

10-423/10-623/10-723 Generative Al

Machine Learning Department School of Computer Science Carnegie Mellon University

Vision-Language Models (VLMs)

Matt Gormley & Aran Nayebi Lecture 13 October 8, 2025

Reminders

- Homework 3: Applying and Adapting LLMs
 - Out: Sat, Oct 4
 - Due: Thu, Oct 23 at 11:59pm

(Preview)

LATENT DIFFUSION MODEL (LDM)

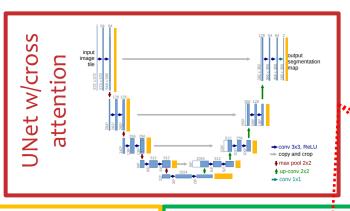
Latent Diffusion Model

Motivation:

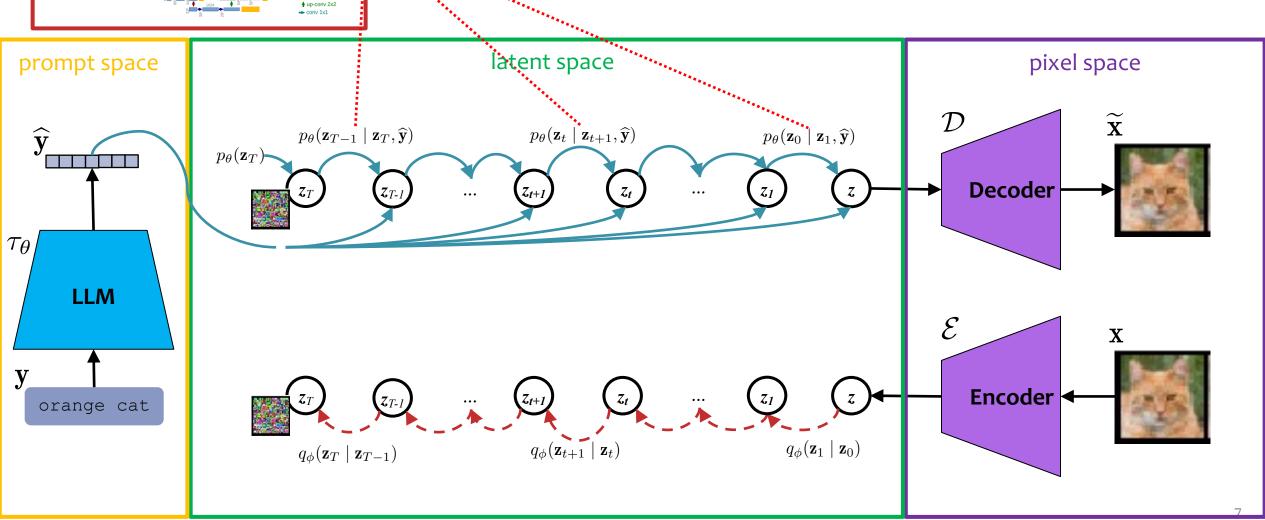
- diffusion models typically operate in pixel space
- yet, training typically takes hundreds of GPU days
 - 150 1000 V100 days [Guided Diffusion]
 (Dhariwal & Nichol, 2021)
 - 256 TPU-v4s for 4 days = 1000 TPU days [Imagen](Sharia et al., 2022)
- inference is also slow
 - 50k samples in 5 days on A100 GPU [Guided Diffusion] (Dhariwal & Nichol, 2021)
 - 15 seconds per image

Key Idea:

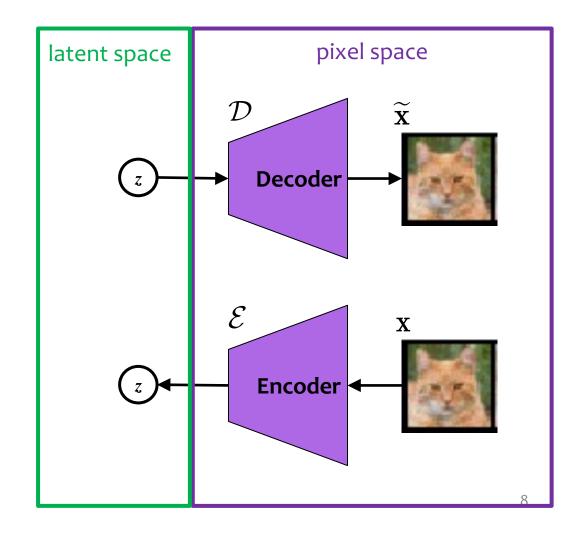
- train an autoencoder (i.e. encoder-decoder model) that learns an efficient latent space that is perceptually equivalent to the data space
- keeping the autoencoder fixed, train a diffusion model on the latent representations of real images z_o = encoder(x)
 - forward model: latent representation z_o → noise z_T
 - reverse model: noise z_T → latent representation
 z_o
- to generate an image:
 - sample noise z_T
 - apply reverse diffusion model to obtain a latent representation z_o
 - decode the latent representation to an image x
- condition on prompt via cross attention in latent space



Latent Diffusion Model (LDM)

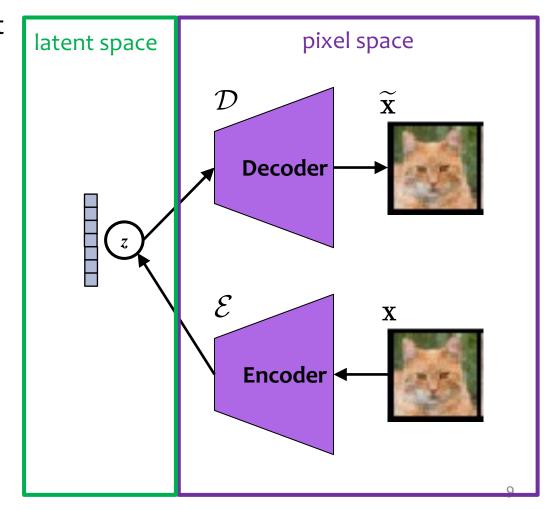


LDM: Autoencoder



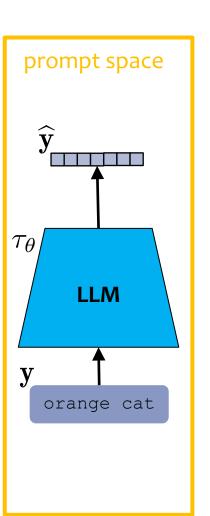
LDM: Autoencoder

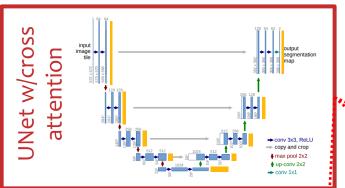
- The autoencoder is chosen so that it can project high dimensional images (e.g. 1024x1024) down to low dimensional latent space and faithfully project back up to pixel space
- The original LDM paper considers two options:
 - a VAE-like model (regularizes the noise towards a Gaussian)
 - 2. a VQGAN (performs vector quantization in the decoder; i.e., it uses a discrete codebook)
- This model is trained ahead of time just on raw images (no text prompts) and then frozen
- The frozen encoder-decoder can be reused for all subsequent LDM training



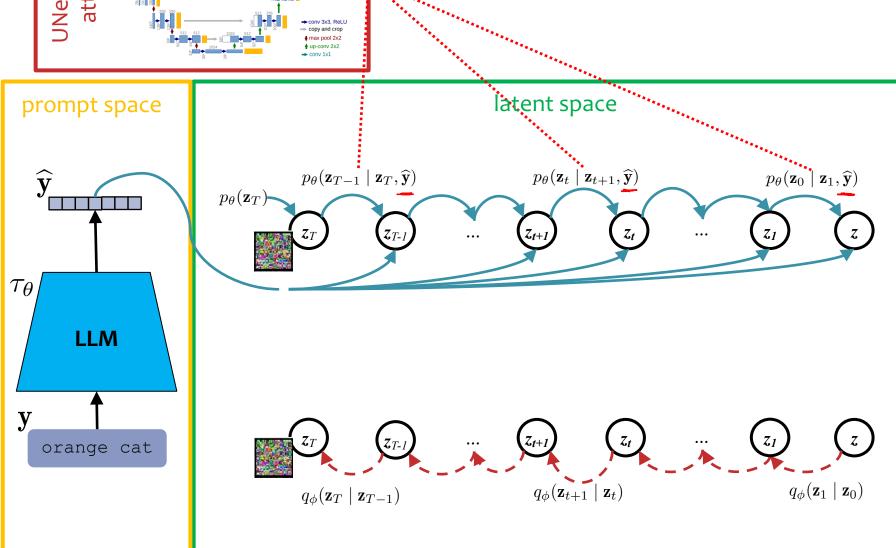
LDM: the Prompt Model

- The prompt model is just a Transformer LM
- We learn its parameters alongside the diffusion model
- The goal is to build up good representations of the text prompts such that they inform the latent diffusion process

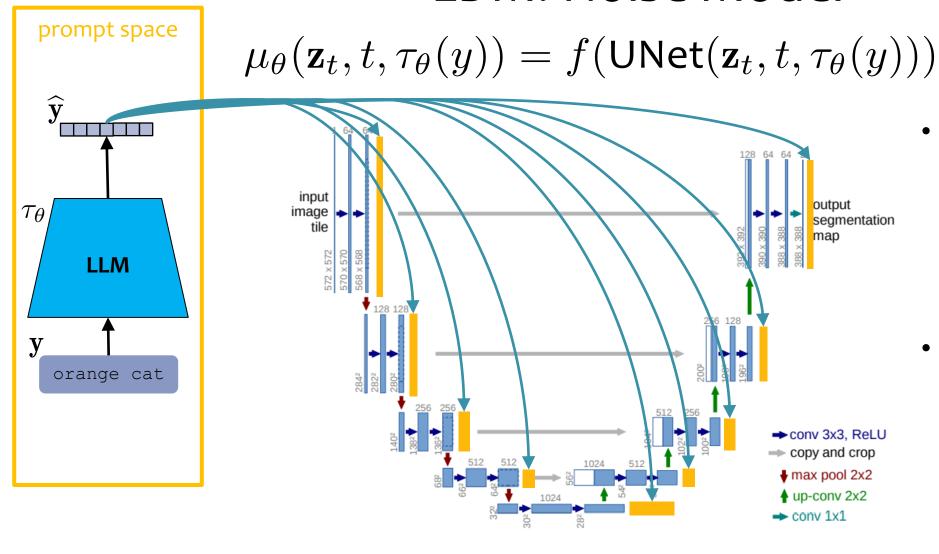




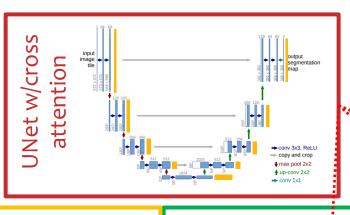
LDM: with DDPM



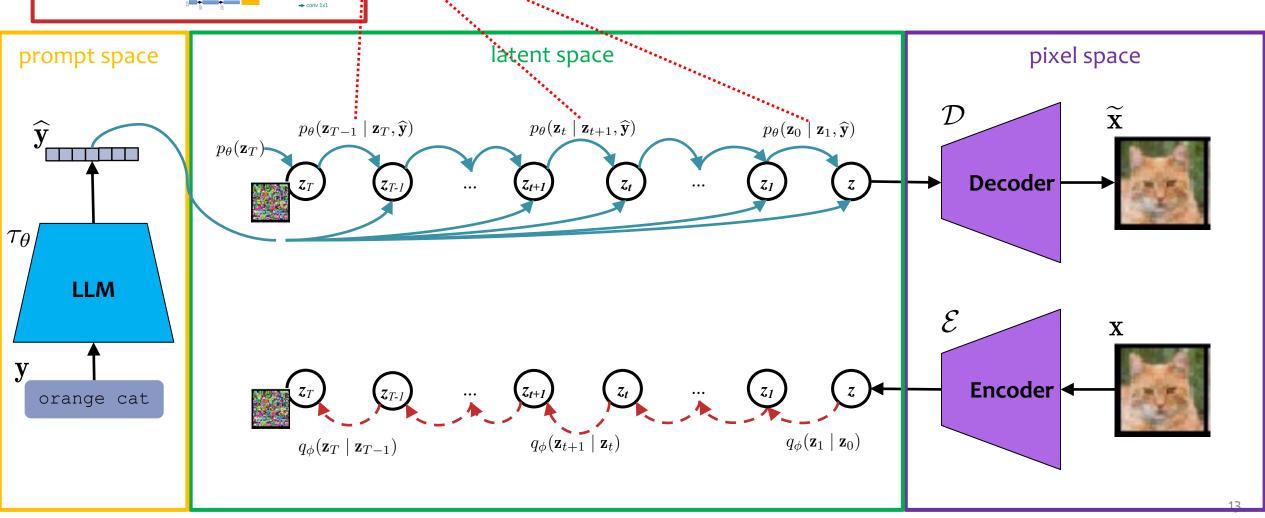
LDM: Noise Model



- The noise model includes **cross attention** (yellow boxes) to the representation of the prompt text
- During training we optimize both the parameters of the UNet noise model and the parameters of the LLM simultaneously



Latent Diffusion Model (LDM)



LDM: Learning the Diffusion Model + LLM

Given a training sample z_0 , we want

$$p_{\theta}(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \tau_{\theta}(y))$$

to be as close as possible to

$$q(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \mathbf{z}_0)$$

Intuitively, this makes sense: if the learned reverse process is supposed to subtract away the noise, then whenever we're working with a specific \mathbf{z}_0 it should subtract it away exactly as exact reverse process would have.

Objective Function:

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[\| \epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y)) \|_2^2 \right]$$

Algorithm 1 Training

```
1: initialize \theta
2: for e \in \{1, \dots, E\} do
3: for x_0, y \in \mathcal{D} do
4: t \sim \mathsf{Uniform}(1, \dots, T)
5: \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
6: \mathbf{x}_t \leftarrow \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}
7: \ell_t(\theta) \leftarrow \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t, \tau_{\theta}(\mathbf{y}))\|^2
8: \theta \leftarrow \theta - \nabla_{\theta} \ell_t(\theta)
```

VISION LANGUAGE MODELS (VLMS)

Multimodal Models

- Previously: Text-to-image models adapt generative models for vision in order to guide their output toward some desired target using natural language
 - Output is still an image

- Today: visual language models (VLMs) adapt generative models for text in order to allow them to interact with images (as well as text) as input
 - Output is (typically) still text

possibly images too

Slide from Henry Chai

- Common benchmarks for VLMs include
 - Visual reasoning: given an image (or a pair of images) determine if some natural language statement about the image(s) is true or false
 - Visual grounding: locate an object in some image given a natural language description
 - Visual question answering: given an image (or images), respond to arbitrary, potentially openended questions about the content.
 - Caption generation: create natural language descriptions of content of some image

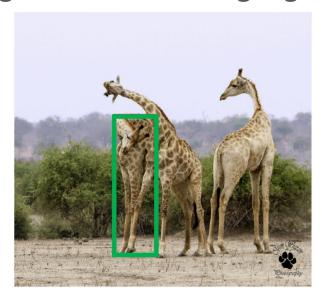
Slide from Henry Chai

- Common benchmarks for VLMs include
 - Visual reasoning: given an image (or a pair of images) determine if some natural language statement about the image(s) is true or false

The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in back-to-back caps on green foliage.

- Common benchmarks for VLMs include
 - Visual reasoning: given an image (or a pair of images) determine if some natural language statement about the image(s) is true or false
 - Visual grounding: locate an object in some image given a natural language description



RefCOCO:

- 1. giraffe on left
- 2. first giraffe on left

RefCOCO+:

- 1. giraffe with lowered head
- 2. giraffe head down

RefCOCOg:

- 1. an adult giraffe scratching its back with its horn
- 2. giraffe hugging another giraffe

Common benchmarks for VLMs include

 Visual question answering: given an image (or images), respond to arbitrary, potentially openended questions about the content.

Common benchmarks for VLMs include

Ground Truth Caption: A little boy runs away from the approaching waves of the ocean.

Generated Caption: A young boy is running on the beach.

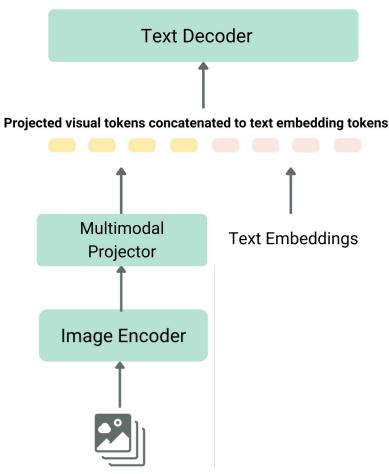
Ground Truth Caption: A brunette girl wearing sunglasses and a yellow shirt.

Generated Caption: A woman in a black shirt and sunglasses smiles.

 Caption generation: create natural language descriptions of content of some image

VLM: Architecture

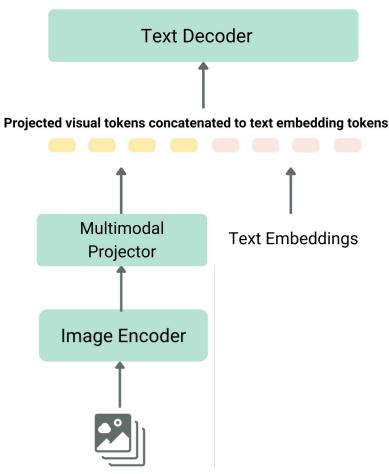
 High-level idea: convert both the image and the text inputs into embedding vectors, then pass those vectors into a decoder-only transformer and do next (text) token prediction



- Two common encoders:
 - VQ-VAE encoder followed by an embedding layer that converts the discrete tokens into dense numerical vectors
 - CLIP encoder, that directly learns an embedding vector using a contrastive pre-training objective

VLM: Architecture

 High-level idea: convert both the image and the text inputs into embedding vectors, then pass those vectors into a decoder-only transformer and do next (text) token prediction

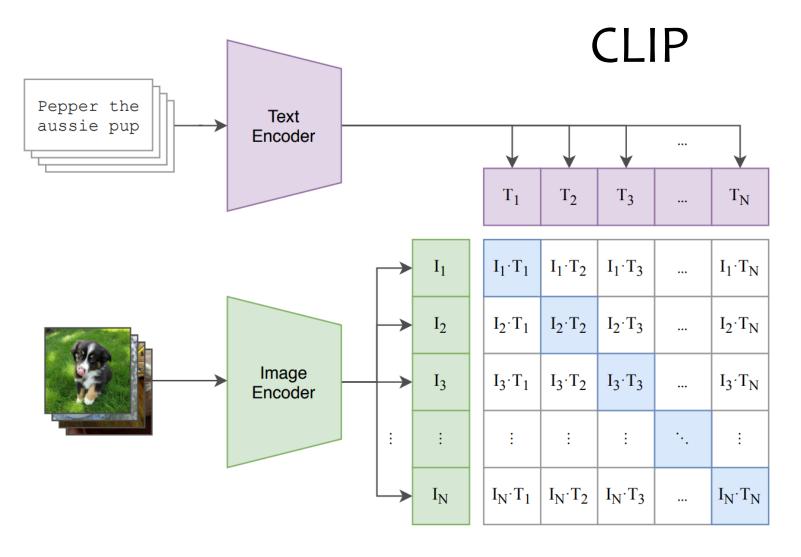


- Two common encoders:
 - VQ-VAE encoder followed by an embedding layer that converts the discrete tokens into dense numerical vectors
 - CLIP encoder, that directly learns an embedding vector using a contrastive pre-training objective

IMAGE ENCODERS

CLIP Pepper the **Text** aussie pup Encoder T_2 T_3 T_N $I_1 \cdot T_1$ $I_1 \cdot T_2$ $I_1 \cdot T_3$ $I_1 \cdot T_N$ $I_2 \cdot T_2$ $I_2 \cdot T_3$ $I_2 \cdot T_1$ $I_2 \cdot T_N$ **Image** $I_3 \cdot T_1$ $I_3 \cdot T_2$ $I_3 \cdot T_3$ $I_3 \cdot T_N$ Encoder $I_N \cdot T_1$ $I_N \cdot T_2$ $I_N \cdot T_3$ I_N $I_N \cdot T_N$

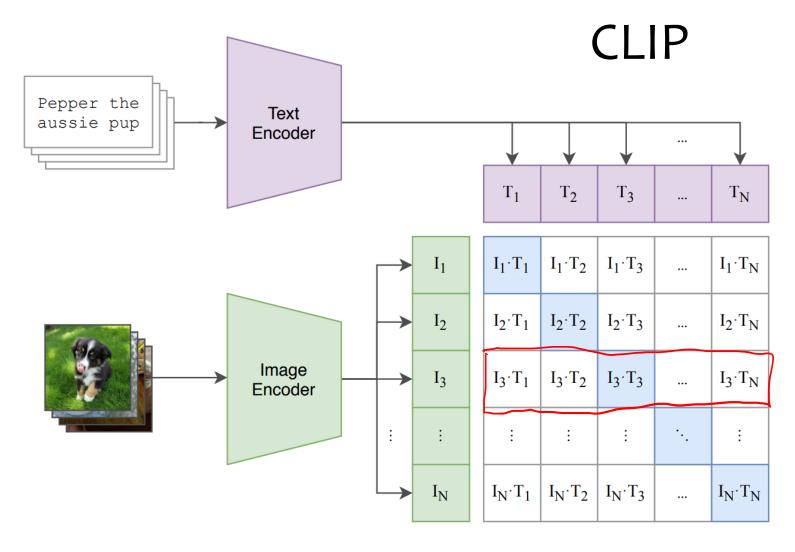
- The text encoder is, e.g., an encoder-only transformer
- The image encoder is, e.g., a ResNet-like CNN or ViT
- Both are linearly projected into same-dimensional vectors i.e., the multi-modal embedding space
- Assume we have a minibatch B = {(I₁, T₁), (I₂, T₂), ..., {(I₁, T₁)} of size N



Incorrect (but intuitive) objective function:

$$\max \left[\sum_{i=1}^{N} I_i^{\top} T_i - \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} I_i^{\top} T_j \right]$$

Given a mini-batch of N (image, caption) pairs, both encoders are simultaneously pretrained to maximize the cosine similarity of corresponding image-caption embedding vectors and minimize all other pairwise cosine similarities



Correct objective function:

$$\max \sum_{i=1}^{N} \left[\log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_i^{\top} T_j}{\tau}\right)} + \log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_j^{\top} T_i}{\tau}\right)} \right]$$

Given a mini-batch of N (image, caption) pairs, both encoders are simultaneously pretrained to maximize the cosine similarity of corresponding image-caption embedding vectors and minimize all other pairwise cosine similarities

CLIP

Correct objective function:

Can be interpreted in terms of two conditional probability distributions:

1. Image-to-Text distribution:

stribution:
$$p(T_j \mid I_i) = \frac{\exp\left(\frac{I_i^\top T_j}{\tau}\right)}{\sum_{k=1}^N \exp\left(\frac{I_i^\top T_k}{\tau}\right)} \qquad \max \sum_{i=1}^N \left[\log\frac{\exp\left(\frac{I_i^\top T_i}{\tau}\right)}{\sum_{j=1}^N \exp\left(\frac{I_i^\top T_j}{\tau}\right)}\right] \qquad (I_i^\top T_i)$$

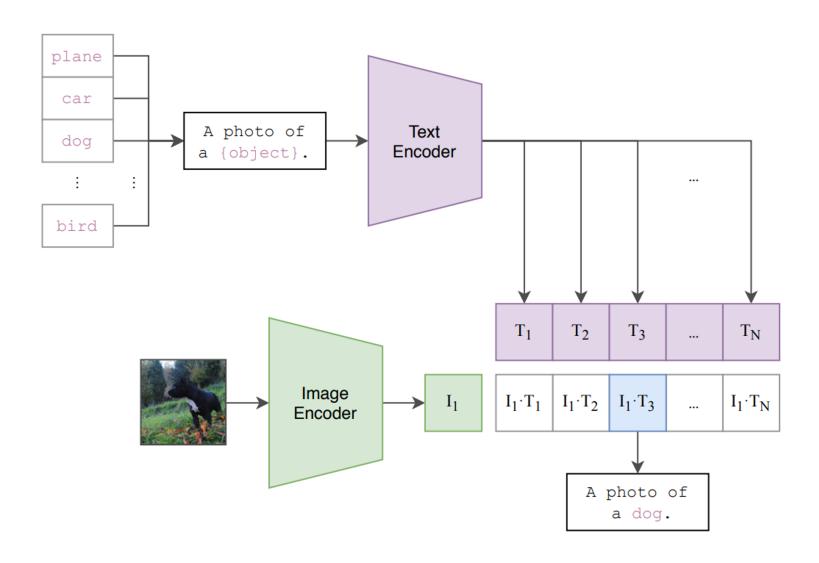
2. Text-to-Image distribution:

The bidirecional contrastive loss maximizes the log-likelihood of the correct (matched) pairs under both distributions:

$$\sum_{i=1}^{N} \log p(T_i \mid I_i) + \log p(I_i \mid T_i)$$

$$\max \sum_{i=1}^{N} \left[\log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_i^{\top} T_j}{\tau}\right)} + \log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_j^{\top} T_i}{\tau}\right)} \right]$$

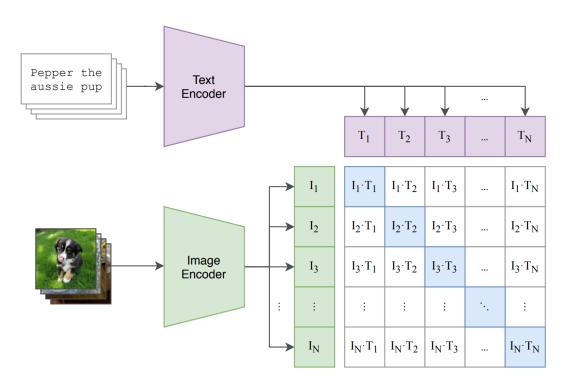
CLIP for Zero Shot Classification



Among the N labels, choose the one that has the highest probability:

$$\hat{y} = \underset{i}{\operatorname{argmax}} P(T_i \mid I_1)$$

$$= \underset{i}{\operatorname{argmax}} \frac{\exp\left(\frac{I_1^\top T_i}{\tau}\right)}{\sum_{j=1}^N \exp\left(\frac{I_1^\top T_j}{\tau}\right)}$$



- The CLIP objective function works fine if your batch sizes are small enough to fit on a single machine
- But it creates communication overhead if you need to spread the above matrix across many machines
- SigLIP partly solves this issue by replacing the softmax with a sigmoid

SigLIP

CLIP objective function:

$$\sum_{i=1}^{N} \left[\log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_i^{\top} T_j}{\tau}\right)} + \log \frac{\exp\left(\frac{I_i^{\top} T_i}{\tau}\right)}{\sum_{j=1}^{N} \exp\left(\frac{I_j^{\top} T_i}{\tau}\right)} \right]$$

SigLIP objective function:

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} \log \frac{1}{1 + \exp(y_{ij}(-wI_i^{\top}T_j + b))}$$

where
$$y_{ij} = \begin{cases} 1 & \text{if } i = j \text{ (matching pair)} \\ \text{Otherwise.} \end{cases}$$

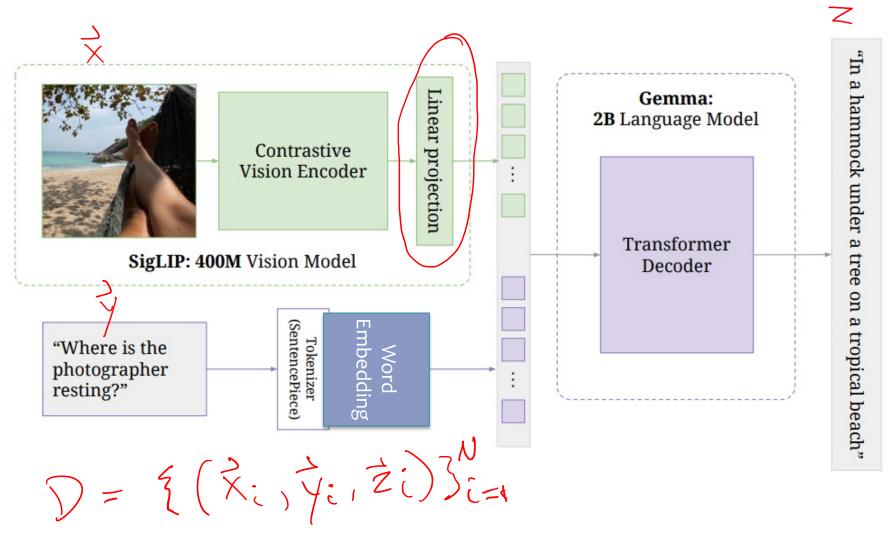
and $w = \exp(w')$ and b are learnable parameters

(VLMs that read text/images but only write text)

VLMS WITH TEXT-ONLY DECODERS

PaliGemma

- SigLIP is a variant of CLIP
- Gemma is a 2B LLM (open source counterpart to Gemini)
- Linear projection is creating image embeddings, but they live in the same high dimensional space as the word embeddings
- The LLM has to figure out how to use the image embeddings in some useful way so as to maximize the likelihood of the correct text response



Qwen-VL

Freezing subsets of the model parameters (corresponding to pretrained submodels) is common during training Qwen-VL as an example:

- Qwen-VL first freezes the LLM in order to learn effective image embeddings that align with the word space
- Then, all parameters are unfrozen for a while
- Finally, it freezes only the ViT image encoder

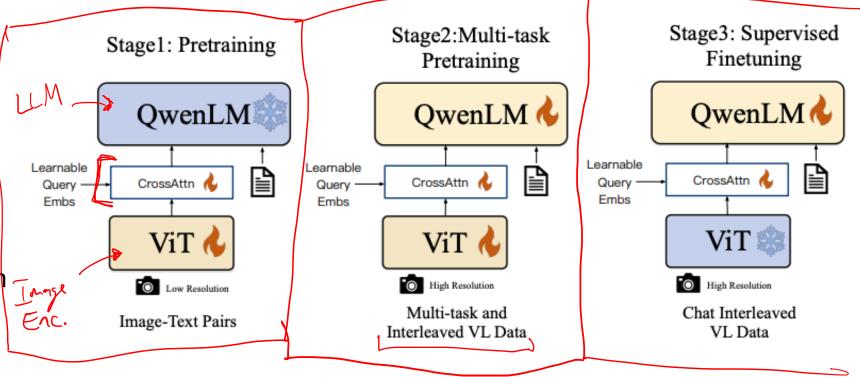
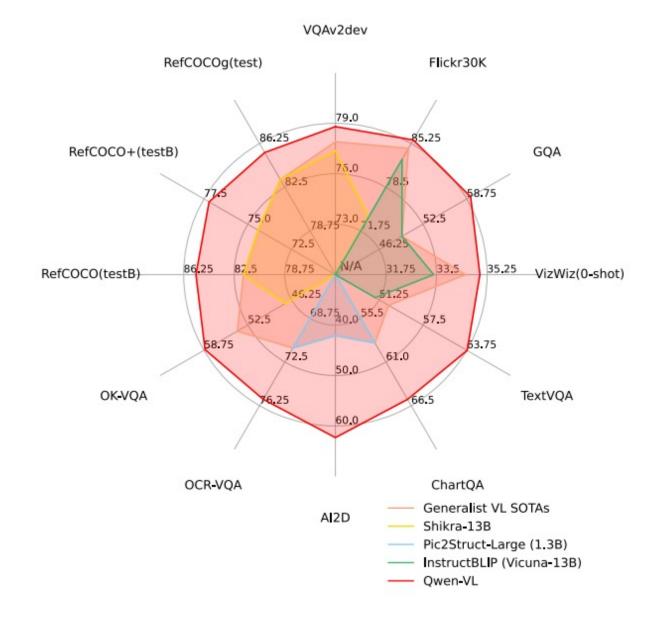


Figure 3: The training pipeline of the Qwen-VL series.

Qwen-VL

Just as LLMs are typically evaluated on a variety of text benchmarks assessing the understanding / generation abilities of the model...

... VLMs are evaluated on a variety of text/image benchmarks assessing their ability to interpret and respond to queries about multimodal data.



Llama 3.2 Vision

Just as LLMs are typically evaluated on a variety of text benchmarks assessing the understanding / generation abilities of the model...

... VLMs are evaluated on a variety of text/image benchmarks assessing their ability to interpret and respond to queries about multimodal data.

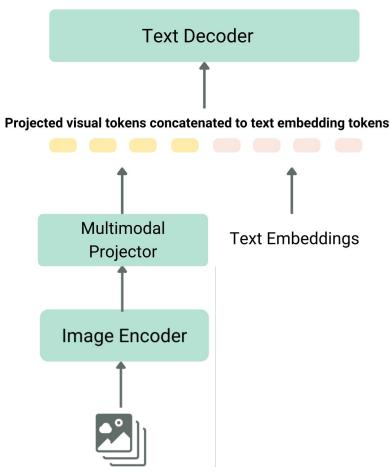
Vision instruction-tuned benchmarks

Modality	Benchmark	Llama 3.2 11B	Llama 3.2 90B	Claude 3 – Haiku	GPT-4o-mini
Image	College-level Problems and Mathematical Reasoning MMMU (val. 0-shot CoT, micro avg accuracy)	50.7	60.3	50.2	59.4
	MMMU-Pro, Standard (10 opts, test)	33.0	45.2	27.3	42.3
	MMMU-Pro, Vision (test)	23.7	33.8	20.1	36.5
	MathVista (testmini)	51.5	57.3	46.4	56.7
	Charts and Diagram Understanding ChartQA (test, 0-shot CoT relaxed accuracy)*	83.4	85.5	81.7	s=1
	Al2 Diagram (treet)*	91.1	92.3	86.7	-
	DocVQA (test, ANLS)*	88.4	90.1	88.8	i —
	General Visual Question Answering VQAv2 (test)	75.2	78.1	-	o
Text	General MMLU (0-shot, CoT)	73.0	86.0	75.2 (5-shot)	82.0
	MATH (0-shot, CoT)	51.9	68.0	38.9	70.2
	Reasoning GPQA (0-shot, CoT)	32.8	46.7	33.3	40.2
	Multillingual MGSM (0-shot, CoT)	68.9	86.9	75.1	87.0

VISION LANGUAGE MODELS (VLMS)

VLM: Architecture

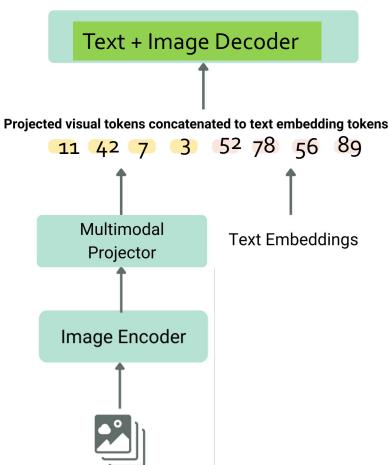
 High-level idea: convert both the image and the text inputs into embedding vectors, then pass those vectors into a decoder-only transformer and do next (text) token prediction



- Two common encoders:
 - VQ-VAE encoder followed by an embedding layer that converts the discrete tokens into dense numerical vectors
 - CLIP encoder, that directly learns an embedding vector using a contrastive pre-training objective

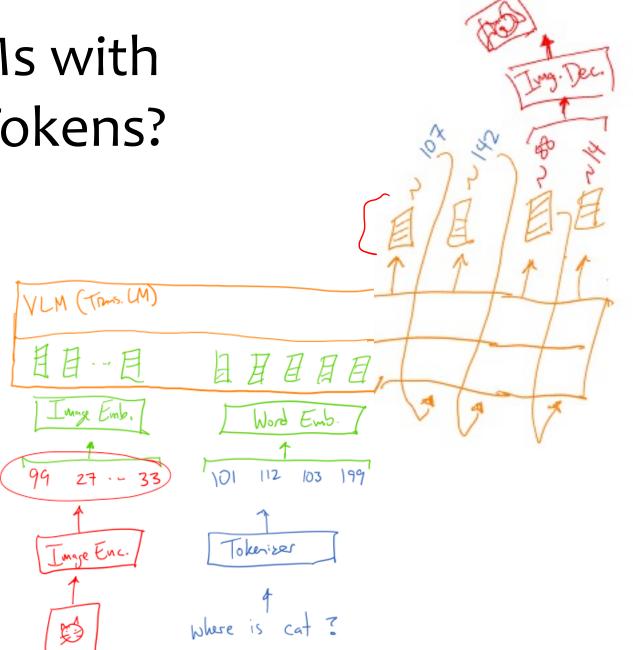
VLM: Architecture

 High-level idea: convert both the image and the text inputs into integers, then pass those integers into a decoder-only transformer and do next (text or image) token prediction



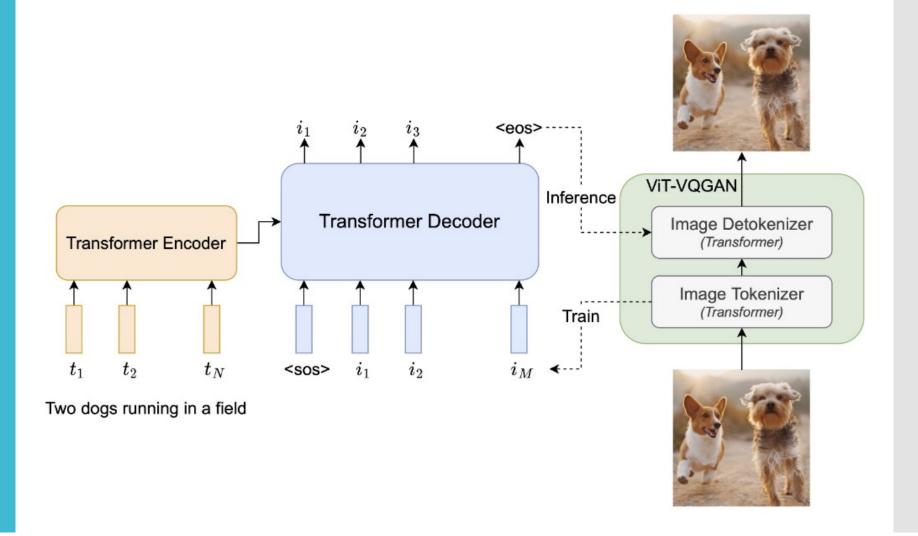
- Two common encoders:
 - VQ-VAE encoder followed by an embedding layer that converts the discrete tokens into dense numerical vectors
 - CLIP encoder, that directly learns an embedding vector using a contrastive pre-training objective

Why VLMs with Integer Tokens?



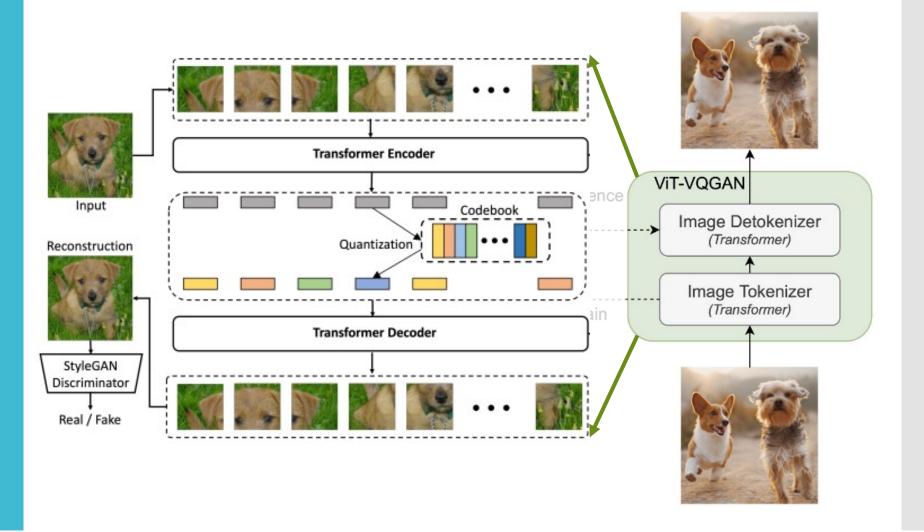
VQ-VAES

Recall: Parti



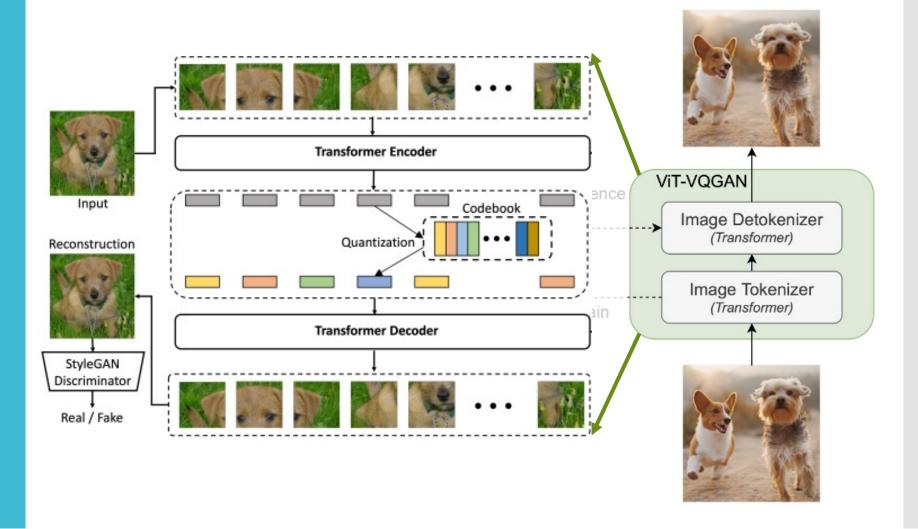
Source: https://arxiv.org/pdf/2206.10789

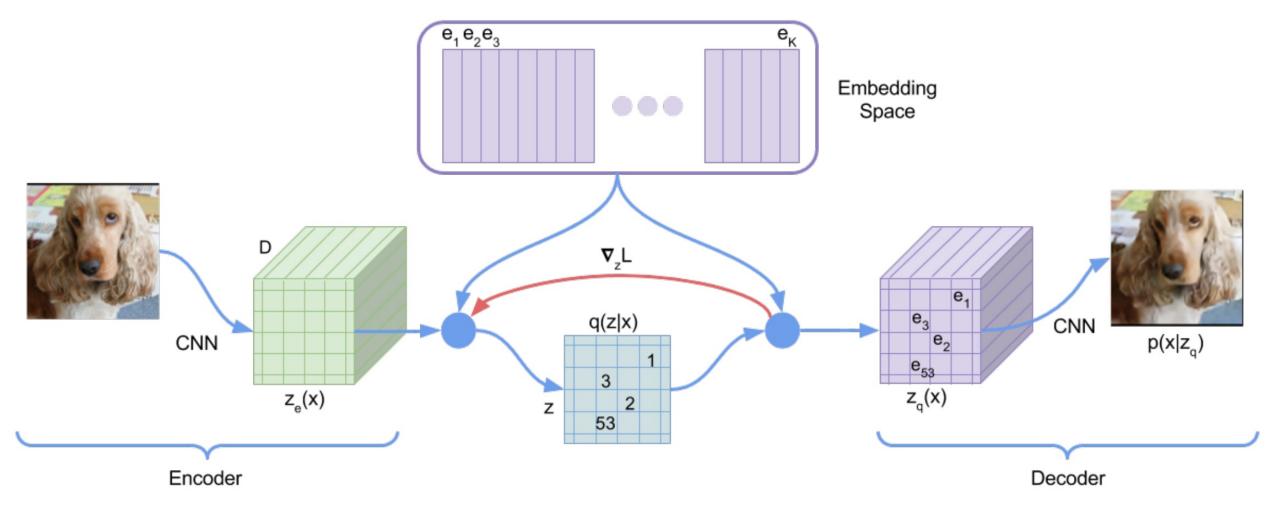
Recall: Image Tokenization

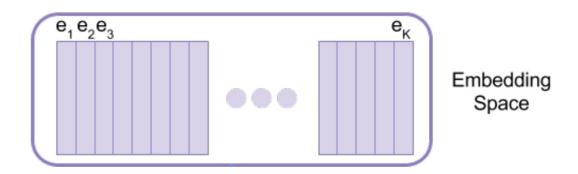


Source: https://arxiv.org/pdf/2110.04627

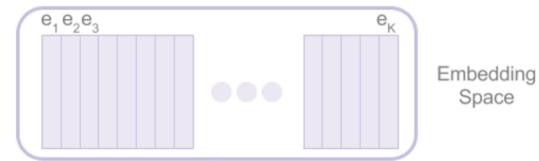
How can we (pre-)train these models given the non-differentiable quantization operation?

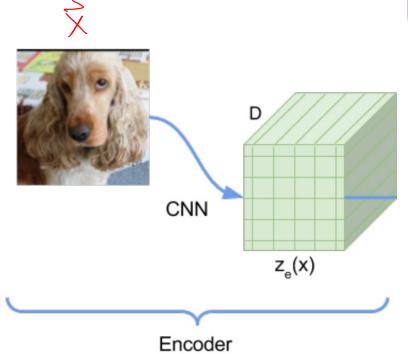




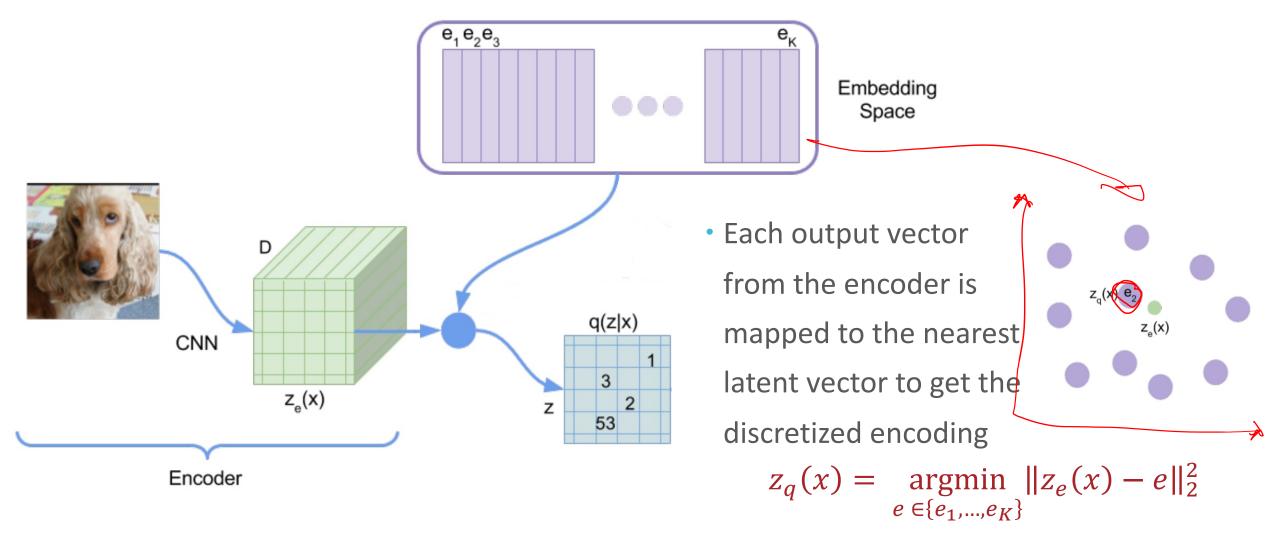


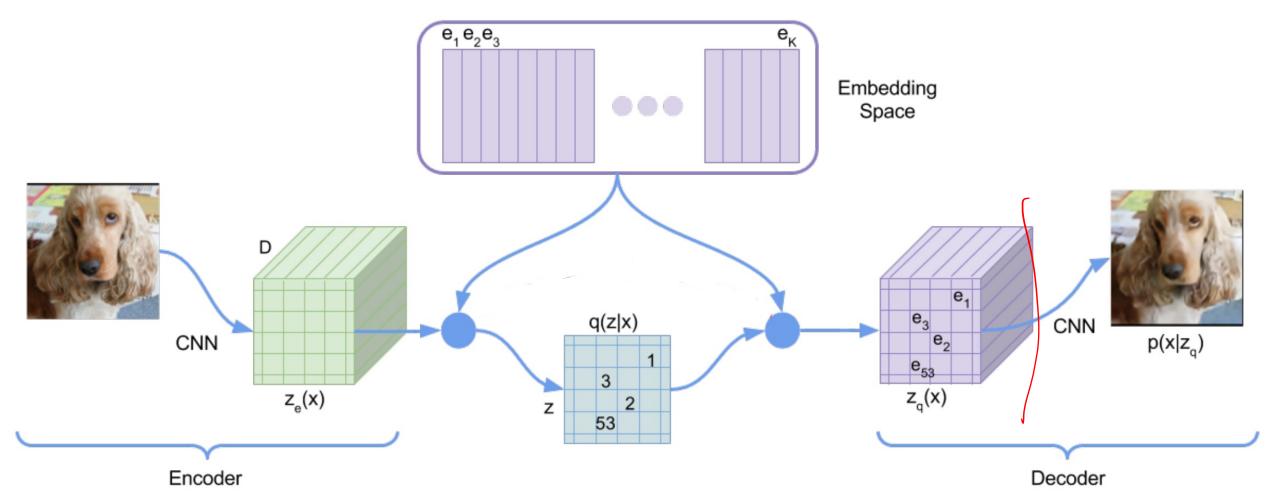
- Embedding space consists of K D-dimensional latent vectors $\{e_1, \ldots, e_K\}$ which are learned during training
- The indices [1, ..., K] of each latent vector correspond to the "image tokens" in some fixed-length codebook



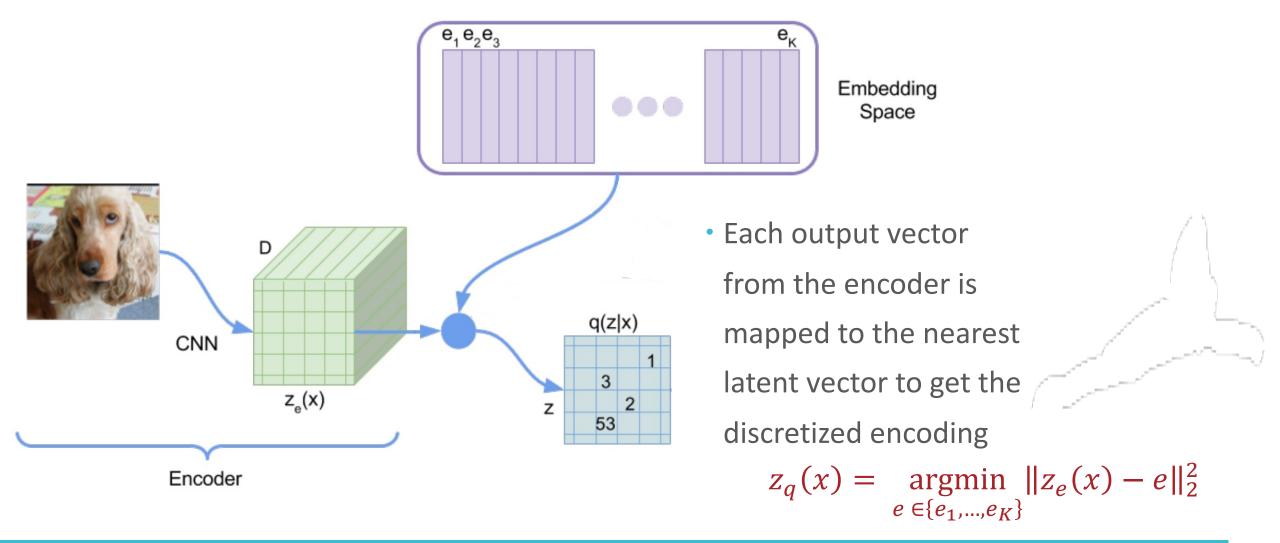


 The encoder (e.g., a ResNet-like CNN) maps images to N D-dimensional vectors

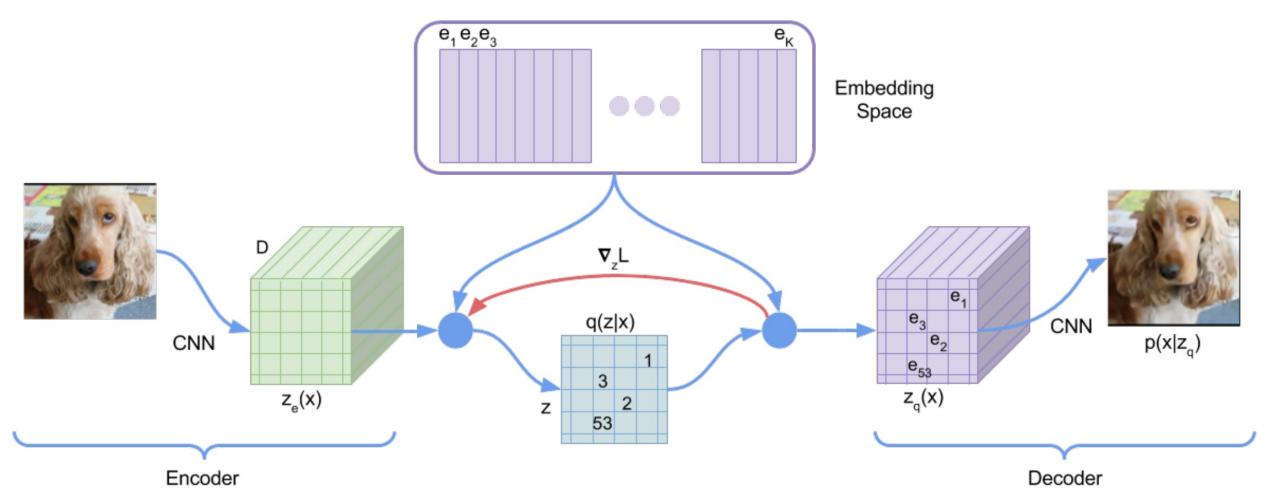




The decoder takes the discretized representation and recreates the original image

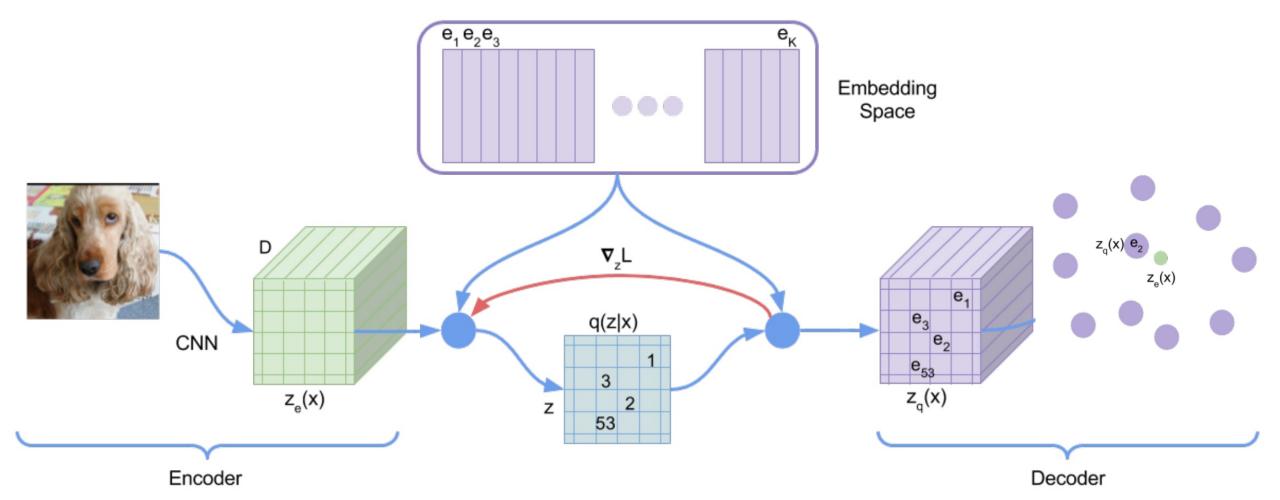


Wait, how would we take the gradient through the argmin?



• Treat the gradient w.r.t. $z_q(x)$ as an estimate of the gradient w.r.t. $z_e(x)$

Straight-through Estimator



• Intuition: the closer $z_q(x)$ and $z_e(x)$, the better the estimate (under certain assumptions)

Straight-through Estimator

- Intuition: we want the latent vectors to correspond to relevant points in the embedding space i.e., ones that are near the outputs of the encoder
- However, we also want the encoder to respect the latent vectors and not overfit to the training dataset
- Idea: augment the standard VAE objective with some regularizing terms that drive the two closer to each other

$$-\log p_{\theta}(x|z_{q}(x)) + \|\operatorname{sg}[z_{e}(x)] - z_{q}(x)\|_{2}^{2} + \beta \|z_{e}(x) - \operatorname{sg}[z_{q}(x)]\|_{2}^{2}$$

where sg is the stop-gradient operator which fixes the argument to be non-updated constant

- Intuition: we want the latent vectors to correspond to relevant points in the embedding space i.e., ones that are near the outputs of the encoder
- However, we also want the encoder to respect the latent vectors and not overfit to the training dataset
- Idea: augment the standard VAE objective with some regularizing terms that drive the two closer to each other

$$-\log p_{\theta}(x|z_{q}(x)) + \|\operatorname{sg}[z_{e}(x)] - z_{q}(x)\|_{2}^{2} + \beta \|z_{e}(x) - \operatorname{sg}[z_{q}(x)]\|_{2}^{2}$$

• The first term is the typical reconstruction error objective

Slide from Henry Chai

- Intuition: we want the latent vectors to correspond to relevant points in the embedding space i.e., ones that are near the outputs of the encoder
- However, we also want the encoder to respect the latent vectors and not overfit to the training dataset
- Idea: augment the standard VAE objective with some regularizing terms that drive the two closer to each other

$$-\log p_{\theta}(x|z_{q}(x)) + \|\operatorname{sg}[z_{e}(x)] - z_{q}(x)\|_{2}^{2} + \beta \|z_{e}(x) - \operatorname{sg}[z_{q}(x)]\|_{2}^{2}$$

 The second term drives the latent vector to be closer to the encoder output vector that was mapped to it

Slide from Henry Chai

- Intuition: we want the latent vectors to correspond to relevant points in the embedding space i.e., ones that are near the outputs of the encoder
- However, we also want the encoder to respect the latent vectors and not overfit to the training dataset
- Idea: augment the standard VAE objective with some regularizing terms that drive the two closer to each other

$$-\log p_{\theta}(x|z_{q}(x)) + \|\operatorname{sg}[z_{e}(x)] - z_{q}(x)\|_{2}^{2} + \beta \|z_{e}(x) - \operatorname{sg}[z_{q}(x)]\|_{2}^{2}$$

 The third term drives the encoder to output vectors closer to the latent vectors

CLIP vs. VQ-VAEs

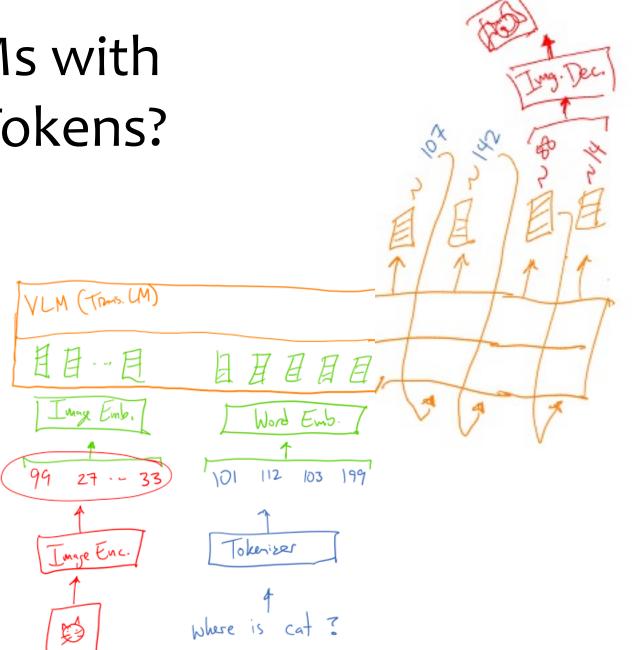
- VLMs with VQ-VAE encoders (or any vector quantized image model) can also generate images in addition to text by defining a loss over the image codebook tokens
- CLIP does not discretize its image embedding so VLMs with CLIP-based encoders cannot (naturally) define a loss over images and thus, can only output text
- However, CLIP embeddings are more expressive than the discrete VQ-VAE encodings so can lead to improved performance in some settings

Slide from Henry Chai

(VLMs that read text/images and write text/images)

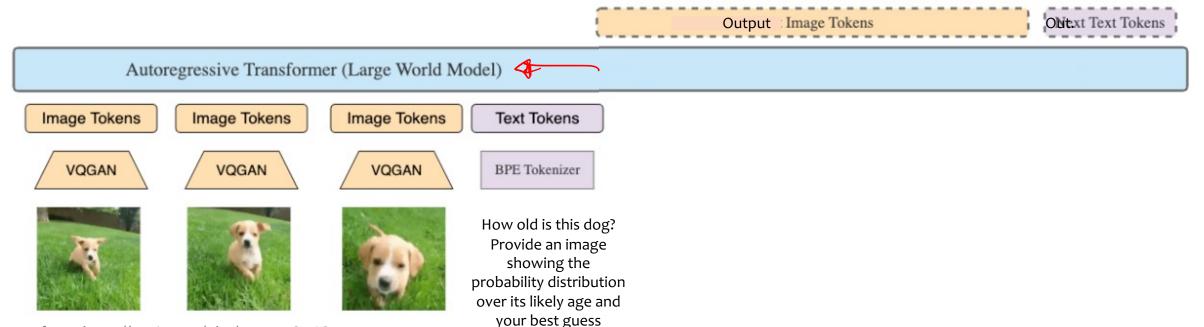
VLMS WITH TEXT AND IMAGE DECODERS

Why VLMs with Integer Tokens?



Large World Model

- The Large World Model (LWM) is an example of a Transformer LM that works with both discrete text tokens and discrete image tokens
- Key idea:
 - pretrain your image tokenizer/de-tokenizer (VQGAN)
 - any images in your data can be converted to their discrete representations ahead of time
 - then train your Transformer LM as you would any other LM on discrete tokens
 - at test time, whenever you see a sequence of image tokens, convert them back to an image



Large World Model

H MORE IMAGE GENERATION EXAMPLES

A blue colored pizza

A cube made of denim

A glass of wine

A yellow and black bus cruising through a rainforest

Oil painting of a couple in formal attire caught in the rain without umbrellas

A couch in a cozy living room

A carrot to the left of broccoli

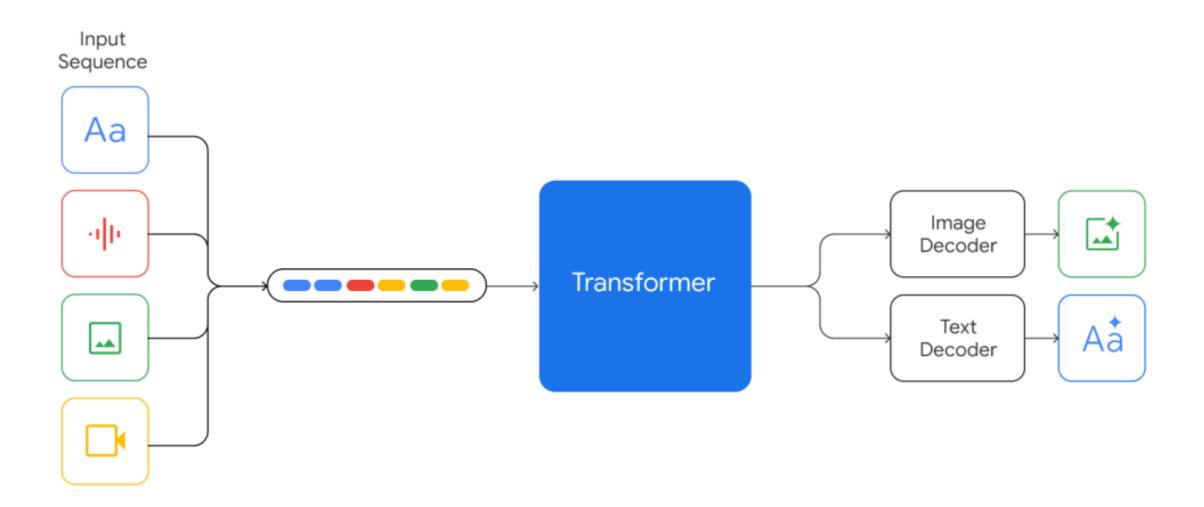
Fisheye lens of a turtle in a forest

A blue colored dog

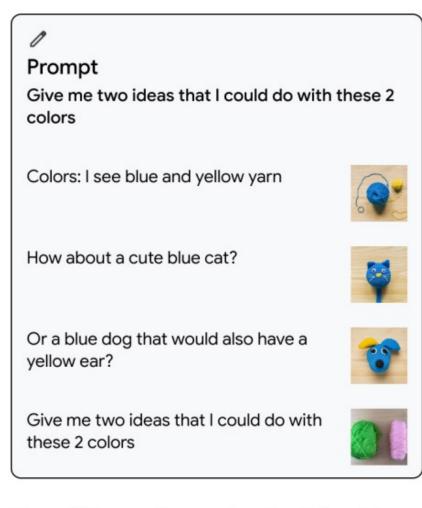
Stained glass windows depicting hamburgers and french fries

A pink car

Gemini



Gemini



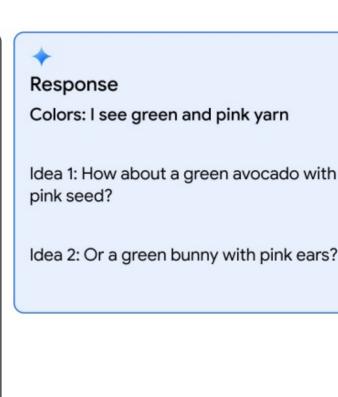


Figure 6 | **Image Generation.** Gemini models can output multiple images interleaved with text given a prompt composed of image and text. In the left figure, Gemini Ultra is prompted in a 1-shot setting with a user example of generating suggestions of creating cat and dog from yarn when given two colors, blue and yellow. Then, the model is prompted to generate creative suggestions with two new colors, pink and green, and it generates images of creative suggestions to make a cute green avocado with pink seed or a green bunny with pink ears from yarn as shown in the right figure.