PXP pixel patches

* Each patch is embedded linearly into a vector of size 1024
* Uses 1D positional embeddings

* Pre-trained on a large, supervised dataset (e.g., ImageNet
21K, JFT-300M)

Source: https://arxiv.org/pdf/2010.11929 57



Diffusion Transformer (DiT)

Diffusion Transformer

DiT backbone is essentially a
Vision Transformer (ViT) with
some tweaks

Input is a noisy latent, a
timestep, and a label (or other
conditional information)

Output is a mean and covariance
output, each of fixed size

After a final [ayer norm, a linear
layer is used to convert from a
sequence of T token
embeddings to fixed size output

Noise )
32x32x4 32x32x4
4 4

Linear and Reshape

Layer Norm /

] /
Nx[ DiT Block ‘

| I \

Patchify = Embed
! |
Noised Timestep t
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32x32x4 Label y

Latent Diffusion Transformer

-

&

Scale
1

Pointwise
Feedforward
I
Scale, Shift
|

Layer Norm
|

@

Scale
1

Multi-Head
Self-Attention
1

Scale, Shift
[

Layer Norm
l

-

1
Input Tokens

YZ’ﬁZ

Y1!ﬁ1
—

MLP
|

Conditioning /

DiT Block with adaLN-Zero

Figure from https://arxiv.org/pdf/2212.09748
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Adaptive LayerNorm

* Within the DIiT Block, the
interesting part is how we
condition on the label

* Original DiT paper tries out

Diffusion Transformer

various approaches:

In-context conditioning
Cross-attention block

Adaptive layer norm (adaLN)
block

Adaptive layer norm with zero
initialization strategy (adaLN-
Zero)

* QadalLN-Zero is the best approach

empirically

key insight: learn an MLP that
outputs the scale and shift
parameters for LayerNorm and
residual connections

/
/
/
Noise ) //
32x32x4 32x32x4 /
4 s /
Linear and Reshape ,/
- /
Layer Norm //
] /
N x[ DiT Block ‘
| I \
Patchify Embed '\
| \
| \
Noised Timestep t \
Latent ' \\
32x32x4 Label y

Latent Diffusion Transformer

a
Scale D
1
Pointwise
Feedforward
I
Scale, Shift M
|
Layer Norm
|
451
Scale e
1
Multi-Head
Self-Attention
1
Y1!ﬁ
Scale, Shift 4t
1
Layer Norm MLP
| |
\ Input Tokens Conditioning /

DiT Block with adaLN-Zero

Figure from https://arxiv.org/pdf/2212.09748
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Adaptive LayerNorm

* Within the DIiT Block, the ,
interesting part is how we 1008 —e— XL/2 In-Context
condition on the label '\‘, XL/2 Cross-Attention

* Original DiT paper tries out 80| @ \ ~®— XL/2 adalN
various approaches: —e— XL/2 adaLN-Zero
— In-context conditioning
— Cross-attention block

— Adaptive layer norm (adaLN)
block

— Adaptive layer norm with zero
initialization strategy (adaLN-
Zero) 20

* QadalLN-Zero is the best approach 100K 200K 300K 400K
empirically Training Steps
— key insight: learn an MLP that

outputs the scale and shift Figure 5. Comparing different conditioning strategies. adalLN-

parameters for LayerNorm and Zero outperforms cross-attention and in-context conditioning at all
residual connections .
stages of training.
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FID-50K
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Diffusion Transformer

Figure from https://arxiv.org/pdf/2212.09748




GFLOPS

Definition: GFLOPS are a
hardware-independent measure
of the computation cost of a
model

A FLOP is one floating-point
operation (like a single
addition, multiplication, etc. on
real numbers).

1 GFLOP =10° FLOPs.

GFLOPs measure how much

computation a model requires
for one forward pass 5or
sometimes per image/sample)

GFLOPS and FID

FID

Definition: Fréchet Inception Distance: a standard metric
used to evaluate the quality of generated images

To compute:

1. Pass both real and generated images through a pretrained
Inception-v3 network.

2. Collect the activations (features) from a mid-level layer (often
the pool3 layer)

3. Model these feature sets as multivariate Gaussians with
means u,, lizand covariances 2, X,

4. Compute the Fréchet distance between the two Gaussians:

FID = ||u, — pgll3 + Tr(Zr + Z,y — 2(%,3,)"?)

Interpretation:

— Lower FID — generated images are more similar to real images
(better quality and diversity).

— Higher FID — larger gap between generated and real
distributions (worse quality).



Diffusion Transformer

Decreasing the patch size of a DiT

increases the GFLOPs even
though it does not increase the
number of parameters

So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

[ DiT Block ]

Input Tokens T x d

T = (I/p)?

ﬂoised Latent \
IXIxC b p i

$
U

12

o

Figure 4. Input specifications for DiT. Given patch size p X p,
a spatial representation (the noised latent from the VAE) of shape
I x I x C is “patchified” into a sequence of length T' = (I/p)
with hidden dimension d. A smaller patch size p results in a longer
sequence length and thus more Gflops.
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Results: Diffusion Transformer

Decreasing the patch size of a DiT Increasing transformer size
increases the GFLOPs even -
though it does not increase the
number of parameters

So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

Of course, we can also increase
the number of model parameters
just by increasing the size of the
Transformer

Decreasing patch size
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Results: Diffusion Transformer

Decreasing the patch size of a DiT Increasing transformer size
increases the GFLOPs even = e s
though it does not increase the
number of parameters

So DiT studies the relationship
between FID performance and
GFLOPs (rather than FID and # of
param.s)

Question: How much does the
total computation increase if we
drop the patch size from p=4 to
p=2?

Of course, we can also increase
the number of model parameters
just by increasing the size of the
Transformer

Decreasing patch size
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Results: Diffusion Transformer

Scaling results:

1.

GFLOPs and FID are strongly
correlated (i.e. if we increase
GFLOPs then we get better FID
score)

Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

The DiT beats a latent diffusion
model (LDM) with a UNet backbone
even at the same amount of
compute:

— LDM-4 (103.6 Gflops)

— DiT-XL/2 (118.6 Gflops)

160
S/8 B/8 L/8 XL/8
2 S/4 B/4 L/4 XL/4
140[ >z e O @M
120
v 100
o
LN
A 80
™ »
60
40
Correlation: -0.93 .
20
100 10! 10°

Transformer Gflops

Figure 8. Transformer Gflops are strongly correlated with FID.
We plot the Gflops of each of our DiT models and each model’s
FID-50K after 400K training steps.



Results: Diffusion Transformer

Scaling results:

1.

GFLOPs and FID are strongly
correlated (i.e. if we increase
GFLOPs then we get better FID
score)

Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

The DiT beats a latent diffusion
model (LDM) with a UNet backbone
even at the same amount of
compute:

— LDM-4 (103.6 Gflops)

— DiT-XL/2 (118.6 Gflops)
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Figure 9. Larger DiT models use large compute more effi-
ciently. We plot FID as a function of total training compute.



Results: Diffusion Transformer

Scaling results:

1.

GFLOPs and FID are strongly
correlated (i.e. if we increase
GFLOPs then we get better FID
score)

Larger DiT models are more
compute efficient than smaller DiT
models during training (i.e., if we
use the same amount of training
computation for both, the larger
DiT does better at test time than
the smaller DiT)

The DiT beats a latent diffusion
model (LDM) with a UNet
backbone even at the same amount
of compute:

— LDM-4 (103.6 Gflops)

— DiT-XL/2 (118.6 Gflops)

Class-Conditional ImageNet 256 <256

Model FID| SsFID| ISt Precisiont  Recallt
BigGAN-deep [2] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [53] 2.30 402 265.12 0.78 0.53
ADM [9] 10.94  6.02 100.98 0.69 0.63
ADM-U 7.49 5:.13 127.49 0.72 0.63
ADM-G 4.59 5.25 186.70 0.82 0.52
ADM-G, ADM-U 3.94 6.14 215.84 0.83 0.53
CDM [20] 4.88 - 158.71 - -
LDM-8 [48] 15.51 - 79.03 0.65 0.63
LDM-8-G 7.76 - 209.52 0.84 0.35
LDM-4 10.56 - 103.49 0.71 0.62
LDM-4-G (cfg=1.25) 3.95 - 178.22 0.81 0.55
LDM-4-G (cfg=1.50) 3.60 - 247.67 0.87 0.48
DiT-XL/2 9.62 6.85 121.50 0.67 0.67
DiT-XL/2-G (cfg=1.25) 3.22 5.28  201.77 0.76 0.62
DiT-XL/2-G (cfg=1.50) 2.27 4.60 278.24 0.83 0.57
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PROMPT-TO-PROMPT



Background: Image Editing

* Fixing the Random Seed: * Mask-based Image Editing:

— A simple baseline for image editing — standard approaches to text-based
with text: change part of the prompt, image editing typically require an
keep the random seed fixed (e.g. the image mask as well
noise at the start of diffusion), and — the mask specifies which part of the
then run diffusion sampler image should remain unchanged

— Problem: the entire structure of the — then the text prompt informs how
image may change dramatically the unmasked part should be

— Doesn’t feel like “editing” at all, more adapted (e.g. by a diffusion model)
like generation of unrelated images — (Example: Blended Diffusion)

e
.8 By .
& TN , v"‘
- .
| ”.A

- eoa
“monster cake.”

“lego cake.” “beet cake.” “pepperoni cake

input+mask  “big mountain”  “big wall”  “New York Citgr”
7
Figure from http://arxiv.org/abs/2208.01626 Figure from http://arxiv.org/abs/2111.14818



Background: Image Editing

* Fixing the Random Seed:

— A simple baseline for image editing
with text: change part of the prompt,
keep the random seed fixed (e.g. the

noise at t

then run the composition is
— Problemy inconsistent in various

Image M4 ways: the background,

whole cake vs. single slice, pre
how much cake is in view

— Doesn’t f
like@

-
.
g 4
¢ L)
- - g 4 d
L ea _siv

-
“monster cake.”

“fish cake.”

“beet cake.” “pepperoni cake.”

“lego cake.”

Figure from http://arxiv.org/abs/2208.01626

* Mask-based Image Editing:

— standard approaches to text-based
image editing typically require an
image mask as well

ifes which part of the
ain unchanged

mpt informs how
rt should be
iffusion model)

here the composition
remains consistent
across images

input+mask  “big mountain”  “big wall”  “New York Cit6y8”

Figure from http://arxiv.org/abs/2111.14818



Prompt-to-Prompt

Prompt-to-Prompt:
* Goal: edit images with text onIy and do not “Photo of a cat riding on a bicycle.”
require the user to provide a mask T )

* Key ldea:

— given pre-trained latent diffusion model

— run diffusion model with original prompt and
store the attention weights and cross-
atte?tion weights (from the pixels back to the
text

— re-run diffusion with edited prompt, but
gcarefully) copy in the cross-attention weights
rom the previous run

— exactly how to copy in the attention weights
depends on the type of edit

* Inference only: no training is involved! we
only modify how the samples are drawn from
the pre-trained latent diffusion model

apples —> oranges

the composition remains consistent across images,
but with only the text for guidance (no mask)

Figure from http://arxiv.org/abs/2208.01626



= | Latent Diffusion Model (LDM)
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prompt space

y

LDM: Noise Model

Ho (Zt7 t, To (y)) — UNet(Zt7 t, To (y))

input
image
tile

572 x 572
570 x 570

¥

2842

* The noise model
includes cross
wput attention (ycllow

128 64 64

aga 38
388x388 W

boxes)tothe
representation of
the prompt text

* During training we

optimize both the

oy 546, ReLU parameters of the

=+ copy and crop UNet noise model
¥ max pool 2x2

# up-conv 2x2 and the parameters

. of the LLM
simultaneously




Prompt-to-Prompt: Editing Cross Attention

Prompt-to-Prompt:
* Goal: edit images with text only and do
not require the user to provide a mask

* Key ldea:
— given pre-trained latent diffusion model

— run diffusion model with original
prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

— re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

— exactly how to copy in the attention
weights depends on the type of edit

* Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt:
Editing Cross Attention

orange cat

pe(ZT—l | ZT;S’\)

latent space (or pixel space)

po(z¢ | 2e41,Y) po(2o | 21,Y)

encode the original
prompty
run diffusion ony and

obtain attention weights
AT—17"'7A1
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Prompt-to-Prompt:
Editing Cross Attention

LLM \

tabby cat

latent space (or pixel space)

po(z¢ | 2e41,Y) po(2o | 21,Y)

(2)—(
A

po(zo | 21,¥)

encode the original
prompty

run diffusion ony and
obtain attention weights

AT—17"'7A1

encode the modified

prompt y*

run diffusion again

a) reuse the noise z; from the
original run

b) use the attention weights
from the original run until
timestep t
N

c) then switch to using
attention weights from
this current run
A*, ... A%,

d) regardless of which

attention weights, you still
attend to y*

77



Prom pt-to_ Prom pt: 5. if running in latent space,

then use decoder to

Editing Cross Attention recover pixel space

representation

latent space pixel space

y ? N\
9 po(zr—1 | 2r,3) Po(2t | Zt+1,Y) po(zo | 21,5)
/ LLM \ polzr) @ @ @ Q Q
orange cat =
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Question:

Why do we use from the original attention
weights for a while before swapping to the

new attention weights?

Answer:

LLM \

tabby cat

po(zr—1 | 27,Y)

Do (ZT—1 | Zr, ?)

latent space

p@(zt | Zt+17/};) p@(ZO | Zlay\)

po(zt | Z141,Y)

pixel space

ol




Prompt-to-Prompt: Editing Cross Attention

Prompt-to-Prompt:
* Goal: edit images with text only and do
not require the user to provide a mask

* Key ldea:
— given pre-trained latent diffusion model

— run diffusion model with original
prompt and store the attention weights
and cross-attention weights (from the
pixels back to the text)

— re-run diffusion with edited prompt, but
(carefully) copy in the cross-attention
weights from the previous run

— exactly how to copy in the attention
weights depends on the type of edit

* Inference only: no training is involved!
we only modify how the samples are
drawn from the pre-trained latent
diffusion model

Figure from http://arxiv.org/abs/2208.01626

Algorithm 1 Prompt-to-Prompt image editing

—_
(@]

L2 X N VAW N2

Input: A source prompty, a target prompt y*, and a random seed s.
Output: A source image z,,. and an edited image z 4.
z7 ~ N (0, I) a unit Gaussian random variable with random seed s;
Z5 — 2
fort=T,T—1,...,1do

7 1,As < DM(z;,y,t,s);

A} < DM(z;,y*,t,s);

A, < Edit(A¢, A%, 1);

z; < DM(z},y",t,s,t){A + ./Kt};

: return (zg, zj))

A ift<T

Edit(A:, A t) :=
(As, Ars1) A; otherwise.



Attention Swapping

Problem: What if A, and A*, are not the same shape?
Solution: Swap in just the appropriate parts!

— The dimension in latent space will always remain constant (e.g. 1024)

— The dimension in text prompt space also remain constant if we use a fixed length

encoder

y
* e.g. length =77, if we use CLIP orange

cat sitting <PAD>

encoder A,

* orange cat sitting <PAD> <PAD>
...<PAD>

— However, the words might not align

/\g /\3

|

a <— original A

properly!
Example:
— we replace “orange” with “big tabby”

— then copy the attention weights for
‘““orange” to both “big” and “tabby” y
in the new attention weights

big

tabby

cat sitting 8>



CLIP (the text encoder for Prompt to Prompt)

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the H‘ | “
" Text S =
aussie pup p—> A photo of | | Text
Encoder l l l l " a : > Encoder
_ Ty | T oTa Tn :
—» L LTy | Ty | LTy L' Ty gz
' : (3) Use for zero-shot prediction v v v v
—» Iy ILyTy | IyT | IyTy | .. | IyTy T, T, Ty I Tn
Image .
—>» I3 I3yTy | 13Ty | I3Ty | L | 13Ty | ,
Encoder : T 7 . TR mage | . : : .
I Encoder > Iy I1+Ty | I1'T2 | 11 T3 I4' TN
—>» In INTy | INT2 | IN'T3 In'Tn A p_h-:»t-z of

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training

examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Figure from Radford et al. (2021)



Attention Swapping

* Problem: What if A, and A*, are not the same shape?
* Solution: Swap in just the appropriate parts!
— The dimension in latent space will always remain constant (e.g. 1024)
— The dimension in text prompt space also remain constant if we use a fixed length

encoder
y
° e.g. |ength =77, if we use CLIP orange cat sitting <PAD>
encoder A,
* orange cat sitting <PAD> <PAD> original A
...<PAD>
— However, the words might not align
properly!
. . A ~
Example: )3 edited A
— we replace “orange” with “big tabby” with same
— then copy the attention weights for ) shape as A*

““orange” to both “big” and “tabby” y

. . . big tabby cat sitting
in the new attention weights



Prompt-to-Prompt Results

* word/phrase cross-attention swapping automatically identifies the regions of the image that
need to remain constant and those that should be adapted

“..on grass.” *...on the ground.”

“..onamufiin.”

“..ona flute.” “...on a violin,"” “..on a present.” *...on a candy.”

Figure 5: Object preservation. By injecting only the attention weights of the word “butterfly”, taken from
the top-left image, we can preserve the structure and appearance of a single item while replacing its context.
Note how the butterfly sits on top of all objects in a very plausible manner.

96
Figure from http://arxiv.org/abs/2208.01626



Prompt-to-Prompt
Results

* varying the moment of the
attention swap to A* allows us
to see the effect of our cross-
attention manipulation

Figure from http://arxiv.org/abs/2208.01626

Source image and prompt:

: “photo of a cat riding on a bicycle.” .
bicycle — motorcycle p £ bicycle.” £ .3

. I

W.O. attention injection Full attention injection

Figure 6: Attention injection through a varied number of diffusion steps. On the top, we show the source
image and prompt. In each row, we modify the content of the image by replacing a single word in the text and
injecting the cross-attention maps of the source image ranging from 0% (on the left) to 100% (on the right)
of the diffusion steps. Notice that on one hand, without our method, none of the source image content is
guaranteed to be preserved. On the other hand, injecting the cross-attention throughout all the diffusion steps
may over-constrain the geometry, resulting in low fidelity to the text prompt, e.g., the car (3rd row) becomes
a bicycle with full cross-attention injection.



Prompt-to-Prompt Results

* Sofarwe’ve
focused on
swapping one
word/phrase for
another

* Prompt-to-prompt
supports different
types of edits

* Different types of
edits are achieved
through different
manipulations of
cross-attention
weights

Figure from http://arxiv.org/abs/2208.01626

down-weight existing
descriptor in the prompt

“clildren drawing of a castle next to a river.”

phrase insertion for style
change

swap one word for another

PR e |

“Photo of a cat riding on a l')(\lcyclc
ar

“a cake with.decorations.”
Jelly bedng

phrase insertion for content
change




