RECITATION HOMEWORK 3

10-418/618: Machine Learning for Structured Data 09/28/2022

Directed Graphical Models

Figure 1: Directed Graphical Model

- 1. Consider the graph \mathcal{G} given in Figure 1. Suppose you are given a joint distribution P(A, B, C, D, E) and you are informed that P factorizes according to \mathcal{G} . Write down a factorization of P based on the definition of a directed graphical model.
- 2. Draw the moralized graph of \mathcal{G}

Undirected Graphical Models

Figure 2: Undirected Graphical Model

- 3. Identify the cliques in Fig. 2.
- 4. What is the Markov boundary of A? of D?

Factor Graphs

5. Convert the following factor graph to a directed graphical model and an undirected graphical model:

Variable Elimination

6. When Querying $P(A|h=\tilde{h})$, Perform variable elimination on the following directed graph G in the order: H,G,F,E,D,C,B

Figure 3: Initial graph for variable elimination

Variable Eliminated	Factor Computed
Н	
G	
F	
E	
D	
С	
В	

7. Perform variable elimination on undirected graph G':

Figure 4: Initial graph for variable elimination

Order F, B, C, G, A, D, H, E:

Variable Eliminated	Elimination Clique
F	
В	
С	
G	
A	
D	
Н	
E	

Order A, D, E, H, B, C, F, G:

Variable Eliminated	Elimination Clique
A	
D	
E	
Н	
В	
С	
F	
G	

8. How does the size of the elimination cliques relate to the computational complexity of variable elimination?

Belief Propagation

Figure 5

\overline{a}	$\psi_A(a)$		$\psi_B(b)$
0	3) 1
1	2	1	2

c	$\psi_C(c)$	
0	3	
1	1	

d	$\psi_D(d)$
0	1
1	1

\overline{a}	d	$\psi_{AD}(a,d)$
0	0	2
0	1	2
1	0	2
1	1	3

b	d	$\psi_{DB}(b,d)$
0	0	1
0	1	2
1	0	1
1	1	1

c	d	$\psi_{DC}(c,d)$
0	0	1
0	1	1
1	0	1
1	1	3

9. Consider the factor graph in Figure 5. On paper, carry out a run of belief propagation by sending messages first from the leaves ψ_B, ψ_C to the root ψ_A , and then from the root back to the leaves. Assume all messages are un-normalized. Then find the beliefs at nodes A, B, C, and D along with the beliefs for ψ_{DB}, ψ_{DC} , and ψ_{AD} .

Constituency Parsing

First we'll consider an extremely ambiguous sentence and see how we could disambiguate the meaning.

This sentence could be interpreted two ways.

- 1. Fish-People hybrids fish in tanks.
- 2. Fish populate fish tanks. (This uses a less common meaning of people meaning "to populate".)

How could we build in structure to distinguish between these two meanings? One way is to build and label a parse tree.

1. Fish-People hybrids fish in tanks.

2. Fish populate fish tanks.

Both of these options can be summarized by a simple set of rules called a *grammar*. If you've taken a compiler course, you'll know and hate this term.

$$\begin{split} \mathbf{S} &\to \mathbf{NP} \ \mathbf{VP} \\ \mathbf{NP} &\to \mathbf{ADJ} \ \mathbf{N} \ | \ \mathbf{N} \\ \mathbf{VP} &\to \mathbf{V} \ \mathbf{NP} \end{split}$$

The takeaway from this is that if we could somehow generate these tree-labelings, we would be much closed to pulling *meaning* from a sequence of words before further processing. For example, this can be a useful first step in a dialogue system where disambiguating meaning is crucial.

So now that we've established the context for our problem of interest, let's set it aside for a little while.

Message Passing Review

Remember that for belief propagation on factor graphs, we have two types of messages we can pass.

Variable to Factor:

$$\mu_{x \to f}(x) = \prod_{g \in \text{Ne}(x)/f} \mu_{g \to x}(x)$$

Factor to Variable:

$$\mu_{f \to x}(x) = \sum_{\mathcal{X}_f/x} \psi_f(\mathcal{X}_f) \prod_{y \in \{\text{Ne}(f)/x\}} \mu_{y \to f}(y)$$

We'll consider applying these rules to the following undirected graphical model.

Representation

First, let's consider the case where each potential function is tabular, variables B and C are binary, and variable A has N possible settings.

Q: How would we represent this as a NumPy array?

A: Use an array where each axis i represents all the values variable i can take.

Q: What would be the size of ψ_b ?

A: (2,)

Q: What would be the size of ψ_{abc} ?

A: (N, 2, 2)

Q: How would we marginalize out a variable in a potential function in this scenario?

A: Sum over the axis that represents the variabel you want to marginalize.

Q: How would we express each of the types of messages in code?

A: This is a straightforward combination of element wise multiplication and summing over your axis of interest.