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Reminders

* Homework 3: Applying and Adapting LLMs
— Out: Sat, Oct 4
— Due: Thu, Oct 23 at 11:59pm




LATENT DIFFUSION MODEL (LDM)



Latent Diffusion Model

Motivation:

diffusion models typically operate in pixel
space

yet, training typically takes hundreds of GPU
days

— 150 — 1000 V100 days [Guided Diffusion]
(Dhariwal & Nichol, 2021)

— 256 TPU-v4s for 4 days = 1000 TPU days [Imagen]
(Sharia et al., 2022)

inference is also slow

— 50k samples in 5 days on A100 GPU [Guided
Diffusion] (Dhariwal & Nichol, 2021)

— 15 seconds per image

Key Idea:

train an autoencoder (i.e. encoder-decoder
model) that learns an efficient latent space
that is perceptually equivalent to the data
space

keeping the autoencoder fixed, train a
diffusion model on the latent
representations of real images z, =

encoder(x)
— forward model: l[atent representation z, = noise
Z7
— reverse model: noise z; = latent representation
ZO

to generate an image:
— sample noise z;

— apply reverse diffusion model to obtain a latent
representation z,

— decode the latent representation to an image x

condition on prompt via cross attention in
latent space
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LDM: Autoencoder

latent space pixel space




LDM: Autoencoder

* The autoencoderis chosen so that it can project
high dimensional images (e.g. 1024x1024) down to
low dimensional latent space and faithfully project
back up to pixel space

* The original LDM paper considers two options:

1. a VAE-like model (regularizes the noise towards a
Gaussian)

2. aVQGAN (performs vector quantization in the decoder;
i.e., it uses a discrete codebook)

* This model is trained ahead of time just on raw
images (no text prompts) and then frozen

e The frozen encoder-decoder can be reused for all
subsequent LDM training

latent space

pixel space




LDM: the Prompt Model

* The prompt model is just a Transformer LM

* We learn its parameters alongside the diffusion
model

* The goal is to build up good representations of
the text prompts such that they inform the latent
diffusion process
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LDM: Noise Model
1o (Ztv t, Ty (y)) — f(UNEt(Ztv t, Ty (y)))

AN

NN  The noise model
includes cross
o t [ ]
"‘I”r%i > Nt bt et gggiﬂfamaﬁon attention (
e EEEIL ) to the
representation of
the prompt text

* During training we
optimize both the
parameters of the

=» conv 3x3, RelLU

copy and crop UNet noise model
¥ max pool 2x2
# up-conv 2x2 and the parameters
=» conv 1x1
of the LLM

simultaneously
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LDM: Learning the Diffusion Model + LLM

Given a training sample zg, wewant  Objective Function:
po(zi—1 | 2¢,70(y)) Lipy = Eg(a),y,e~N(0,1) [Hf_f()(«f t,mo(y))|5 }

to be as close as possible to

Algorithm 1 Training

Q(Zt—l ‘ Zt,Zo) 1: initialize 6

2: foree {1,...,E}do
for zg,y € Ddo
t ~ Uniform(1,...,7T)

Intuitively, this makes sense: if the
learnedreverse process is supposed 3
to subtract away the noise, then

whenever we’re working with a spe- e ~N(0,1)
Xi < \/O_étXO + 1 — Ol €

cific zg it should subtract it away
exactly as exact reverse process would
have.

Kt(ﬁ) — ||€ — €9<Xt7 t TQ(Y))HQ
60— Vyl,(0)
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VISION LANGUAGE MODELS (VLMS)



Multimodal

Models

Slide from Henry Chai

* Previously: Text-to-image models — adapt generative

models for vision in order to guide their output toward

some desired target using natural language

* Output is still an image

* Today: visual language models (VLMSs) — adapt

generative models for text in order to allow them to

interact with images (as well as text) as input

* Output is (typically) still text

?os%{(/@ ijeg foo
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Slide from Henry Chai

 Common benchmarks for VLMs include

* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

* Visual grounding: locate an object in some image

given a natural language description

* Visual question answering: given an image (or
images), respond to arbitrary, potentially open-

ended questions about the content.

- Caption generation: create natural language

descriptions of content of some image

17



 Common benchmarks for VLMs include

* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Slide from Henry Chai Source: https://aclanthology.org/P19-1644.pdf



https://aclanthology.org/P19-1644.pdf
https://aclanthology.org/P19-1644.pdf
https://aclanthology.org/P19-1644.pdf

 Common benchmarks for VLMs include

* Visual reasoning: given an image (or a pair of
images) determine if some natural language

statement about the image(s) is true or false

* Visual grounding: locate an object in some image

given a natural language description

RefCOCO:
1. giraffe on left
2. firstgiraffe on left

RefCOCO+:
1. giraffe with lowered head
2. giraffe head down

RefCOCOg:

1. an adult giraffe scratchingits

- back with its horn

2. giraffe hugging another giraffe

Slide from Henry Chai Source: https://arxiv.org/pdf/1608.00272

19


https://arxiv.org/pdf/1608.00272

Slide from Henry Chai

 Common benchmarks for VLMs include

Who is wearing glasses? Where is the child sitting?
man woman fridge arms

%]

Is the umbrella upside down? How many children are in the bed?
yes no

* Visual question answering: given an image (or

images), respond to arbitrary, potentially open-

ended questions about the content.

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

20


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100153

 Common benchmarks for VLMs include

~  —— Ground Truth Caption: A little boy runs away from the
approaching waves of the ocean.

Generated Caption: A young boy is running on the beach.

Ground Truth Caption: A brunette girl wearing sunglasses
and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses
smiles.

- Caption generation: create natural language

descriptions of content of some image

Slide from Henry Chai Source: https://dl.acm.org/doi/pdf/10.1145/3295748



https://dl.acm.org/doi/pdf/10.1145/3295748

VLM:

Architecture

Slide from Henry Chai

* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

fedBecensy - TwWo common encoders:

I *VQ-VAE encoder followed

Projected visual tokens concatenated to text embedding tokens

by an embedding layer that

I I converts the discrete

Multimodal .
Text Embedd .

Projector S EmbEReings tokens into dense

I numerical vectors

Image Encoder ]

I * CLIP encoder, that directly
B learns an embedding

—Jl vector using a contrastive

Source: https://hugaingface.co/blog/vims pre_tra ! nlng ObJeCt|Ve 22



https://huggingface.co/blog/vlms

VLM:

Architecture

Slide from Henry Chai

* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

fedBecensy - TwWo common encoders:

I *VQ-VAE encoder followed
Projected visual tokens concatenated to text embedding tokens
by an embedding layer that
I I converts the discrete
Multimodal .
Text Embedd .
Projector SHLEmRecdings tokens into dense
I numerical vectors
Image Encoder ]
I * CLIP encoder, that directly

learns an embedding

)

Source: https://hugaingface.co/blog/vims p re_t raini ng O bJ eCt|Ve

vector using a contrastive

23



https://huggingface.co/blog/vlms

IMAGE ENCODERS



\

Pepper the

aussie pup EEe

w 3 Text

-

Image
Encoder

Figure from Radford et al. (2021)

T, T T; TN
—> Il Il'Tl II.TZ ll'T3 II.TN
—>» b LTy | IpTy | T3 LTy
—> I3 3Ty | 3Ty | I3T3 I3 Ty
—>» Iy INTy | InT2 | INT3 INnTn

The text encoder s, e.g., an
encoder-only transformer

The image encoder is, e.g., a
ResNet-like CNN or ViT

Both are linearly projected
into same-dimensional
vectors i.e., the multi-modal
embedding space

Assume we have a mini-
batch B = {(Iv T1)) (Iz’ Tz); e
{(1,, T,)} of size N
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https://arxiv.org/pdf/2103.00020

Pepper the
aussie pup

\

Text

Encoder

-

Image
Encoder

!

!

!

T, | T, | T, Ty
I Ty | 1Ty | I;-Ts I;-Tx
I LT | LTy | LTs I Ty
s Ty | 13Ty | 13Ty I3 Ty
In INTy | INTy | INT3 IN' TN

max

Incorrect (but intuitive)
objective function:

Z[TT ZZITT

1=1 1=1 j7=1

J71

Given a mini-batch of N (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding

vectors and minimize all other pairwise cosine similarities

Figure from Radford et al. (2021)
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h Correct objective function:
Pepper the Tor
aussie pup —> Encoder l i i l
N exp ( : 7’)
1 T
— | LTy | Ty T3 | o LI maxz [ 08 I'T
1= 71=1 T
—>» b LTy | IpTy | IxT3 | . | IxTN T,
Image | | . LTy | 3Ty | 3T I3T 7 1 .
Encoder 3 3Ty [Ty | I3 T3 Iy + log N T
— J
ijl eXp ( T )
—>» Iy INT | InTy | InT3 | 0 [ INTN

Given a mini-batch of N (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding
vectors and minimize all other pairwise cosine similarities

Figure from Radford et al. (2021)
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CLIP

Correct objective function:

Can be interpreted in terms of two conditional probability distributions:

1. Image-to-Text distribution: @?
o’ T
T OC_L (o N exp (Iz z)
exp ( — J> ¢ T
p(T; | Ii) = — A maxz [log N ITT,
A e (T) ST (B0)
@Ib" )A‘A/ I'TTi
2. Text-to-Image distribution: 3 €Xp ( — )

N S e (2)

% ‘l;-w. N

The bidirecional contrastive loss maximizes the log-likelihood of the correct
(matched) pairs under both distributions:

Zlogp i | 1) +logp(I; | T)



CLIP for Zero Shot Classification

a

A photo of

Figure from Radford et al. (2021)

Image
Encoder

\

Text

Encoder

—

_)’ Il

Y Y Y Y
T, T T3 Tn
LTy | )T, | )T, ['TN

!

A photo of
a dog.

Among the N labels, choose
the one that has the highest
probability:
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Pepper the \‘
aussie pup —> Text

Encoder
Y \ 4
T, T,

;' T3

I, Ty

—» L I'Ty | 1T,
—>» b LT | LT,
Image |1 | 3Ty | 3T
Encoder . 32
—> Iy INTy | INT2

I3-T3

In'T3

TN

I Ty

I3 TN

INTN

* The CLIP objective function works fine
if your batch sizes are small enough to

fit on a single machine

e But it creates communication overhead
if you need to spread the above matrix

across many machines

* SigLIP partly solves this issue by
replacing the softmax with a sigmoid

Figure from Radford et al. (2021)

SigLIP

CLIP objective function:

°)

exp (IiT
log + log

I'T; i
$° g2 7)
1T,
i=1 Z;\f:l exXp (%) Z;V:1 eXp (

SigLIP objective function:

N N |
max log
7:21 J:Z1 1+ exp(yij(—wIiTTj -+ b))

1 if ¢ = 7 (matching pair)
@_iotherwise.

where Yij =

IjTT,L'

T

and w = exp(w’) and b are learnable parameters

).
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VLMS WITH TEXT-ONLY DECODERS



SigLIP is a variant of CLIP

Gemmaisa2B LLM
(open source
counterpart to Gemini)
Linear projection is
creating image
embeddings, but they
live in the same high
dimensional space as the
word embeddings

The LLM has to figure
out how to use the
image embeddings in
some useful way so as to
maximize the likelihood
of the correct text
response

Figure from https://arxiv.org/pdf/2407.07726

PaliGemma

“Where is the

photographer

resting?”

\) =

Contrastive

Vision Encoder

Y
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391 '::
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2B Language Model

Transformer
Decoder
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<Jpeaq 1eatdod) B U0 991) B I9PUN YO OuIwey e uf,
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Freezing subsetsofthe ——"7——
model parameters Stagel: Pretraining

(corresponding to
UM ”ﬁ QwenLM ]

pretrained submodels) is
common during training
I t
LQUGFSIE CrossAttn &
Embs '

Stage2:Multi-task Stage3: Supervised
Pretraining Finetuning

[ QwenLM &] [ QwenLM &v]

Leamnable l t Learnable I t
Query — CrossAttn ‘ Query CrossAttn &

Embs I Embs I

Qwen-VL as an example:
1.  Qwen-VL first freezes

the LLM in order to ' : : N

learn effective image P ViT 4 ViT & ViT &

embeddings that alig "" A @ Low Resolution @ High Resolution @ High Resolution

with the word Space /E . Image-Text Pairs Multi-task and Chat Interleaved
5. Then, a” parameters | Interleaved VL Data VL Data

\E/l\: ﬁl Iuenfroze : for d Figure 3: The training pipeline of the Qwen-VL series. T

3. Finally, it freezes only
the ViT image encoder

34
Figure from https://arxiv.org/pdf/2308.12966



Qwen-VL

Just as LLMs are typically e

. RefCOCOg(test) Flickr30K
evaluated on a variety of
text benchmarks
asseSSIng th.e RefCOCO+(testB) GQA
understanding / . /
generation abilities of the y e
model... AR l'fs.ZL\

RefCOCO(testB) 86.25 8.5 78.75 fA 131,75 \ 335 3525 \jizWiz(0-shot)
45,25 25

... VLMs are evaluated on
a variety of text/image
benchmarks assessing

08.7%0 0 -

52.5 57.5

their ability to interpret o e
and respond to queries
about multimodal data. T Charton

Generalist VL SOTAs

AIED Shikra-13B

Pic2Struct-Large (1.3B)
—— InstructBLIP (Vicuna-13B)
— Qwen-VL
Figure from https://arxiv.org/pdf/2308.12966



LI a m a 3 ° 2 Vi S i O n Vision instruction-tuned benchmarks

Just as LLMs are typically ™= ==
evaluated on a variety of
text benchmarks
assessing the
understanding / | ’ ' ' '
generation abilities of the
model... .
... VLMs are evaluated on _
a variety of text/image

benchmarks assessing

their ability to interpret
and respond to queries
about multimodal data.

Figure from https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/



VISION LANGUAGE MODELS (VLMS)



VLM:

Architecture

Slide from Henry Chai

* High-level idea: convert both the image and the text inputs
into embedding vectors, then pass those vectors into a

decoder-only transformer and do next (text) token prediction

fedBecensy - TwWo common encoders:

I *VQ-VAE encoder followed

Projected visual tokens concatenated to text embedding tokens

by an embedding layer that

I I converts the discrete

Multimodal .
Text Embedd .

Projector S EmbEReings tokens into dense

I numerical vectors

Image Encoder ]

I * CLIP encoder, that directly
B learns an embedding

—Jl vector using a contrastive

Source: https://hugaingface.co/blog/vims pre_tra ! nlng ObJeCt|Ve 38
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VLM:

Architecture

Slide from Henry Chai

* High-level idea: convert both the image and the text inputs
into integers, then pass those integers into a decoder-only

transformer and do next (text or image) token prediction

TextrimegeDecoder - Two common encoders:

I *VQ-VAE encoder followed
Projected visual tokens concatenated to text embedding tokens
11 42 7 3 5278 56 89 by an embedding layer that
I I converts the discrete
Multimodal .
Text Embedd .
Projector M tokens into dense
I numerical vectors
Image Encoder ]
I * CLIP encoder, that directly
B learns an embedding
—Jl vector using a contrastive
Source: https://huggingface.co/blog/vims pre-tralnlng ObJeCt|Ve 39



https://huggingface.co/blog/vlms

Why VLMs with
Integer Tokens?

41



VQ-VAES



Recall: Parti

Slide from Henry Chai

Transformer Encoder

tq to tn

Two dogs running in a field

Source: https://arxiv.org/pdf/2206.10789

<s0s>

1

(P

/" ViT-VQGAN
.» |mage Detokenizer
(Transformer)
; £
Image Tokenizer
(Transformer)
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https://arxiv.org/pdf/2206.10789

Recall: Image

Tokenization

Slide from Henry Chai

Input

Reconstruction

StyleGAN
Discriminator
eal / Fake

Source: https://arxiv.org/pdf/2110.04627

ViT-VQGAN

7

Image Detokenizer
(Transformer)

*

7~

Image Tokenizer
(Transformer)

44


https://arxiv.org/pdf/2110.04627

How can we

(pre-)train

these models
given the non-
differentiable

guantization

operation?

Slide from Henry Chai Source: https://arxiv.org/pdf/2110.04627

ViT-VQGAN

Image Detokenizer
(Transformer)

*

Image Tokenizer
(Transformer)



https://arxiv.org/pdf/2110.04627
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Encoder Decoder

Vector-Quantized VAEs

Slide from Henry Chai Source: https://arxiv.org/pdf/1711.00937 46



https://arxiv.org/pdf/1711.00937

(91 9293

Embedding
Space

5

Embedding space consists of K D-dimensional latent

vectors {ey, ..., ex } which are learned during training

The indices [1, ..., K] of each latent vector correspond

to the “image tokens” in some fixed-length codebook

Vector-Quantized VAEs

Slide from Henry Chai

Source: https://arxiv.org/pdf/1711.00937
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/emezesv - - e,

Embedding
Space

o —

c%//‘ * The encoder (e.g., a ResNet-like CNN) maps images

to N D-dimensional vectors

CNN

Z,(x)

\ P

Encoder

Vector-Quantized VAEs

Slide from Henry Chai Source: https://arxiv.org/pdf/1711.00937



https://arxiv.org/pdf/1711.00937

CNN

( e,ee,

Embedding
Space

q(z[x)

it

Encoder

)‘¥/x
T

* Each output vector O
| ® @
from the encoder is 0@
. z?)'() .

mapped to the nearest
latent vector to get th O ® o Q@

discretized encoding

zo(x) = argmin ||z, (x) —ell3
e €{eq,...ex}

Vector-Quantized VAEs

Slide from Henry Chai

Source: https://arxiv.org/pdf/1711.00937
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( e,ee, CH

Embedding
Space

a(z|x) €3

CNN L €,
1 e

3 1 5?

z,(x) o 2 z(x)
K J 153 5
Y Y
Encoder Decoder

* The decoder takes the discretized representation and recreates the original image

Vector-Quantized VAEs

Slide from Henry Chai Source: https://arxiv.org/pdf/1711.00937



https://arxiv.org/pdf/1711.00937

(61 e2e3

e )

Embedding
Space

>

CNN

Encoder

q(z[x)

3

* Each output vector

from the encoder is
mapped to the nearest
latent vector to get the

discretized encoding

zo(x) = argmin ||z, (x) —ell3
e €{eq,...ex}

Wait, how would we take the gradient through the argmin?

Slide from Henry Chai Source: https://arxiv.org/pdf/1711.00937
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(91 3263 eK\

Embedding
Space
\_ )
D 4
a8 a(zIx) [ Ed
CNN ; e, p(x|z,)
3 !e 53
Z,(x) . 2 z,(x)
N y = .
Y Y
Encoder Decoder

- Treat the gradient w.r.t. z, (x) as an estimate of the gradient w.r.t. z, (x)

Straight-through Estimator

Slide from Henry Chai Source: https://arxiv.org/pdf/1711.00937
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CNN

( e,ee,

Encoder

Embedding
Space

@
@
z (x
/// 5 @
Ie1
on @
> <o o @

Oss
z,(x)

L - F

Decoder

* Intuition: the closer z, (x) and z,(x), the better the estimate (under certain assumptions)

Straight-through Estimator

Slide from Henry Chai

Source: https://arxiv.org/pdf/1711.00937

53


https://arxiv.org/pdf/1711.00937

* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * ldea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
—logpg(x|zq(x)) + ||sglze(x)] — 24 (x)
+ B|ze (x) — sglzq ()]

N N NN

where sg is the stop-gradient operator which fixes the

argument to be non-updated constant

Slide from Henry Chai
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VQ-VAE

Objective
Function

Slide from Henry Chai

* Intuition: we want the latent vectors to correspond to

relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

* ldea: augment the standard VAE objective with some

regularizing terms that drive the two closer to each other
—logpe(x|zq(x)) + ||sglz. ()] — 2z, (x)

+ 8|2 (0) — sglz, )]

2
2
2
2

* The first term is the typical reconstruction error objective
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* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * ldea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
o log Po (x|Zq (X)) + Sg[Ze (X)] o Zq (X)

+ 8|2 (0) — sglz, )]

2
2
2
2

* The second term drives the latent vector to be closer to the

encoder output vector that was mapped to it

Slide from Henry Chai



* Intuition: we want the latent vectors to correspond to
relevant points in the embedding space i.e., ones that are

near the outputs of the encoder

- However, we also want the encoder to respect the latent

vectors and not overfit to the training dataset

VQ-VAE
Objective * ldea: augment the standard VAE objective with some

Function regularizing terms that drive the two closer to each other
—logpg(x|2q(x)) + ||sglze ()] — z4(x)

+ B|7e(x) = sg|zy ()]

2
2
2
2

* The third term drives the encoder to output vectors closer to

the latent vectors

Slide from Henry Chai



CLIP vs. VQ-VAEs

Slide from Henry Chai

* VLMs with VQ-VAE encoders (or any vector quantized

image model) can also generate images in addition to

text by defining a loss over the image codebook tokens

* CLIP does not discretize its image embedding so VLMs

with CLIP-based encoders cannot (naturally) define a

loss over images and thus, can only output text

- However, CLIP embeddings are more expressive than

the discrete VQ-VAE encodings so can lead to improved

performance in some settings
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VLMS WITH TEXT AND IMAGE DECODERS



Why VLMs with
Integer Tokens?
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Large World Model

* The Large World Model (LWM) is an example of a Transformer LM that works with both
discrete text tokens and discrete image tokens

* Keyidea:
— pretrain your image tokenizer/de-tokenizer (VQGAN)
— any images in your data can be converted to their discrete representations ahead of time
— then train your Transformer LM as you would any other LM on discrete tokens
— at test time, whenever you see a sequence of image tokens, convert them back to an image

Autoregressive Transformer (Large World Model) <

[ Image Tokens ] [ Image Tokens ] [ Image Tokens ][ Text Tokens ]

/ VQGAN \ /  VQGAN \ / VQGAN BPE Tokenizer

e - How old is this dog?
; ke Provide an image
o showing the

probability distribution
over its likely age and
your best guess

Figure from http://arxiv.org/abs/2402.08268
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H MORE IMAGE GENERATION EXAMPLES

Large World Model

A cube made of denim A glass of wine

A yellow and black bus Oil painting of a couple in A couch in a cozy living A carrot to the left of
cruising through a rainforest  formal attire caught in the room broccoli

rain without umbreflas

.

Fisheye lens of a turtle A blue colored dog Stained glass windows A pink car
Figure from http://arxiv.org/abs/2402.08268 in a forest depicting hamburgers and

french fries



Input
Sequence

Gemini

Image
Decoder

Text
Decoder
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Gemini

V4
Prompt

Give me two ideas that | could do with these 2
colors

Colors: | see blue and yellow yarn -
( i
Q

-

How about a cute blue cat?

yellow ear?

Or a blue dog that would also have a v

Give me two ideas that | could do with
these 2 colors

’
Response

Colors: | see green and pink yarn

Idea 1: How about a green avocado with
pink seed?

Idea 2: Or a green bunny with pink ears? ﬁf‘%
* J

>

. )

Figure 6 | Image Generation. Gemini models can output multiple images interleaved with text given
a prompt composed of image and text. In the left figure, Gemini Ultra is prompted in a 1-shot setting
with a user example of generating suggestions of creating cat and dog from yarn when given two
colors, blue and yellow. Then, the model is prompted to generate creative suggestions with two new
colors, pink and green, and it generates images of creative suggestions to make a cute green avocado
with pink seed or a green bunny with pink ears from yarn as shown in the right figure.



