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1. A simple example of a VAE
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Figure 1: VAE structure; Right: reparameterization trick.

Figure 1 shows the structure of a VAE whose latent distribution is a Gaussian distribution
parameterized by p and ¥. Concretely, the input X will go through the encoder @) to
produce the parameters of the Gaussian distribution. Then, the latent vector z sampled
from the Gaussian distribution will be passed through the decoder P to reconstruct the
input X. On the right side of Figure 1, we show the reparameterization trick: instead
of sampling z from N (u,Y), we sample € ~ N(0, I) and obtain z = p + XTe.
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Figure 2: An example of VAE computation

Figure 2 gives an example of how to compute the parameters u,Y from a input of
dimension 4 with a two-layer neural network as the encoder. Then, it shows how to use
the reparameterization trick to obtain z from the sampled e. Afterwards, z will be passed
through a decoder with a similar architecture to output f(z), which will be supervised
to be close to X with the reconstruction loss.

J(9,%)

— /TZ,BOKQ/ ®§ 5
- ) - EL (22 (2)
:—Y%w@(xﬂ N
y m‘/}o(\
ot 6/10/ \leﬂu/\,l.W’E .
fUlottmct® 213/,(/11 )

4
A et 7,7 -+ E (1t oyl
R

Figure 3: Decomposing ELBO

Last, we showed that the ELBO (Evidence lower bound) can be decomposed into two
terms: a reconstruction term and a KL term, shown in Figure 3. In this way, we can
supervise the encoder (parameterized by 6) and decoder (parameterized by ¢) with these
losses. Thanks to the reparameterization trick, we can back-propagate the gradient of
the loss with respect to the weights of the networks (both the encoder and decoder) and
update them via gradient descent.



