
Vision-Language Models (VLMs)

1

10-423/10-623/10-723 Generative AI

Matt Gormley & Aran Nayebi
Lecture 13

October 8, 2025

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sat, Oct 4
– Due: Thu, Oct 23 at 11:59pm

4

LATENT DIFFUSION MODEL (LDM)
(Preview)

5

Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel

space
• yet, training typically takes hundreds of GPU

days
– 150 – 1000 V100 days [Guided Diffusion]

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder

model) that learns an efficient latent space
that is perceptually equivalent to the data
space

• keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z0 =
encoder(x)
– forward model: latent representation z0 à noise

zT

– reverse model: noise zT à latent representation
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in

latent space
6

Latent Diffusion Model (LDM)

7

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Autoencoder

8

z

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: Autoencoder
• The autoencoder is chosen so that it can project

high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a

Gaussian)
2. a VQGAN (performs vector quantization in the decoder;

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all
subsequent LDM training

9

z

Encoder

Decoder

x̃

xE

D

pixel spacelatent space

LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion

model
• The goal is to build up good representations of

the text prompts such that they inform the latent
diffusion process

10

prompt space

LLM

τθ

orange cat

ŷ

y

LDM: with DDPM

11

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

prompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Noise Model

LLM

τθ

orange cat

ŷ

y

prompt space

• The noise model
includes cross
attention (yellow
boxes) to the
representation of
the prompt text

• During training we
optimize both the
parameters of the
UNet noise model
and the parameters
of the LLM
simultaneously

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))

Latent Diffusion Model (LDM)

13

zT-1 zztzt+1…

qφ(zt+1 | zt) qφ(z1 | z0)qφ(zT | zT−1)

z1…zT

zT-1 zztzt+1…

pθ(zt | zt+1, ŷ)pθ(zT−1 | zT , ŷ) pθ(z0 | z1, ŷ)
pθ(zT)

z1…zT

Encoder

Decoder

x̃

xE

D

pixel spaceprompt space

LLM

τθ

orange cat

ŷ

y

U
N

et
 w

/c
ro

ss

at
te

nt
io

n

latent space

LDM: Learning the Diffusion Model + LLM

14

Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T)
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:

VISION LANGUAGE MODELS (VLMS)

15

Multimodal
Models

� Previously: Text-to-image models – adapt generative

models for vision in order to guide their output toward
some desired target using natural language

� Output is still an image

� Today: visual language models (VLMs) – adapt

generative models for text in order to allow them to
interact with images (as well as text) as input

� Output is (typically) still text

Slide from Henry Chai 16

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

Slide from Henry Chai 17

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

Slide from Henry Chai 18Source: https://aclanthology.org/P19-1644.pdf

https://aclanthology.org/P19-1644.pdf
https://aclanthology.org/P19-1644.pdf
https://aclanthology.org/P19-1644.pdf

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

Slide from Henry Chai 19Source: https://arxiv.org/pdf/1608.00272

https://arxiv.org/pdf/1608.00272

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

Slide from Henry Chai 20Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

VLM:
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of
images) determine if some natural language
statement about the image(s) is true or false

� Visual grounding: locate an object in some image
given a natural language description

� Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language
descriptions of content of some image

Slide from Henry Chai 21Source: https://dl.acm.org/doi/pdf/10.1145/3295748

https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objectiveSlide from Henry Chai 22Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objectiveSlide from Henry Chai 23Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

IMAGE ENCODERS

24

CLIP
• The text encoder is, e.g., an

encoder-only transformer
• The image encoder is, e.g., a

ResNet-like CNN or ViT
• Both are linearly projected

into same-dimensional
vectors i.e., the multi-modal
embedding space

• Assume we have a mini-
batch B = {(I1, T1), (I2, T2), …,
{(I1, T1)} of size N

26
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

https://arxiv.org/pdf/2103.00020

CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding
vectors and minimize all other pairwise cosine similarities

27
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

Incorrect (but intuitive)
objective function:

max









N
∑

i=1

I
!
i Ti −

N
∑

i=1

N
∑

j=1

j "=i

I
!
i Tj









https://arxiv.org/pdf/2103.00020

CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding
vectors and minimize all other pairwise cosine similarities

28
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

Correct objective function:

max
N
∑

i=1

[

log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
i Tj

τ

)

+ log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
j Ti

τ

)

]

https://arxiv.org/pdf/2103.00020

CLIP

29

Correct objective function:

max
N
∑

i=1

[

log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
i Tj

τ

)

+ log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
j Ti

τ

)

]

Can be interpreted in terms of two conditional probability distributions:

1. Image‐to‐Text distribution:

p(Tj | Ii) =
exp

(

I!

i Tj

τ

)

∑N
k=1

exp
(

I!
i Tk

τ

)

2. Text‐to‐Image distribution:

p(Ij | Ti) =

exp
(

I!

j Ti

τ

)

∑N
k=1

exp
(

I!

k
Ti

τ

)

Thebidirecional contrastive lossmaximizes the log‐likelihoodof the correct
(matched) pairs under both distributions:

N
∑

i=1

log p(Ti | Ii) + log p(Ii | Ti)

CLIP for Zero Shot Classification

30
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

Among the N labels, choose
the one that has the highest
probability:

ŷ = argmax
i

P (Ti | I1)

= argmax
i

exp
(

I!

1
Ti

τ

)

∑N
j=1

exp
(

I!
1
Tj

τ

)

https://arxiv.org/pdf/2103.00020

SigLIP

• The CLIP objective function works fine
if your batch sizes are small enough to
fit on a single machine

• But it creates communication overhead
if you need to spread the above matrix
across many machines

• SigLIP partly solves this issue by
replacing the softmax with a sigmoid

31
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020

CLIP objective function:

N
∑

i=1







log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
i Tj

τ

) + log
exp

(

I!

i Ti

τ

)

∑N
j=1

exp
(

I!
j Ti

τ

)







SigLIP objective function:

max
N
∑

i=1

N
∑

j=1

log
1

1 + exp
(

yij(−wI!i Tj + b)
)

where yij =

{

1 if i = j (matching pair)

0 otherwise.

and w = exp(w′) and b are learnable parameters

https://arxiv.org/pdf/2103.00020

VLMS WITH TEXT-ONLY DECODERS
(VLMs that read text/images but only write text)

32

PaliGemma
• SigLIP is a variant of CLIP
• Gemma is a 2B LLM

(open source
counterpart to Gemini)

• Linear projection is
creating image
embeddings, but they
live in the same high
dimensional space as the
word embeddings

• The LLM has to figure
out how to use the
image embeddings in
some useful way so as to
maximize the likelihood
of the correct text
response

33

W
ord

Em
bedding

Figure from https://arxiv.org/pdf/2407.07726

Qwen-VL
Freezing subsets of the
model parameters
(corresponding to
pretrained submodels) is
common during training
Qwen-VL as an example:
1. Qwen-VL first freezes

the LLM in order to
learn effective image
embeddings that align
with the word space

2. Then, all parameters
are unfrozen for a
while

3. Finally, it freezes only
the ViT image encoder

34
Figure from https://arxiv.org/pdf/2308.12966

Qwen-VL
Just as LLMs are typically
evaluated on a variety of
text benchmarks
assessing the
understanding /
generation abilities of the
model…

…VLMs are evaluated on
a variety of text/image
benchmarks assessing
their ability to interpret
and respond to queries
about multimodal data.

35
Figure from https://arxiv.org/pdf/2308.12966

Llama 3.2 Vision

36
Figure from https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

Just as LLMs are typically
evaluated on a variety of
text benchmarks
assessing the
understanding /
generation abilities of the
model…

…VLMs are evaluated on
a variety of text/image
benchmarks assessing
their ability to interpret
and respond to queries
about multimodal data.

VISION LANGUAGE MODELS (VLMS)

37

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into embedding vectors, then pass those vectors into a
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objectiveSlide from Henry Chai 38Source: https://huggingface.co/blog/vlms

https://huggingface.co/blog/vlms

VLM:
Architecture

� High-level idea: convert both the image and the text inputs

into integers, then pass those integers into a decoder-only
transformer and do next (text or image) token prediction

� Two common encoders:

�VQ-VAE encoder followed
by an embedding layer that

converts the discrete
tokens into dense

numerical vectors

�CLIP encoder, that directly
learns an embedding

vector using a contrastive
pre-training objectiveSlide from Henry Chai 39Source: https://huggingface.co/blog/vlms

Text + Image Decoder

11 42 7 3 52 78 56 89

https://huggingface.co/blog/vlms

Why VLMs with
Integer Tokens?

41

VQ-VAES

42

Recall: Parti

Slide from Henry Chai 43Source: https://arxiv.org/pdf/2206.10789

https://arxiv.org/pdf/2206.10789

Recall: Image
Tokenization

Slide from Henry Chai 44Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

How can we
(pre-)train
these models
given the non-
differentiable
quantization
operation?

Slide from Henry Chai 45Source: https://arxiv.org/pdf/2110.04627

https://arxiv.org/pdf/2110.04627

Vector-Quantized VAEs
Slide from Henry Chai 46Source: https://arxiv.org/pdf/1711.00937

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
Slide from Henry Chai 47Source: https://arxiv.org/pdf/1711.00937

� Embedding space consists of 𝐾 𝐷-dimensional latent

vectors {𝑒!, … , 𝑒"} which are learned during training

� The indices 1,… , 𝐾 of each latent vector correspond
to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
Slide from Henry Chai 48Source: https://arxiv.org/pdf/1711.00937

� The encoder (e.g., a ResNet-like CNN) maps images

to 𝑁 𝐷-dimensional vectors

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
Slide from Henry Chai 49Source: https://arxiv.org/pdf/1711.00937

� Each output vector

from the encoder is
mapped to the nearest
latent vector to get the

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒)

)

https://arxiv.org/pdf/1711.00937

Vector-Quantized VAEs
Slide from Henry Chai 50Source: https://arxiv.org/pdf/1711.00937

� The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937

Wait, how would we take the gradient through the argmin?

Slide from Henry Chai 51Source: https://arxiv.org/pdf/1711.00937

� Each output vector

from the encoder is
mapped to the nearest
latent vector to get the

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒)

)

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
Slide from Henry Chai 52Source: https://arxiv.org/pdf/1711.00937

� Treat the gradient w.r.t. 𝑧# 𝑥 as an estimate of the gradient w.r.t. 𝑧$ 𝑥

https://arxiv.org/pdf/1711.00937

Straight-through Estimator
Slide from Henry Chai 53Source: https://arxiv.org/pdf/1711.00937

� Intuition: the closer 𝑧# 𝑥 and 𝑧$ 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

where sg is the stop-gradient operator which fixes the
argument to be non-updated constant

Slide from Henry Chai 54

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The first term is the typical reconstruction error objective

Slide from Henry Chai 55

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The second term drives the latent vector to be closer to the
encoder output vector that was mapped to it

Slide from Henry Chai 56

VQ-VAE
Objective
Function

� Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are
near the outputs of the encoder

� However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥)
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥)
)

� The third term drives the encoder to output vectors closer to
the latent vectors

Slide from Henry Chai 57

CLIP vs. VQ-VAEs

� VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to
text by defining a loss over the image codebook tokens

� CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a
loss over images and thus, can only output text

� However, CLIP embeddings are more expressive than
the discrete VQ-VAE encodings so can lead to improved

performance in some settings

Slide from Henry Chai 58

VLMS WITH TEXT AND IMAGE DECODERS
(VLMs that read text/images and write text/images)

59

Why VLMs with
Integer Tokens?

60

Large World Model

62
Figure from http://arxiv.org/abs/2402.08268

• The Large World Model (LWM) is an example of a Transformer LM that works with both
discrete text tokens and discrete image tokens

• Key idea:
– pretrain your image tokenizer/de-tokenizer (VQGAN)
– any images in your data can be converted to their discrete representations ahead of time
– then train your Transformer LM as you would any other LM on discrete tokens
– at test time, whenever you see a sequence of image tokens, convert them back to an image

How old is this dog?
Provide an image

showing the
probability distribution
over its likely age and

your best guess

Output Out.

Large World Model

63
Figure from http://arxiv.org/abs/2402.08268

Gemini

64

Gemini

65

