Recitation
 Homework 3

10-418/618: Machine Learning for Structured Data
09/28/2022

Directed Graphical Models

Figure 1: Directed Graphical Model

1. Consider the graph \mathcal{G} given in Figure 1. Suppose you are given a joint distribution $P(A, B, C, D, E)$ and you are informed that P factorizes according to \mathcal{G}. Write down a factorization of P based on the definition of a directed graphical model.
2. Draw the moralized graph of \mathcal{G}

Undirected Graphical Models

Figure 2: Undirected Graphical Model
3. Identify the cliques in Fig. 2.
4. What is the Markov boundary of A ? of D ?

Factor Graphs

5. Convert the following factor graph to a directed graphical model and an undirected graphical model:

Variable Elimination

6. When Querying $P(A \mid h=\tilde{h})$, Perform variable elimination on the following directed graph G in the order: H,G,F,E,D,C,B

Figure 3: Initial graph for variable elimination

Variable Eliminated	Factor Computed
H	
G	
F	
E	
D	
C	
B	

7. Perform variable elimination on undirected graph G^{\prime} :

Figure 4: Initial graph for variable elimination

Order F, B, C, G, A, D, H, E:

Variable Eliminated	Elimination Clique
F	
B	
C	
G	
A	
D	
H	
E	

Order A, D, E, H, B, C, F, G:

Variable Eliminated	Elimination Clique
A	
D	
E	
H	
B	
C	
F	
G	

8. How does the size of the elimination cliques relate to the computational complexity of variable elimination?

Belief Propagation

9. Consider the factor graph in Figure 5. On paper, carry out a run of belief propagation by sending messages first from the leaves ψ_{B}, ψ_{C} to the root ψ_{A}, and then from the root back to the leaves. Assume all messages are un-normalized. Then find the beliefs at nodes A, B, C, and D along with the beliefs for $\psi_{D B}, \psi_{D C}$, and $\psi_{A D}$.

Constituency Parsing

First we'll consider an extremely ambiguous sentence and see how we could disambiguate the meaning.

> Fish people fish tanks.

This sentence could be interpreted two ways.

1. Fish-People hybrids fish in tanks.
2. Fish populate fish tanks. (This uses a less common meaning of people meaning "to populate".)

How could we build in structure to distinguish between these two meanings? One way is to build and label a parse tree.

1. Fish-People hybrids fish in tanks.

2. Fish populate fish tanks.

Both of these options can be summarized by a simple set of rules called a grammar. If you've taken a compiler course, you'll know and hate this term.

$$
\begin{aligned}
\mathrm{S} & \rightarrow \text { NP VP } \\
\mathrm{NP} & \rightarrow \text { ADJ N } \mid \mathrm{N} \\
\mathrm{VP} & \rightarrow \mathbf{V} \mathbf{N P}
\end{aligned}
$$

The takeaway from this is that if we could somehow generate these tree-labelings, we would be much closed to pulling meaning from a sequence of words before further processing. For example, this can be a useful first step in a dialogue system where disambiguating meaning is crucial.

So now that we've established the context for our problem of interest, let's set it aside for a little while.

Message Passing Review

Remember that for belief propagation on factor graphs, we have two types of messages we can pass.

Variable to Factor:

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in \operatorname{Ne}(x) / f} \mu_{g \rightarrow x}(x)
$$

Factor to Variable:

$$
\mu_{f \rightarrow x}(x)=\sum_{\mathcal{X}_{f} / x} \psi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{Ne}(f) / x\}} \mu_{y \rightarrow f}(y)
$$

We'll consider applying these rules to the following undirected graphical model.

Representation

First, let's consider the case where each potential function is tabular, variables B and C are binary, and variable A has N possible settings.

Q: How would we represent this as a NumPy array?
A: Use an array where each axis i represents all the values variable i can take.
Q: What would be the size of ψ_{b} ?
A: $(2$,
Q: What would be the size of $\psi_{a b c}$?
A: $(N, 2,2)$
Q: How would we marginalize out a variable in a potential function in this scenario?
A: Sum over the axis that represents the variabel you want to marginalize.
Q: How would we express each of the types of messages in code?
A: This is a straightforward combination of element wise multiplication and summing over your axis of interest.

