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Reminders

• Homework 3: Applying and Adapting LLMs
– Out: Sat, Oct 4
– Due: Thu, Oct 23 at 11:59pm
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LATENT DIFFUSION MODEL (LDM)
(Preview)
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Latent Diffusion Model
Motivation:
• diffusion models typically operate in pixel 

space
• yet, training typically takes hundreds of GPU 

days 
– 150 – 1000 V100 days [Guided Diffusion] 

(Dhariwal & Nichol, 2021)
– 256 TPU-v4s for 4 days = 1000 TPU days [Imagen] 

(Sharia et al., 2022)
• inference is also slow

– 50k samples in 5 days on A100 GPU [Guided 
Diffusion] (Dhariwal & Nichol, 2021)

– 15 seconds per image

Key Idea:
• train an autoencoder (i.e. encoder-decoder 

model) that learns an efficient latent space 
that is perceptually equivalent to the data 
space

• keeping the autoencoder fixed, train a 
diffusion model on the latent 
representations of real images z0 = 
encoder(x)
– forward model: latent representation z0 à noise 

zT

– reverse model: noise zT à latent representation 
z0

• to generate an image:
– sample noise zT

– apply reverse diffusion model to obtain a latent 
representation z0

– decode the latent representation to an image x
• condition on prompt via cross attention in 

latent space
6



Latent Diffusion Model (LDM)
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LDM: Autoencoder
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LDM: Autoencoder
• The autoencoder is chosen so that it can project 

high dimensional images (e.g. 1024x1024) down to 
low dimensional latent space and faithfully project 
back up to pixel space

• The original LDM paper considers two options:
1. a VAE-like model (regularizes the noise towards a 

Gaussian)
2. a VQGAN (performs vector quantization in the decoder; 

i.e., it uses a discrete codebook)

• This model is trained ahead of time just on raw 
images (no text prompts) and then frozen

• The frozen encoder-decoder can be reused for all 
subsequent LDM training
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LDM: the Prompt Model

• The prompt model is just a Transformer LM
• We learn its parameters alongside the diffusion 

model
• The goal is to build up good representations of 

the text prompts such that they inform the latent 
diffusion process
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LDM: with DDPM
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LDM: Noise Model
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τθ

orange cat
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y

prompt space

• The noise model 
includes cross 
attention (yellow 
boxes) to the 
representation of 
the prompt text

• During training we 
optimize both the 
parameters of the 
UNet noise model 
and the parameters 
of the LLM 
simultaneously 

µθ(zt, t, τθ(y)) = f(UNet(zt, t, τθ(y)))



Latent Diffusion Model (LDM)
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LDM: Learning the Diffusion Model + LLM
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Algorithm 1 Training
1: initialize θ
2: for e ∈ {1, . . . , E} do
3: for x0, y ∈ D do
4: t ∼ Uniform(1, . . . , T )
5: ε ∼ N (0, I)
6: xt ←

√
ᾱtx0 +

√
1− ᾱtε

7: #t(θ)← ‖ε− εθ(xt, t, τθ(y))‖2
8: θ ← θ −∇θ#t(θ)

Given a training sample z0, we want

pθ(zt−1 | zt, τθ(y))

to be as close as possible to

q(zt−1 | zt, z0)

Intuitively, this makes sense: if the
learned reverse process is supposed
to subtract away the noise, then
whenever we’re working with a spe‐
cific z0 it should subtract it away
exactly as exact reverse process would
have.

Objective Function:



VISION LANGUAGE MODELS (VLMS)
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Multimodal 
Models

� Previously: Text-to-image models – adapt generative 

models for vision in order to guide their output toward 
some desired target using natural language 

� Output is still an image

� Today: visual language models (VLMs) – adapt 

generative models for text in order to allow them to 
interact with images (as well as text) as input

� Output is (typically) still text

Slide from Henry Chai 16



VLM: 
Tasks

� Common benchmarks for VLMs include

� Visual reasoning: given an image (or a pair of 
images) determine if some natural language 
statement about the image(s) is true or false

� Visual grounding: locate an object in some image 
given a natural language description

� Visual question answering: given an image (or 
images), respond to arbitrary, potentially open-

ended questions about the content.

� Caption generation: create natural language 
descriptions of content of some image

Slide from Henry Chai 17
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VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed 
by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors

�CLIP encoder, that directly 
learns an embedding 

vector using a contrastive 
pre-training objectiveSlide from Henry Chai 22Source: https://huggingface.co/blog/vlms 

https://huggingface.co/blog/vlms
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IMAGE ENCODERS
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CLIP
• The text encoder is, e.g., an 

encoder-only transformer
• The image encoder is, e.g., a 

ResNet-like CNN or ViT
• Both are linearly projected 

into same-dimensional 
vectors i.e., the multi-modal 
embedding space

• Assume we have a mini-
batch B = {(I1, T1), (I2, T2), …, 
{(I1, T1)} of size N

26
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 
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CLIP

Given a mini-batch of 𝑁 (image, caption) pairs, both encoders are simultaneously pre-
trained to maximize the cosine similarity of corresponding image-caption embedding 
vectors and minimize all other pairwise cosine similarities

27
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 

Incorrect (but intuitive) 
objective function:
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CLIP
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CLIP
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Correct objective function:
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Can be interpreted in terms of two conditional probability distributions:
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CLIP for Zero Shot Classification
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Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 

Among the N labels, choose 
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SigLIP

• The CLIP objective function works fine 
if your batch sizes are small enough to 
fit on a single machine

• But it creates communication overhead 
if you need to spread the above matrix 
across many machines

• SigLIP partly solves this issue by 
replacing the softmax with a sigmoid

31
Figure from Radford et al. (2021) https://arxiv.org/pdf/2103.00020 
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SigLIP objective function:
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where yij =

{

1 if i = j (matching pair)

0 otherwise.

and w = exp(w′) and b are learnable parameters
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VLMS WITH TEXT-ONLY DECODERS
(VLMs that read text/images but only write text)
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PaliGemma
• SigLIP is a variant of CLIP
• Gemma is a 2B LLM 

(open source 
counterpart to Gemini)

• Linear projection is 
creating image 
embeddings, but they 
live in the same high 
dimensional space as the 
word embeddings

• The LLM has to figure 
out how to use the 
image embeddings in 
some useful way so as to 
maximize the likelihood 
of the correct text 
response

33
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Qwen-VL
Freezing subsets of the 
model parameters 
(corresponding to 
pretrained submodels) is 
common during training
Qwen-VL as an example:
1. Qwen-VL first freezes 

the LLM in order to 
learn effective image 
embeddings that align 
with the word space

2. Then, all parameters 
are unfrozen for a 
while

3. Finally, it freezes only 
the ViT image encoder

34
Figure from https://arxiv.org/pdf/2308.12966 



Qwen-VL
Just as LLMs are typically 
evaluated on a variety of 
text benchmarks 
assessing the 
understanding / 
generation abilities of the 
model…

…VLMs are evaluated on 
a variety of text/image 
benchmarks assessing 
their ability to interpret 
and respond to queries 
about multimodal data.

35
Figure from https://arxiv.org/pdf/2308.12966 



Llama 3.2 Vision

36
Figure from https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

Just as LLMs are typically 
evaluated on a variety of 
text benchmarks 
assessing the 
understanding / 
generation abilities of the 
model…

…VLMs are evaluated on 
a variety of text/image 
benchmarks assessing 
their ability to interpret 
and respond to queries 
about multimodal data.



VISION LANGUAGE MODELS (VLMS)
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VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into embedding vectors, then pass those vectors into a 
decoder-only transformer and do next (text) token prediction

� Two common encoders:

�VQ-VAE encoder followed 
by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors

�CLIP encoder, that directly 
learns an embedding 

vector using a contrastive 
pre-training objectiveSlide from Henry Chai 38Source: https://huggingface.co/blog/vlms 

https://huggingface.co/blog/vlms


VLM: 
Architecture

� High-level idea: convert both the image and the text inputs 

into integers, then pass those integers into a decoder-only 
transformer and do next (text or image) token prediction

� Two common encoders:

�VQ-VAE encoder followed 
by an embedding layer that 

converts the discrete 
tokens into dense 

numerical vectors

�CLIP encoder, that directly 
learns an embedding 

vector using a contrastive 
pre-training objectiveSlide from Henry Chai 39Source: https://huggingface.co/blog/vlms 

Text + Image Decoder

11 42 7 3 52 78 56 89

https://huggingface.co/blog/vlms


Why VLMs with 
Integer Tokens?
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VQ-VAES
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Recall: Parti

Slide from Henry Chai 43Source: https://arxiv.org/pdf/2206.10789 

https://arxiv.org/pdf/2206.10789


Recall: Image 
Tokenization

Slide from Henry Chai 44Source: https://arxiv.org/pdf/2110.04627 

https://arxiv.org/pdf/2110.04627


How can we 
(pre-)train 
these models 
given the non-
differentiable 
quantization 
operation? 

Slide from Henry Chai 45Source: https://arxiv.org/pdf/2110.04627 
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Vector-Quantized VAEs
Slide from Henry Chai 46Source: https://arxiv.org/pdf/1711.00937 
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Vector-Quantized VAEs
Slide from Henry Chai 47Source: https://arxiv.org/pdf/1711.00937 

� Embedding space consists of 𝐾 𝐷-dimensional latent 

vectors {𝑒!, … , 𝑒"} which are learned during training

� The indices 1,… , 𝐾  of each latent vector correspond 
to the “image tokens” in some fixed-length codebook

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
Slide from Henry Chai 48Source: https://arxiv.org/pdf/1711.00937 

� The encoder (e.g., a ResNet-like CNN) maps images 

to 𝑁 𝐷-dimensional vectors 

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
Slide from Henry Chai 49Source: https://arxiv.org/pdf/1711.00937 

� Each output vector 

from the encoder is 
mapped to the nearest 
latent vector to get the 

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒 )

)

https://arxiv.org/pdf/1711.00937


Vector-Quantized VAEs
Slide from Henry Chai 50Source: https://arxiv.org/pdf/1711.00937 

� The decoder takes the discretized representation and recreates the original image

https://arxiv.org/pdf/1711.00937


Wait, how would we take the gradient through the argmin? 

Slide from Henry Chai 51Source: https://arxiv.org/pdf/1711.00937 

� Each output vector 

from the encoder is 
mapped to the nearest 
latent vector to get the 

discretized encoding
𝑧# 𝑥 = 	 argmin

$	∈ $!,…,$"
𝑧$ 𝑥 − 𝑒 )

)

https://arxiv.org/pdf/1711.00937


Straight-through Estimator 
Slide from Henry Chai 52Source: https://arxiv.org/pdf/1711.00937 

� Treat the gradient w.r.t. 𝑧# 𝑥  as an estimate of the gradient w.r.t. 𝑧$ 𝑥  

https://arxiv.org/pdf/1711.00937


Straight-through Estimator 
Slide from Henry Chai 53Source: https://arxiv.org/pdf/1711.00937 

� Intuition: the closer 𝑧# 𝑥  and 𝑧$ 𝑥 , the better the estimate (under certain assumptions)

https://arxiv.org/pdf/1711.00937


VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

where sg is the stop-gradient operator which fixes the 
argument to be non-updated constant 

Slide from Henry Chai 54



VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

� The first term is the typical reconstruction error objective

Slide from Henry Chai 55



VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

� The second term drives the latent vector to be closer to the 
encoder output vector that was mapped to it

Slide from Henry Chai 56



VQ-VAE 
Objective 
Function

� Intuition: we want the latent vectors to correspond to 

relevant points in the embedding space i.e., ones that are 
near the outputs of the encoder

� However, we also want the encoder to respect the latent 

vectors and not overfit to the training dataset

� Idea: augment the standard VAE objective with some 

regularizing terms that drive the two closer to each other

− log 𝑝* 𝑥 𝑧# 𝑥 + 𝛽 sg 𝑧$ 𝑥 − 𝑧# 𝑥 )
)

log 𝑝* 𝑥 𝑧# 𝑥 	 + 𝛽 𝑧$ 𝑥 − sg 𝑧# 𝑥 )
)

� The third term drives the encoder to output vectors closer to 
the latent vectors

Slide from Henry Chai 57



CLIP vs. VQ-VAEs

� VLMs with VQ-VAE encoders (or any vector quantized 

image model) can also generate images in addition to 
text by defining a loss over the image codebook tokens

� CLIP does not discretize its image embedding so VLMs 

with CLIP-based encoders cannot (naturally) define a 
loss over images and thus, can only output text

� However, CLIP embeddings are more expressive than 
the discrete VQ-VAE encodings so can lead to improved 

performance in some settings

Slide from Henry Chai 58



VLMS WITH TEXT AND IMAGE DECODERS
(VLMs that read text/images and write text/images)
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Why VLMs with 
Integer Tokens?
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Large World Model

62
Figure from http://arxiv.org/abs/2402.08268 

• The Large World Model (LWM) is an example of a Transformer LM that works with both 
discrete text tokens and discrete image tokens

• Key idea: 
– pretrain your image tokenizer/de-tokenizer (VQGAN)
– any images in your data can be converted to their discrete representations ahead of time
– then train your Transformer LM as you would any other LM on discrete tokens
– at test time, whenever you see a sequence of image tokens, convert them back to an image

How old is this dog? 
Provide an image 

showing the 
probability distribution 
over its likely age and 

your best guess 

Output Out.



Large World Model

63
Figure from http://arxiv.org/abs/2402.08268 



Gemini
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Gemini
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