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October 24, 2022

1. Recap of Gibbs Sampling and MH algorithm

MH algorithm summary

• Draws a sample x’ from Q(x′|x), where x is the previous sample.

• The new sample x’ is accepted or rejected with some probabilityA(x′|x) = min(1, P (x′)Q(x|x′)
P (x)Q(x′|x) )

• In case that Q is symmetric ,i.e. Q(x|x′) = Q(x′|x) (Gaussian, etc.), the acceptance

probability simplifies to min(1, P (x′)
P (x)

)

pseudo-code for M-H algorithm

1. Initialize starting state x(0), set t =0

2. Burn-in: while samples have “not converged”:

• x = x(t)

• t = t+1

• sample x∗ ∼ Q(x ∗ |x) (draw proposal)

• sample u ∼ Uniform(0, 1) (draw acceptance threshold)

• if u < A(x ∗ |x): x(t) = x∗ (accept, make state transition)

• else: x(t) = x (reject, stay in current state)

3. Takes samples from P (x): after observing convergence, do the same as 2 to sample
from the distribution.

Gibbs sampling

• Let x(1) be the initial assignment to variables.

• Set t = 1

• while true:

– for i = 1...J:

∗ sample x
(t+1)
i ∼ p(xi|{x(t)

j (j ̸= i))

∗ set x
(t+1)
i to x

(t)
i

∗ t = t+1
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2. Consider X1, ..., Xn being i.i.d. Poisson(λ). Show that a Gamma(α, β) prior on λ is a
conjugate prior, and find the posterior distribution.

Likelihood:

L(λ) =
n∏

i=1

exp(−λ)λxi

xi!
=

exp(−nλ)λ
∑

i xi∏
i xi!

Prior:

p(λ) ∼ Gamma(α, β) =
βα

Γ(α)
λα−1 exp(−βλ)

Posteior:
p(λ) ∝ L(λ)p(λ) ∝ λ exp(−(β + n)λ)λ

∑
i xi+α−1

So p(λ) is Gamma(
∑

i xi + α,n+ β)

3. Gibbs sampling can proceed either rotationally (sweeping through indices i) or randomly
(by sampling i). For the purposes of this problem consider the version where i is sam-
pled randomly with probability πi. Show that Gibbs sampling satisfies detailed
balance.

Detailed balance means that for each pair of states x and x′, (1) arriving at x then x′

and (2) arriving at x′ then x are equiprobable. That is,

S(x′ ← x)p(x) = S(x← x′)p(x′).

First, let’s consider the transition probability S(x′ ← x). Since Gibbs sampling samples
from the full conditionals, this probability is given by:

S(x′ ← x) = πip(x
′
i|x\i)

Next, let’s compute the left hand side and right hand sides of the detailed balance
equation separately.

LHS:

S(x′ ← x)p(x) = πip(x
′
i|x\i)p(x)

= πip(x
′
i|x\i)p(xi|x\i)p(x\i)

RHS:

S(x← x′)p(x′) = πip(xi|x′
\i)p(x

′)

= πip(xi|x′
\i)p(x

′
i|x′

\i)p(x
′
\i)

= πip(xi|x\i)p(x
′
i|x\i)p(x\i)

= S(x′ ← x)p(x)
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where the second to last step follows from the observation that x′
\i = x\i because Gibbs

sampling holds the other variables constant when updating the ith variable. Thus,
detailed balance holds.

Note: to prove detailed balance for the version of Gibbs sampling where we sweep
through indices i, we would consider the update after a full sweep.


