
Learning to Search (Part III)

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 6

Sep. 18, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

STRUCTURED PREDICTION AS
SEARCH

4

Structured Prediction as Search
• Key idea: convert your structured prediction

problem to a search problem!
• Example: for POS tagging, each node in the search

space corresponds to a partial tag sequence

5

Basic Neural Network

6

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

time likeflies an arrow x

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

Basic Neural Network

7

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

Basic Neural Network

8

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

Learning to Search

Whiteboard:
– Problem Setting
– Ex: POS Tagging
– Other Solutions:

• Completely Independent Predictions
• Sharing Parameters / Multi-task Learning
• Graphical Models

– Today’s Solution: Structured Prediction to Search
• Search spaces
• Cost functions
• Policies

9

EXPOSURE BIAS

12

The Exposure Bias Problem
Imagine you join (for the first time ever) a intramural soccer team.
• Position, 1st practice: midfielder
• Position, 2nd practice: midfielder
• Position, 3rd practice: midfielder
• Position, 1st game: goalie

This could end badly!
After all, you’ve
never had any
training on what to
do as a goalie.

Your training is
biased to the parts
of the field that you
were exposed to
(midfield).

13

The Exposure Bias Problem
To really make this analogy work, we should adjust it slightly:
• 1st, 2nd, 3rd, practice: your coach assigns each of you to mimic the exact

steps of a specific player in the 1986 world cup final; every practice each
of you make the same maneuvers every time

• 1st game: you play a real team, that makes creative autonomous
decisions, you are forced to be creative as well

This could end badly!
After all, you’ve never
had any training on
what to do when you
are exposed to the
outcomes of your own
decisions!

Your training is biased
to the 1986 behaviors
to which you were
exposed.

14

The Exposure Bias Problem

Mismatched Test-Time
Inference Algorithm
MLE training assumes that at test time we
will do exact inference to find the highest
probability output string (e.g. for an
HMM, using the Viterbi algorithm)

However, in general, exact inference over
the space of exponentially many output
strings is intractable for a seq2seq model
(e.g. unlike an HMM, seq2seq makes no
Markov assumption)

Exposure Bias
At training time, MLE trains to generate
the next token conditioned on the ground
truth prefix sequence.

At test time, the model generates the
next token conditioned on model’s prefix
sequence (obtained by greedy decoding
or sampling).

So the model is exposed to only real
prefixes at training time, and is therefore
biased towards proper behavior only on
those ground truth prefixes.

15

Consider two (related) explanations for why maximum likelihood training
(aka. fully supervised imitation learning) is a poor choice for a seq2seq
model.

LEARNING TO SEARCH

16

Imitation Learning

def trainSupervised(𝜋*, E, x1:S, y1:T):
initialize policy 𝜋θ

for i in 1…N:
for t in 1…T:

observe state st = (y1:t , x1:S)
take action at = yt+1 = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

for (st, at) in 𝝉(i) :
update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st = (y1:t , x1:S)
take action at = ŷt+1 = 𝜋θ(st)
incur loss ℓt = loss(y1:t, ŷ1:t)

17

Algorithm 1: Supervised Imitation Learning (for structured prediction)

The state is the full input
sequence and the partial

output sequence, up to step t

The action is the next output
token we predict at step t+1

This is equivalent to
accumulating the gradient of

the full computation graph for
input x1:S

Imitation Learning

def trainDAgger(𝜋*, E, 𝛽 = [𝛽1,…, 𝛽N], x1:S, y1:T):
initialize policy 𝜋θ

for i in 1…N:
𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

for t in 1…T:
observe state st = (y1:t , x1:S)
sample action ât = ŷt+1 ~ 𝜋i(st)
store action at = yt+1 = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

for (st, at) in 𝝉(i) :
update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

18

Algorithm 2: DAgger for Imitation Learning (for structured prediction)

Now the prediction for the next
time step ŷt+1 comes from the

the model policy.

This will typically be fed back
into the model.

We still train by updating on the
expert policy’s prediction of yt+1

– this is the output of the
dynamic oracle

Decoding for seq2seq (test time)

19

V N D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

V N D N END

like a plantflies

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

ŷ

MLE for seq2seq (supervised imitation learning)

20

N V D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

V N D N END

like a plantflies

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

N V D Ny*

CE CE CE CE

+ loss

END

CE

ŷ

MLE for seq2seq (supervised imitation learning)

21

N V D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

like a plantflies

e1 e2 e3 e4

Encoder

x

N V D Ny*

CE CE CE CE

+ loss

END

CE
MLE computes, for each

time step, the cross-
entropy between the

ground truth yt and the
model’s softmax p(·|ht)

At training time, it
ignores the predictions

(i.e. argmax)

DAgger for seq2seq

22

V N D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

V N D N END

like a plantflies

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

N V D N𝜋*(y1:t , x1:S)

CE CE CE CE

+ loss

END

CE

ŷ
By contrast,

DAgger feeds the
argmax back into

the decoder

DAgger for seq2seq

23

N N D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

V N D N END

like a plantflies

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

N V D N𝜋*(y1:t , x1:S)

CE CE CE CE

+ loss

END

CE

ŷ
Recall: Dagger feeds in

a mixture of the
model policy and the

oracle policy

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

DAgger for seq2seq

24

N N D NSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

V N D N END

like a plantflies

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

N V D N𝜋*(y1:t , x1:S)

CE CE CE CE

+ loss

END

CE

ŷ

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

In this example, our loss
function is Hamming loss, and
so 𝜋*(y1:t , x1:S) happens to be
identical to the ground truth
yt+1, but for other losses this

wouldn’t be the case

DYNAMIC ORACLES
aka. Expert Policies for structured prediction problems

25

Dynamic Oracles

26

a s _ a_ t

s s _ egold

predicted

h e l

e

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

k s

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

Dynamic Oracles

27

a s _ a_ t

s s _ egold

predicted

h e l

a_ te k

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

k s

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

Background: Levenshtein Distance
• Given: two strings, a source string and a target string
• Definition: Levenshtein distance (aka. edit distance) is the

smallest number of insertions, deletions, and substitutions to
transform the source string into the target string

• Example Transformations:
– leaning à learning (insertion of ‘r’)
– reading à leading (substitution of ‘r’ for ‘l’)
– learning à earning (deletion of ‘l’)

• Recursive Definition: (but not quite how it’s implemented)

28

dist(a1:A, b1:B) =

dist(a2:A, b2:B)

1 + min

dist(a2:A, b1:B)

dist(a1:A, b2:B)

dist(a2:A, b2:B)

otherwise

if a1 = b1

max(A, B) if A = 0 or B = 0

Background: Levenshtein Distance
• Given: two strings, a source string and a target string
• Definition: Levenshtein distance (aka. edit distance) is the

smallest number of insertions, deletions, and substitutions to
transform the source string into the target string

• Example Transformations:
– leaning à learning (insertion of ‘r’)
– reading à leading (substitution of ‘r’ for ‘l’)
– learning à earning (deletion of ‘l’)

• Recursive Definition: (but not quite how it’s implemented)

29

dist(a1:A, b1:B) =

min

dist(a2:A, b1:B) + 1

dist(a1:A, b2:B) + 1

dist(a2:A, b2:B) + 𝟙(a1 ≠ b1)

otherwise

max(A, B) if A = 0 or B = 0

Background: Levenshtein Distance
• Algorithm: use dynamic programming; store the distance

of every pair of substrings in table so that we don’t
recompute any distances

30

for i = 0…A: table[i][0] = i
for j = 0…B: table[0][j] = j

for i = 1…A:
for j = 1…B:

if a[i] != b[j]:
sub = 1

else:
sub = 0

table[i][j] = min(table[i-1, j] + 1,
table[i, j-1] + 1,
table[i-1, j-1] + sub)

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

31

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

32

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

33

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

34

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

35

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

36

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

37

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

38

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

39

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

40

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 1

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

41

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

42

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

T 3 2 2 2 3 4 4 U,N,D 2

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

43

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

T 3 2 2 2 3 4 4 U,N,D 2

R 4 3 3 3 3 4 5 U,N,D,A 3

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

44

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

T 3 2 2 2 3 4 4 U,N,D 2

R 4 3 3 3 3 4 5 U,N,D,A 3

A 5 4 4 4 4 3 4 Y 3

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

45

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

T 3 2 2 2 3 4 4 U,N,D 2

R 4 3 3 3 3 4 5 U,N,D,A 3

A 5 4 4 4 4 3 4 Y 3

P 6 5 5 5 5 4 4 Y, </s> 4

Dynamic Oracle for CER
Algorithm:
1. Build edit distance table from current prefix, a1:A, and ground truth, b1:B

2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [bm+1 for m in M]

46

Edit Distance Table OCD
Targets

min.
dist.

S U N D A Y

0 1 2 3 4 5 6 S 0

S 1 0 1 2 3 4 5 U 0

A 2 1 1 2 3 3 4 U,N 1

T 3 2 2 2 3 4 4 U,N,D 2

R 4 3 3 3 3 4 5 U,N,D,A 3

A 5 4 4 4 4 3 4 Y 3

P 6 5 5 5 5 4 4 Y, </s> 4

Y 7 6 6 6 6 5 4 </s> 4

Dynamic Oracles

47

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

Depending on your loss function, there may or may not exist an efficient
dynamic oracle.

For example, these metrics readily admit an efficient dynamic oracle:
• CER for phoneme recognition
• chunking F1 for named entity
• labeled attachment score for arc-eager dependency parsing

But it’s unlikely that there exists an efficient dynamic oracle for:
• BLEU for machine translation
• ROUGE for summarization

TEACHER FORCING, SCHEDULED
SAMPLING, & OCD

48

Algorithms for Seq2Seq

Here we consider three algorithms that are
closely related to DAgger and appropriate for
training a seq2seq model:
1. Teacher Forcing
2. Scheduled Sampling
3. Optimal Completion Distillation

49

Teacher Forcing
Another name for supervised imitation learning when it is applied to
training RNNLM/seq2seq models is teaching forcing. This is equivalent to
maximum likelihood estimation if cross-entropy is the loss function.

The name ‘teacher forcing’ was coined by Williams & Zipser (1989) A
Learning Algorithm for Continually Running Fully Recurrent Neural Networks.

The only difference between training an RNNLM or seq2seq model is
whether the decoder conditions on the output of an encoder or not.

Algorithm:
1. at training time, feed the ground truth from the previous time step in

as the decoder input for the next time step
2. at each timestep minimize cross entropy (or some other loss) of the

ground truth for that time step

50

`

Scheduled Sampling
The Scheduled Sampling (SS) algorithm is another learning technique
for seq2seq models, introduced by Bengio et al. (2015) Scheduled
Sampling for Sequence Prediction with Recurrent Neural Networks.

Algorithm:
1. at training time, flip a weighted coin to decide whether to feed

the model’s prediction or the ground truth from the previous
time step as the decoder input for the next time step

2. at each timestep minimize cross entropy (or some other loss) of
the ground truth for that time step

3. gradually decrease the probability of feeding in the ground
truth with each iteration of training

Comments:
• SS is just like Teacher Forcing except that with some probability we

feed in the model’s prediction from the previous time step.
• SS has the same motivation as DAgger: addressing the problem of

exposure bias (i.e. making the states visited at training time similar
to those that will be visited at test time)

• SS is not DAgger because it only relies on the ground truth
sequence, not a dynamic oracle

• SS does not come with any theoretical gaurantees (DAgger does)

51
Figure from Bengio et al. (2015) “Scheduled Sampling…”

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

Exponential decay
Inverse sigmoid decay

Linear decay

Figure 2: Examples of decay
schedules.

We thus propose to use a schedule to decrease ✏i as a function of i itself, in a similar manner used
to decrease the learning rate in most modern stochastic gradient descent approaches. Examples of
such schedules can be seen in Figure 2 as follows:

• Linear decay: ✏i = max(✏, k � ci) where 0  ✏ < 1 is the minimum amount of truth to be
given to the model and k and c provide the offset and slope of the decay, which depend on
the expected speed of convergence.

• Exponential decay: ✏i = ki where k < 1 is a constant that depends on the expected speed
of convergence.

• Inverse sigmoid decay: ✏i = k/(k+exp(i/k)) where k � 1 depends on the expected speed
of convergence.

We call our approach Scheduled Sampling. Note that when we sample the previous token ŷt�1 from
the model itself while training, we could back-propagate the gradient of the losses at times t ! T
through that decision. This was not done in the experiments described in this paper and is left for
future work.

3 Related Work

The discrepancy between the training and inference distributions has already been noticed in the
literature, in particular for control and reinforcement learning tasks.

SEARN [9] was proposed to tackle problems where supervised training examples might be different
from actual test examples when each example is made of a sequence of decisions, like acting in a
complex environment where a few mistakes of the model early in the sequential decision process
might compound and yield a very poor global performance. Their proposed approach involves a
meta-algorithm where at each meta-iteration one trains a new model according to the current policy
(essentially the expected decisions for each situation), applies it on a test set and modifies the next
iteration policy in order to account for the previous decisions and errors. The new policy is thus a
combination of the previous one and the actual behavior of the model.

In comparison to SEARN and related ideas [10, 11], our proposed approach is completely online: a
single model is trained and the policy slowly evolves during training, instead of a batch approach,
which makes it much faster to train3 Furthermore, SEARN has been proposed in the context of
reinforcement learning, while we consider the supervised learning setting trained using stochastic
gradient descent on the overall objective.

Other approaches have considered the problem from a ranking perspective, in particular for parsing
tasks [12] where the target output is a tree. In this case, the authors proposed to use a beam search
both during training and inference, so that both phases are aligned. The training beam is used to find

3In fact, in the experiments we report in this paper, our proposed approach was not meaningfully slower
(nor faster) to train than the baseline.

4

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.

Figure 2: Examples of decay
schedules.

We thus propose to use a schedule to decrease ✏i as a function of i itself, in a similar manner used
to decrease the learning rate in most modern stochastic gradient descent approaches. Examples of
such schedules can be seen in Figure 2 as follows:

• Linear decay: ✏i = max(✏, k � ci) where 0  ✏ < 1 is the minimum amount of truth to be
given to the model and k and c provide the offset and slope of the decay, which depend on
the expected speed of convergence.

• Exponential decay: ✏i = ki where k < 1 is a constant that depends on the expected speed
of convergence.

• Inverse sigmoid decay: ✏i = k/(k+exp(i/k)) where k � 1 depends on the expected speed
of convergence.

We call our approach Scheduled Sampling. Note that when we sample the previous token ŷt�1 from
the model itself while training, we could back-propagate the gradient of the losses at times t ! T
through that decision. This was not done in the experiments described in this paper and is left for
future work.

3 Related Work

The discrepancy between the training and inference distributions has already been noticed in the
literature, in particular for control and reinforcement learning tasks.

SEARN [9] was proposed to tackle problems where supervised training examples might be different
from actual test examples when each example is made of a sequence of decisions, like acting in a
complex environment where a few mistakes of the model early in the sequential decision process
might compound and yield a very poor global performance. Their proposed approach involves a
meta-algorithm where at each meta-iteration one trains a new model according to the current policy
(essentially the expected decisions for each situation), applies it on a test set and modifies the next
iteration policy in order to account for the previous decisions and errors. The new policy is thus a
combination of the previous one and the actual behavior of the model.

In comparison to SEARN and related ideas [10, 11], our proposed approach is completely online: a
single model is trained and the policy slowly evolves during training, instead of a batch approach,
which makes it much faster to train3 Furthermore, SEARN has been proposed in the context of
reinforcement learning, while we consider the supervised learning setting trained using stochastic
gradient descent on the overall objective.

Other approaches have considered the problem from a ranking perspective, in particular for parsing
tasks [12] where the target output is a tree. In this case, the authors proposed to use a beam search
both during training and inference, so that both phases are aligned. The training beam is used to find

3In fact, in the experiments we report in this paper, our proposed approach was not meaningfully slower
(nor faster) to train than the baseline.

4

Optimal Completion Distillation
Optimal Completion Distillation (OCD) was introduced in Sabour et al.
(2019) Optimal Completion Distillation for Sequence Learning.

Algorithm:
1. at training time, feed the model’s prediction from the previous time

step as the decoder input for the next time step
2. at each timestep minimize cross entropy (or some loss) of the ground

truth for that time step

Comments:
Optimal Completion Distillation (OCD) is a special of the DAgger meta-
algorithm to speech recognition in which:
1. the loss function at each time-step is the KL Divergence between the

softmax output from the model and a uniform distribution over the
dynamic oracle completions

2. the dynamic oracle is a dynamic programming algorithm (similar to
edit distance) for character error rate (CER)

52

Optimal Completion Distillation
Optimal Completion Distillation (OCD) was introduced in Sabour et al.
(2019) Optimal Completion Distillation for Sequence Learning.

Algorithm:
1. at training time, feed the model’s prediction from the previous time

step as the decoder input for the next time step
2. at each timestep minimize cross entropy (or some loss) of the ground

truth for that time step

Comments:
Optimal Completion Distillation (OCD) is a special of the DAgger meta-
algorithm to speech recognition in which:
1. the loss function at each time-step is the KL Divergence between the

softmax output from the model and a uniform distribution over the
dynamic oracle completions

2. the dynamic oracle is a dynamic programming algorithm (similar to
edit distance) for character error rate (CER)

53

In the original OCD paper, they only feed
in model predictions.

However, because OCD is a special case of DAgger, we
can generalize OCD to use a beta schedule that gives a
mixture of the oracle policy with the model policy, and
feed in a sample from the mixture policy to the decoder.

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

Exponential decay
Inverse sigmoid decay

Linear decay

Figure 2: Examples of decay
schedules.

We thus propose to use a schedule to decrease ✏i as a function of i itself, in a similar manner used
to decrease the learning rate in most modern stochastic gradient descent approaches. Examples of
such schedules can be seen in Figure 2 as follows:

• Linear decay: ✏i = max(✏, k � ci) where 0  ✏ < 1 is the minimum amount of truth to be
given to the model and k and c provide the offset and slope of the decay, which depend on
the expected speed of convergence.

• Exponential decay: ✏i = ki where k < 1 is a constant that depends on the expected speed
of convergence.

• Inverse sigmoid decay: ✏i = k/(k+exp(i/k)) where k � 1 depends on the expected speed
of convergence.

We call our approach Scheduled Sampling. Note that when we sample the previous token ŷt�1 from
the model itself while training, we could back-propagate the gradient of the losses at times t ! T
through that decision. This was not done in the experiments described in this paper and is left for
future work.

3 Related Work

The discrepancy between the training and inference distributions has already been noticed in the
literature, in particular for control and reinforcement learning tasks.

SEARN [9] was proposed to tackle problems where supervised training examples might be different
from actual test examples when each example is made of a sequence of decisions, like acting in a
complex environment where a few mistakes of the model early in the sequential decision process
might compound and yield a very poor global performance. Their proposed approach involves a
meta-algorithm where at each meta-iteration one trains a new model according to the current policy
(essentially the expected decisions for each situation), applies it on a test set and modifies the next
iteration policy in order to account for the previous decisions and errors. The new policy is thus a
combination of the previous one and the actual behavior of the model.

In comparison to SEARN and related ideas [10, 11], our proposed approach is completely online: a
single model is trained and the policy slowly evolves during training, instead of a batch approach,
which makes it much faster to train3 Furthermore, SEARN has been proposed in the context of
reinforcement learning, while we consider the supervised learning setting trained using stochastic
gradient descent on the overall objective.

Other approaches have considered the problem from a ranking perspective, in particular for parsing
tasks [12] where the target output is a tree. In this case, the authors proposed to use a beam search
both during training and inference, so that both phases are aligned. The training beam is used to find

3In fact, in the experiments we report in this paper, our proposed approach was not meaningfully slower
(nor faster) to train than the baseline.

4

OCD for seq2seq

54

S A T RSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

S A T R A

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

{S} {U} {U,N} {U,N,D}𝜋*(y1:t , x1:S)

KL KL KL KL

+ loss

{U,N,D,A}

KL

ŷ

In OCD, we allow the
dynamic oracle to be

stochastic, and our loss
function is the KL

divergence between the
dynamic oracle distribution
and the model distribution

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

S U N Dy* A

OCD (with DAgger’s mixture) for seq2seq

55

S A N RSTART

p(y1|h1)

h1

p(y2|h2)

h2

p(y3|h3)

h3

p(y4|h4)

h4

p(y5|h5)

h5

S A T R A

e1 e2 e3 e4

Encoder

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

x

{S} {U} {U,N} {U,N,D}𝜋*(y1:t , x1:S)

KL KL KL KL

+ loss

{U,N,D,A}

KL

ŷIf we use a mixture of
model and oracle policy,

the stochasticity also
affects the decoder

inputs

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

S U N Dy* A

Imitation Learning vs. RL

56

Q: What is the difference between imitation learning and
reinforcement learning?

A: There are lots of differences but they all stem from one
fundamental difference:

Imitation learning assumes that it has access to an oracle policy
π*, reinforcement learning does not.

Interesting contrast: Q-Learning vs. DAgger.
– both have some notion of explore/exploit (very loose analogy)
– but Q-learning’s exploration is random, and its exploitation relies on

the model’s policy
– whereas DAgger exploration uses the model’s policy, and its

exploitation follows the oracle

COMPARISON OF LEARNERS

57

Comparison of Learners

58

Learning to Search Terminology
• roll-in: how we got to the current state
• one-step deviations: immediate neighbors in the search space under

consideration
• roll-out: completions of deviations (might be optimal, might not)
• The learner considers each of the one-step deviations and (typically)

chooses the one with lowest loss

Fi
gu

re
 fr

om
 C

ha
ng

 e
t a

l.
(2

01
5)

Comparison of Learners
Learner Roll-in Target Objective (per time step)

MLE ground truth y* ground truth y* cross-entropy of ground
truth

Scheduled
Sampling

mixture of model
predictions ŷ and
ground truth y*

ground truth y* cross-entropy of ground
truth

Dagger mixture of expert
policy 𝜋∗ and
model policy $𝜋

expert policy 𝜋∗ cross-entropy of dynamic
oracle completion

OCD (special
case of
DAgger for
CER)

model policy $𝜋 =
model predictions
ŷ

expert policy 𝜋∗ KL Divergence between
uniform distribution over
set of dynamic oracle
completions and model’s
softmax

Policy
Gradient (RL)

model policy $𝜋 =
model predictions
ŷ

model policy $𝜋 increase score of sequences
with high reward R(ŷ)

59

Comparison of Learners

60

Fi
gu

re
 fr

om
 S

ab
ou

re
t a

l.
(2

01
9)

LEARNING TO SEARCH:
EMPIRICAL RESULTS

61

Dagger for Mario Tux Cart

62
Video from Stéphane Ross (https://www.youtube.com/watch?v=V00npNnWzSU)

https://www.youtube.com/watch?v=V00npNnWzSU

Experiments: Vowpal Wabbit L2S

63
Figure from Langford & Daume III (ICML tutorial, 2015)

Experiments: Vowpal Wabbit L2S

64
Figure from Langford & Daume III (ICML tutorial, 2015)

Experiments: Vowpal Wabbit L2S

65
Figure from Langford & Daume III (ICML tutorial, 2015)

NER

POS

0 100 200 300 400 500 600

563

365

520

404

24

5.7

98

13

5.6
14

5.3

Prediction (test-time) Speed

L2S

L2S (ft)

CRFsgd

CRF++

StrPerc

StrSVM

StrSVM2

Thousands of Tokens per Second

Results: Dynamic Oracle for
Dependency Parsing

69

Results: Dynamic Oracle for
Dependency Parsing

70

Training with a dynamic oracle (Dynamic-ambiguity
& Dynamic-explore) consistently outperforms

training to produce the ground truth (Static), across
many different languages.

DAGGER: THEORETICAL RESULTS

71

DAgger Policy During Training

72

• DAgger assumes that we follow a stochastic
policy that flips a weighted coin (with weight βi
at timestep i) to decide between the oracle
policy and the model’s policy

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ;.
Initialize ⇡̂1 to any policy in ⇧.
for i = 1 to N do

Let ⇡i = �i⇡
⇤ + (1� �i)⇡̂i.

Sample T -step trajectories using ⇡i.
Get dataset Di = {(s, ⇡⇤(s))} of visited states by ⇡i

and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1 on D.
end for
Return best ⇡̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset
at each iteration under the current policy and trains the next
policy under the aggregate of all collected datasets. The in-
tuition behind this algorithm is that over the iterations, we
are building up the set of inputs that the learned policy is
likely to encounter during its execution based on previous
experience (training iterations). This algorithm can be in-
terpreted as a Follow-The-Leader algorithm in that at itera-
tion n we pick the best policy ⇡̂n+1 in hindsight, i.e. under
all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy ⇡i = �i⇡

⇤ + (1 � �i)⇡̂i at iteration
i that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use �1 = 1 so that we do not have to spec-
ify an initial policy ⇡̂1 before getting data from the expert’s
behavior. Then we could choose �i = p

i�1 to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {�i} be a sequence such that �N = 1

N

PN
i=1 �i ! 0

as N ! 1. The simple, parameter-free version of the al-
gorithm described above is the special case �i = I(i = 1)
for I the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is
detailed in Algorithm 3.1. The main result of our analysis
in the next section is the following guarantee for DAGGER.
Let ⇡1:N denote the sequence of policies ⇡1, ⇡2, . . . ,⇡N .
Assume ` is strongly convex and bounded over ⇧. Suppose
�i  (1� ↵)i�1 for all i for some constant ↵ independent
of T . Let ✏N = min⇡2⇧

1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] be the
true loss of the best policy in hindsight. Then the following
holds in the infinite sample case (infinite number of sample
trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + O(1/T)

In particular, this holds for the policy ⇡̂ =
arg min⇡2⇡̂1:N

Es⇠d⇡ [`(s, ⇡)]. 3 If the task cost
function C corresponds to (or is upper bounded by) the
surrogate loss ` then this bound tells us directly that
J(⇡̂)  T ✏N + O(1). For arbitrary task cost function C,
then if ` is an upper bound on the 0-1 loss with respect to
⇡
⇤, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤) + uT ✏N + O(1).

Finite Sample Results In the finite sample case, sup-
pose we sample m trajectories with ⇡i at each it-
eration i, and denote this dataset Di. Let ✏̂N =
min⇡2⇧

1
N

PN
i=1 Es⇠Di [`(s, ⇡)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-
Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/�)) and

m is O(1) then with probability at least 1� � there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N + O(1/T)

A more refined analysis taking advantage of the strong con-
vexity of the loss function (Kakade and Tewari, 2009) may
lead to tighter generalization bounds that require N only of
order Õ(T log(1/�)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2
T

2 log(1/�))
and m is O(1) then with probability at least 1 � � there

exists a policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤)+uT ✏̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-
regret property of the underlying Follow-The-Leader algo-
rithm on strongly convex losses (Kakade and Tewari, 2009)
which picks the sequence of policies ⇡̂1:N . Hence the pre-
sented results also hold for any other no regret online learn-
ing algorithm we would apply to our imitation learning set-
ting. In particular, we can consider the results here a re-
duction of imitation learning to no-regret online learning
where we treat mini-batches of trajectories under a single
policy as a single online-learning example. We first briefly
review concepts of online learning and no regret that will
be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy ⇡n at
iteration n which incurs a loss `n(⇡n). After observing this
loss, the algorithm can provide a different policy ⇡n+1 for
the next iteration which will incur loss `n+1(⇡n+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence ⇡̂1:N and executes that policy for T steps.

• We require that (β1, β2, β3, …) is chosen to be a
sequence such that:

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ;.
Initialize ⇡̂1 to any policy in ⇧.
for i = 1 to N do

Let ⇡i = �i⇡
⇤ + (1� �i)⇡̂i.

Sample T -step trajectories using ⇡i.
Get dataset Di = {(s, ⇡⇤(s))} of visited states by ⇡i

and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1 on D.
end for
Return best ⇡̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset
at each iteration under the current policy and trains the next
policy under the aggregate of all collected datasets. The in-
tuition behind this algorithm is that over the iterations, we
are building up the set of inputs that the learned policy is
likely to encounter during its execution based on previous
experience (training iterations). This algorithm can be in-
terpreted as a Follow-The-Leader algorithm in that at itera-
tion n we pick the best policy ⇡̂n+1 in hindsight, i.e. under
all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy ⇡i = �i⇡

⇤ + (1 � �i)⇡̂i at iteration
i that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use �1 = 1 so that we do not have to spec-
ify an initial policy ⇡̂1 before getting data from the expert’s
behavior. Then we could choose �i = p

i�1 to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {�i} be a sequence such that �N = 1

N

PN
i=1 �i ! 0

as N ! 1. The simple, parameter-free version of the al-
gorithm described above is the special case �i = I(i = 1)
for I the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is
detailed in Algorithm 3.1. The main result of our analysis
in the next section is the following guarantee for DAGGER.
Let ⇡1:N denote the sequence of policies ⇡1, ⇡2, . . . ,⇡N .
Assume ` is strongly convex and bounded over ⇧. Suppose
�i  (1� ↵)i�1 for all i for some constant ↵ independent
of T . Let ✏N = min⇡2⇧

1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] be the
true loss of the best policy in hindsight. Then the following
holds in the infinite sample case (infinite number of sample
trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + O(1/T)

In particular, this holds for the policy ⇡̂ =
arg min⇡2⇡̂1:N

Es⇠d⇡ [`(s, ⇡)]. 3 If the task cost
function C corresponds to (or is upper bounded by) the
surrogate loss ` then this bound tells us directly that
J(⇡̂)  T ✏N + O(1). For arbitrary task cost function C,
then if ` is an upper bound on the 0-1 loss with respect to
⇡
⇤, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤) + uT ✏N + O(1).

Finite Sample Results In the finite sample case, sup-
pose we sample m trajectories with ⇡i at each it-
eration i, and denote this dataset Di. Let ✏̂N =
min⇡2⇧

1
N

PN
i=1 Es⇠Di [`(s, ⇡)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-
Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/�)) and

m is O(1) then with probability at least 1� � there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N + O(1/T)

A more refined analysis taking advantage of the strong con-
vexity of the loss function (Kakade and Tewari, 2009) may
lead to tighter generalization bounds that require N only of
order Õ(T log(1/�)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2
T

2 log(1/�))
and m is O(1) then with probability at least 1 � � there

exists a policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤)+uT ✏̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-
regret property of the underlying Follow-The-Leader algo-
rithm on strongly convex losses (Kakade and Tewari, 2009)
which picks the sequence of policies ⇡̂1:N . Hence the pre-
sented results also hold for any other no regret online learn-
ing algorithm we would apply to our imitation learning set-
ting. In particular, we can consider the results here a re-
duction of imitation learning to no-regret online learning
where we treat mini-batches of trajectories under a single
policy as a single online-learning example. We first briefly
review concepts of online learning and no regret that will
be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy ⇡n at
iteration n which incurs a loss `n(⇡n). After observing this
loss, the algorithm can provide a different policy ⇡n+1 for
the next iteration which will incur loss `n+1(⇡n+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence ⇡̂1:N and executes that policy for T steps.

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ;.
Initialize ⇡̂1 to any policy in ⇧.
for i = 1 to N do

Let ⇡i = �i⇡
⇤ + (1� �i)⇡̂i.

Sample T -step trajectories using ⇡i.
Get dataset Di = {(s, ⇡⇤(s))} of visited states by ⇡i

and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1 on D.
end for
Return best ⇡̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset
at each iteration under the current policy and trains the next
policy under the aggregate of all collected datasets. The in-
tuition behind this algorithm is that over the iterations, we
are building up the set of inputs that the learned policy is
likely to encounter during its execution based on previous
experience (training iterations). This algorithm can be in-
terpreted as a Follow-The-Leader algorithm in that at itera-
tion n we pick the best policy ⇡̂n+1 in hindsight, i.e. under
all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy ⇡i = �i⇡

⇤ + (1 � �i)⇡̂i at iteration
i that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use �1 = 1 so that we do not have to spec-
ify an initial policy ⇡̂1 before getting data from the expert’s
behavior. Then we could choose �i = p

i�1 to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {�i} be a sequence such that �N = 1

N

PN
i=1 �i ! 0

as N ! 1. The simple, parameter-free version of the al-
gorithm described above is the special case �i = I(i = 1)
for I the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is
detailed in Algorithm 3.1. The main result of our analysis
in the next section is the following guarantee for DAGGER.
Let ⇡1:N denote the sequence of policies ⇡1, ⇡2, . . . ,⇡N .
Assume ` is strongly convex and bounded over ⇧. Suppose
�i  (1� ↵)i�1 for all i for some constant ↵ independent
of T . Let ✏N = min⇡2⇧

1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] be the
true loss of the best policy in hindsight. Then the following
holds in the infinite sample case (infinite number of sample
trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + O(1/T)

In particular, this holds for the policy ⇡̂ =
arg min⇡2⇡̂1:N

Es⇠d⇡ [`(s, ⇡)]. 3 If the task cost
function C corresponds to (or is upper bounded by) the
surrogate loss ` then this bound tells us directly that
J(⇡̂)  T ✏N + O(1). For arbitrary task cost function C,
then if ` is an upper bound on the 0-1 loss with respect to
⇡
⇤, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤) + uT ✏N + O(1).

Finite Sample Results In the finite sample case, sup-
pose we sample m trajectories with ⇡i at each it-
eration i, and denote this dataset Di. Let ✏̂N =
min⇡2⇧

1
N

PN
i=1 Es⇠Di [`(s, ⇡)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-
Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/�)) and

m is O(1) then with probability at least 1� � there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N + O(1/T)

A more refined analysis taking advantage of the strong con-
vexity of the loss function (Kakade and Tewari, 2009) may
lead to tighter generalization bounds that require N only of
order Õ(T log(1/�)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2
T

2 log(1/�))
and m is O(1) then with probability at least 1 � � there

exists a policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤)+uT ✏̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-
regret property of the underlying Follow-The-Leader algo-
rithm on strongly convex losses (Kakade and Tewari, 2009)
which picks the sequence of policies ⇡̂1:N . Hence the pre-
sented results also hold for any other no regret online learn-
ing algorithm we would apply to our imitation learning set-
ting. In particular, we can consider the results here a re-
duction of imitation learning to no-regret online learning
where we treat mini-batches of trajectories under a single
policy as a single online-learning example. We first briefly
review concepts of online learning and no regret that will
be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy ⇡n at
iteration n which incurs a loss `n(⇡n). After observing this
loss, the algorithm can provide a different policy ⇡n+1 for
the next iteration which will incur loss `n+1(⇡n+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence ⇡̂1:N and executes that policy for T steps.

as

Q: What are examples of such sequences?

DAgger Theoretical Results
• The theory mirrors the intuition that Exposure Bias is bad
• The Supervised Approach to Imitation performs not-so-well even on the oracle

(training time) distribution over states (i.e. quadratically number of mistakes
grows quadratically in task horizon T and classification cost ϵ)

• DAgger yields an algorithm that performs well on the test-time distribution
over states (i.e. number of mistakes grows linearly in task horizon T and
classification cost ϵ)

73

 628

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

others and the learned controller may be unstable.

We propose a new meta-algorithm for imitation learning
which learns a stationary deterministic policy guaranteed
to perform well under its induced distribution of states
(number of mistakes/costs that grows linearly in T and
classification cost ✏). We take a reduction-based approach
(Beygelzimer et al., 2005) that enables reusing existing su-
pervised learning algorithms. Our approach is simple to
implement, has no free parameters except the supervised
learning algorithm sub-routine, and requires a number of
iterations that scales nearly linearly with the effective hori-
zon of the problem. It naturally handles continuous as well
as discrete predictions. Our approach is closely related to
no regret online learning algorithms (Cesa-Bianchi et al.,
2004; Hazan et al., 2006; Kakade and Shalev-Shwartz,
2008) (in particular Follow-The-Leader) but better lever-
ages the expert in our setting. Additionally, we show that
any no-regret learner can be used in a particular fashion to
learn a policy that achieves similar guarantees.

We begin by establishing our notation and setting, discuss
related work, and then present the DAGGER (Dataset Ag-
gregation) method. We analyze this approach using a no-
regret and a reduction approach (Beygelzimer et al., 2005).
Beyond the reduction analysis, we consider the sample
complexity of our approach using online-to-batch (Cesa-
Bianchi et al., 2004) techniques. We demonstrate DAGGER
is scalable and outperforms previous approaches in practice
on two challenging imitation learning problems: 1) learn-
ing to steer a car in a 3D racing game (Super Tux Kart) and
2) and learning to play Super Mario Bros., given input im-
age features and corresponding actions by a human expert
and near-optimal planner respectively. Following Daumé
III et al. (2009) in treating structured prediction as a de-
generate imitation learning problem, we apply DAGGER to
the OCR (Taskar et al., 2003) benchmark prediction prob-
lem achieving results competitive with the state-of-the-art
(Taskar et al., 2003; Ratliff et al., 2007; Daumé III et al.,
2009) using only single-pass, greedy prediction.

2 PRELIMINARIES

We begin by introducing notation relevant to our setting.
We denote by ⇧ the class of policies the learner is consid-
ering and T the task horizon. For any policy ⇡, we let d

t
⇡

denote the distribution of states at time t if the learner exe-
cuted policy ⇡ from time step 1 to t � 1. Furthermore, we
denote d⇡ = 1

T

PT
t=1 d

t
⇡ the average distribution of states

if we follow policy ⇡ for T steps. Given a state s, we de-
note C(s, a) the expected immediate cost of performing ac-
tion a in state s for the task we are considering and denote
C⇡(s) = Ea⇠⇡(s)[C(s, a)] the expected immediate cost of
⇡ in s. We assume C is bounded in [0, 1]. The total cost
of executing policy ⇡ for T -steps (i.e., the cost-to-go) is
denoted J(⇡) =

PT
t=1 Es⇠dt

⇡
[C⇡(s)] = TEs⇠d⇡ [C⇡(s)].

In imitation learning, we may not necessarily know or ob-
serve true costs C(s, a) for the particular task. Instead,
we observe expert demonstrations and seek to bound J(⇡)
for any cost function C based on how well ⇡ mimics the
expert’s policy ⇡

⇤. Denote ` the observed surrogate loss
function we minimize instead of C. For instance `(s, ⇡)
may be the expected 0-1 loss of ⇡ with respect to ⇡

⇤ in
state s, or a squared/hinge loss of ⇡ with respect to ⇡

⇤ in s.
Importantly, in many instances, C and ` may be the same
function– for instance, if we are interested in optimizing the
learner’s ability to predict the actions chosen by an expert.

Our goal is to find a policy ⇡̂ which minimizes the observed
surrogate loss under its induced distribution of states, i.e.:

⇡̂ = arg min
⇡2⇧

Es⇠d⇡ [`(s, ⇡)] (1)

As system dynamics are assumed both unknown and com-
plex, we cannot compute d⇡ and can only sample it by exe-
cuting ⇡ in the system. Hence this is a non-i.i.d. supervised
learning problem due to the dependence of the input distri-
bution on the policy ⇡ itself. The interaction between pol-
icy and the resulting distribution makes optimization diffi-
cult as it results in a non-convex objective even if the loss
`(s, ·) is convex in ⇡ for all states s. We now briefly review
previous approaches and their guarantees.

2.1 Supervised Approach to Imitation

The traditional approach to imitation learning ignores the
change in distribution and simply trains a policy ⇡ that per-
forms well under the distribution of states encountered by
the expert d⇡⇤ . This can be achieved using any standard
supervised learning algorithm. It finds the policy ⇡̂sup:

⇡̂sup = arg min
⇡2⇧

Es⇠d⇡⇤ [`(s, ⇡)] (2)

Assuming `(s, ⇡) is the 0-1 loss (or upper bound on the 0-
1 loss) implies the following performance guarantee with
respect to any task cost function C bounded in [0, 1]:

Theorem 2.1. (Ross and Bagnell, 2010) Let

Es⇠d⇡⇤ [`(s, ⇡)] = ✏, then J(⇡)  J(⇡⇤) + T
2
✏.

Proof. Follows from result in Ross and Bagnell (2010)
since ✏ is an upper bound on the 0-1 loss of ⇡ in d⇡⇤ .

Note that this bound is tight, i.e. there exist problems
such that a policy ⇡ with ✏ 0-1 loss on d⇡⇤ can incur ex-
tra cost that grows quadratically in T . Kääriäinen (2006)
demonstrated this in a sequence prediction setting1 and

1In their example, an error rate of ✏ > 0 when trained to
predict the next output in sequence with the previous correct
output as input can lead to an expected number of mistakes of
T
2 �

1�(1�2✏)T+1

4✏ + 1
2 over sequences of length T at test time.

This is bounded by T
2
✏ and behaves as ⇥(T 2

✏) for small ✏.

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ;.
Initialize ⇡̂1 to any policy in ⇧.
for i = 1 to N do

Let ⇡i = �i⇡
⇤ + (1� �i)⇡̂i.

Sample T -step trajectories using ⇡i.
Get dataset Di = {(s, ⇡⇤(s))} of visited states by ⇡i

and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1 on D.
end for
Return best ⇡̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset
at each iteration under the current policy and trains the next
policy under the aggregate of all collected datasets. The in-
tuition behind this algorithm is that over the iterations, we
are building up the set of inputs that the learned policy is
likely to encounter during its execution based on previous
experience (training iterations). This algorithm can be in-
terpreted as a Follow-The-Leader algorithm in that at itera-
tion n we pick the best policy ⇡̂n+1 in hindsight, i.e. under
all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy ⇡i = �i⇡

⇤ + (1 � �i)⇡̂i at iteration
i that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use �1 = 1 so that we do not have to spec-
ify an initial policy ⇡̂1 before getting data from the expert’s
behavior. Then we could choose �i = p

i�1 to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {�i} be a sequence such that �N = 1

N

PN
i=1 �i ! 0

as N ! 1. The simple, parameter-free version of the al-
gorithm described above is the special case �i = I(i = 1)
for I the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is
detailed in Algorithm 3.1. The main result of our analysis
in the next section is the following guarantee for DAGGER.
Let ⇡1:N denote the sequence of policies ⇡1, ⇡2, . . . ,⇡N .
Assume ` is strongly convex and bounded over ⇧. Suppose
�i  (1� ↵)i�1 for all i for some constant ↵ independent
of T . Let ✏N = min⇡2⇧

1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] be the
true loss of the best policy in hindsight. Then the following
holds in the infinite sample case (infinite number of sample
trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + O(1/T)

In particular, this holds for the policy ⇡̂ =
arg min⇡2⇡̂1:N

Es⇠d⇡ [`(s, ⇡)]. 3 If the task cost
function C corresponds to (or is upper bounded by) the
surrogate loss ` then this bound tells us directly that
J(⇡̂)  T ✏N + O(1). For arbitrary task cost function C,
then if ` is an upper bound on the 0-1 loss with respect to
⇡
⇤, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤) + uT ✏N + O(1).

Finite Sample Results In the finite sample case, sup-
pose we sample m trajectories with ⇡i at each it-
eration i, and denote this dataset Di. Let ✏̂N =
min⇡2⇧

1
N

PN
i=1 Es⇠Di [`(s, ⇡)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-
Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/�)) and

m is O(1) then with probability at least 1� � there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N + O(1/T)

A more refined analysis taking advantage of the strong con-
vexity of the loss function (Kakade and Tewari, 2009) may
lead to tighter generalization bounds that require N only of
order Õ(T log(1/�)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2
T

2 log(1/�))
and m is O(1) then with probability at least 1 � � there

exists a policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤)+uT ✏̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-
regret property of the underlying Follow-The-Leader algo-
rithm on strongly convex losses (Kakade and Tewari, 2009)
which picks the sequence of policies ⇡̂1:N . Hence the pre-
sented results also hold for any other no regret online learn-
ing algorithm we would apply to our imitation learning set-
ting. In particular, we can consider the results here a re-
duction of imitation learning to no-regret online learning
where we treat mini-batches of trajectories under a single
policy as a single online-learning example. We first briefly
review concepts of online learning and no regret that will
be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy ⇡n at
iteration n which incurs a loss `n(⇡n). After observing this
loss, the algorithm can provide a different policy ⇡n+1 for
the next iteration which will incur loss `n+1(⇡n+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence ⇡̂1:N and executes that policy for T steps.

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ;.
Initialize ⇡̂1 to any policy in ⇧.
for i = 1 to N do

Let ⇡i = �i⇡
⇤ + (1� �i)⇡̂i.

Sample T -step trajectories using ⇡i.
Get dataset Di = {(s, ⇡⇤(s))} of visited states by ⇡i

and actions given by expert.
Aggregate datasets: D D

S
Di.

Train classifier ⇡̂i+1 on D.
end for
Return best ⇡̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset
at each iteration under the current policy and trains the next
policy under the aggregate of all collected datasets. The in-
tuition behind this algorithm is that over the iterations, we
are building up the set of inputs that the learned policy is
likely to encounter during its execution based on previous
experience (training iterations). This algorithm can be in-
terpreted as a Follow-The-Leader algorithm in that at itera-
tion n we pick the best policy ⇡̂n+1 in hindsight, i.e. under
all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-
tion learning setting, we optionally allow the algorithm to
use a modified policy ⇡i = �i⇡

⇤ + (1 � �i)⇡̂i at iteration
i that queries the expert to choose controls a fraction of the
time while collecting the next dataset. This is often desir-
able in practice as the first few policies, with relatively few
datapoints, may make many more mistakes and visit states
that are irrelevant as the policy improves.

We will typically use �1 = 1 so that we do not have to spec-
ify an initial policy ⇡̂1 before getting data from the expert’s
behavior. Then we could choose �i = p

i�1 to have a prob-
ability of using the expert that decays exponentially as in
SMILe and SEARN. We show below the only requirement
is that {�i} be a sequence such that �N = 1

N

PN
i=1 �i ! 0

as N ! 1. The simple, parameter-free version of the al-
gorithm described above is the special case �i = I(i = 1)
for I the indicator function, which often performs best in
practice (see Section 5). The general DAGGER algorithm is
detailed in Algorithm 3.1. The main result of our analysis
in the next section is the following guarantee for DAGGER.
Let ⇡1:N denote the sequence of policies ⇡1, ⇡2, . . . ,⇡N .
Assume ` is strongly convex and bounded over ⇧. Suppose
�i  (1� ↵)i�1 for all i for some constant ↵ independent
of T . Let ✏N = min⇡2⇧

1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] be the
true loss of the best policy in hindsight. Then the following
holds in the infinite sample case (infinite number of sample
trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + O(1/T)

In particular, this holds for the policy ⇡̂ =
arg min⇡2⇡̂1:N

Es⇠d⇡ [`(s, ⇡)]. 3 If the task cost
function C corresponds to (or is upper bounded by) the
surrogate loss ` then this bound tells us directly that
J(⇡̂)  T ✏N + O(1). For arbitrary task cost function C,
then if ` is an upper bound on the 0-1 loss with respect to
⇡
⇤, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤) + uT ✏N + O(1).

Finite Sample Results In the finite sample case, sup-
pose we sample m trajectories with ⇡i at each it-
eration i, and denote this dataset Di. Let ✏̂N =
min⇡2⇧

1
N

PN
i=1 Es⇠Di [`(s, ⇡)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-
Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/�)) and

m is O(1) then with probability at least 1� � there exists a

policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N + O(1/T)

A more refined analysis taking advantage of the strong con-
vexity of the loss function (Kakade and Tewari, 2009) may
lead to tighter generalization bounds that require N only of
order Õ(T log(1/�)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2
T

2 log(1/�))
and m is O(1) then with probability at least 1 � � there

exists a policy ⇡̂ 2 ⇡̂1:N s.t. J(⇡̂)  J(⇡⇤)+uT ✏̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-
regret property of the underlying Follow-The-Leader algo-
rithm on strongly convex losses (Kakade and Tewari, 2009)
which picks the sequence of policies ⇡̂1:N . Hence the pre-
sented results also hold for any other no regret online learn-
ing algorithm we would apply to our imitation learning set-
ting. In particular, we can consider the results here a re-
duction of imitation learning to no-regret online learning
where we treat mini-batches of trajectories under a single
policy as a single online-learning example. We first briefly
review concepts of online learning and no regret that will
be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy ⇡n at
iteration n which incurs a loss `n(⇡n). After observing this
loss, the algorithm can provide a different policy ⇡n+1 for
the next iteration which will incur loss `n+1(⇡n+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence ⇡̂1:N and executes that policy for T steps.

 628

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

others and the learned controller may be unstable.

We propose a new meta-algorithm for imitation learning
which learns a stationary deterministic policy guaranteed
to perform well under its induced distribution of states
(number of mistakes/costs that grows linearly in T and
classification cost ✏). We take a reduction-based approach
(Beygelzimer et al., 2005) that enables reusing existing su-
pervised learning algorithms. Our approach is simple to
implement, has no free parameters except the supervised
learning algorithm sub-routine, and requires a number of
iterations that scales nearly linearly with the effective hori-
zon of the problem. It naturally handles continuous as well
as discrete predictions. Our approach is closely related to
no regret online learning algorithms (Cesa-Bianchi et al.,
2004; Hazan et al., 2006; Kakade and Shalev-Shwartz,
2008) (in particular Follow-The-Leader) but better lever-
ages the expert in our setting. Additionally, we show that
any no-regret learner can be used in a particular fashion to
learn a policy that achieves similar guarantees.

We begin by establishing our notation and setting, discuss
related work, and then present the DAGGER (Dataset Ag-
gregation) method. We analyze this approach using a no-
regret and a reduction approach (Beygelzimer et al., 2005).
Beyond the reduction analysis, we consider the sample
complexity of our approach using online-to-batch (Cesa-
Bianchi et al., 2004) techniques. We demonstrate DAGGER
is scalable and outperforms previous approaches in practice
on two challenging imitation learning problems: 1) learn-
ing to steer a car in a 3D racing game (Super Tux Kart) and
2) and learning to play Super Mario Bros., given input im-
age features and corresponding actions by a human expert
and near-optimal planner respectively. Following Daumé
III et al. (2009) in treating structured prediction as a de-
generate imitation learning problem, we apply DAGGER to
the OCR (Taskar et al., 2003) benchmark prediction prob-
lem achieving results competitive with the state-of-the-art
(Taskar et al., 2003; Ratliff et al., 2007; Daumé III et al.,
2009) using only single-pass, greedy prediction.

2 PRELIMINARIES

We begin by introducing notation relevant to our setting.
We denote by ⇧ the class of policies the learner is consid-
ering and T the task horizon. For any policy ⇡, we let d

t
⇡

denote the distribution of states at time t if the learner exe-
cuted policy ⇡ from time step 1 to t � 1. Furthermore, we
denote d⇡ = 1

T

PT
t=1 d

t
⇡ the average distribution of states

if we follow policy ⇡ for T steps. Given a state s, we de-
note C(s, a) the expected immediate cost of performing ac-
tion a in state s for the task we are considering and denote
C⇡(s) = Ea⇠⇡(s)[C(s, a)] the expected immediate cost of
⇡ in s. We assume C is bounded in [0, 1]. The total cost
of executing policy ⇡ for T -steps (i.e., the cost-to-go) is
denoted J(⇡) =

PT
t=1 Es⇠dt

⇡
[C⇡(s)] = TEs⇠d⇡ [C⇡(s)].

In imitation learning, we may not necessarily know or ob-
serve true costs C(s, a) for the particular task. Instead,
we observe expert demonstrations and seek to bound J(⇡)
for any cost function C based on how well ⇡ mimics the
expert’s policy ⇡

⇤. Denote ` the observed surrogate loss
function we minimize instead of C. For instance `(s, ⇡)
may be the expected 0-1 loss of ⇡ with respect to ⇡

⇤ in
state s, or a squared/hinge loss of ⇡ with respect to ⇡

⇤ in s.
Importantly, in many instances, C and ` may be the same
function– for instance, if we are interested in optimizing the
learner’s ability to predict the actions chosen by an expert.

Our goal is to find a policy ⇡̂ which minimizes the observed
surrogate loss under its induced distribution of states, i.e.:

⇡̂ = arg min
⇡2⇧

Es⇠d⇡ [`(s, ⇡)] (1)

As system dynamics are assumed both unknown and com-
plex, we cannot compute d⇡ and can only sample it by exe-
cuting ⇡ in the system. Hence this is a non-i.i.d. supervised
learning problem due to the dependence of the input distri-
bution on the policy ⇡ itself. The interaction between pol-
icy and the resulting distribution makes optimization diffi-
cult as it results in a non-convex objective even if the loss
`(s, ·) is convex in ⇡ for all states s. We now briefly review
previous approaches and their guarantees.

2.1 Supervised Approach to Imitation

The traditional approach to imitation learning ignores the
change in distribution and simply trains a policy ⇡ that per-
forms well under the distribution of states encountered by
the expert d⇡⇤ . This can be achieved using any standard
supervised learning algorithm. It finds the policy ⇡̂sup:

⇡̂sup = arg min
⇡2⇧

Es⇠d⇡⇤ [`(s, ⇡)] (2)

Assuming `(s, ⇡) is the 0-1 loss (or upper bound on the 0-
1 loss) implies the following performance guarantee with
respect to any task cost function C bounded in [0, 1]:

Theorem 2.1. (Ross and Bagnell, 2010) Let

Es⇠d⇡⇤ [`(s, ⇡)] = ✏, then J(⇡)  J(⇡⇤) + T
2
✏.

Proof. Follows from result in Ross and Bagnell (2010)
since ✏ is an upper bound on the 0-1 loss of ⇡ in d⇡⇤ .

Note that this bound is tight, i.e. there exist problems
such that a policy ⇡ with ✏ 0-1 loss on d⇡⇤ can incur ex-
tra cost that grows quadratically in T . Kääriäinen (2006)
demonstrated this in a sequence prediction setting1 and

1In their example, an error rate of ✏ > 0 when trained to
predict the next output in sequence with the previous correct
output as input can lead to an expected number of mistakes of
T
2 �

1�(1�2✏)T+1

4✏ + 1
2 over sequences of length T at test time.

This is bounded by T
2
✏ and behaves as ⇥(T 2

✏) for small ✏.

Algo #1: Supervised Approach to Imitation

Algo #2: DAgger

DAgger Theoretical Results
• The proof of the results for DAgger relies on a reduction to no-regret

online learning

74

 631

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

loss functions `n+1 may vary in an unknown or even adver-
sarial fashion over time. A no-regret algorithm is an algo-
rithm that produces a sequence of policies ⇡1, ⇡2, . . . ,⇡N

such that the average regret with respect to the best policy
in hindsight goes to 0 as N goes to1:

1
N

NX

i=1

`i(⇡i)�min
⇡2⇧

1
N

NX

i=1

`i(⇡)  �N (3)

for limN!1 �N = 0. Many no-regret algorithms guar-
antee that �N is Õ(1

N) (e.g. when ` is strongly convex)
(Hazan et al., 2006; Kakade and Shalev-Shwartz, 2008;
Kakade and Tewari, 2009).

4.2 No Regret Algorithms Guarantees

Now we show that no-regret algorithms can be used to find
a policy which has good performance guarantees under its
own distribution of states in our imitation learning setting.
To do so, we must choose the loss functions to be the loss
under the distribution of states of the current policy chosen
by the online algorithm: `i(⇡) = Es⇠d⇡i

[`(s, ⇡)].

For our analysis of DAGGER, we need to bound the to-
tal variation distance between the distribution of states en-
countered by ⇡̂i and ⇡i, which continues to call the expert.
The following lemma is useful:

Lemma 4.1. ||d⇡i � d⇡̂i ||1  2T�i.

Proof. Let d the distribution of states over T steps condi-
tioned on ⇡i picking ⇡

⇤ at least once over T steps. Since ⇡i

always executes ⇡̂i over T steps with probability (1��i)T

we have d⇡i = (1� �i)T
d⇡̂i + (1� (1� �i)T)d. Thus

||d⇡i � d⇡̂i ||1
= (1� (1� �i)T)||d� d⇡̂i ||1
 2(1� (1� �i)T)
 2T�i

The last inequality follows from the fact that (1 � �)T �
1� �T for any � 2 [0, 1].

This is only better than the trivial bound ||d⇡i � d⇡̂i ||1  2
for �i  1

T . Assume �i is non-increasing and define
n� the largest n  N such that �n >

1
T . Let ✏N =

min⇡2⇧
1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] the loss of the best pol-
icy in hindsight after N iterations and let `max be an upper
bound on the loss, i.e. `i(s, ⇡̂i)  `max for all policies ⇡̂i,
and state s such that d⇡̂i(s) > 0. We have the following:

Theorem 4.1. For DAGGER, there exists a policy ⇡̂ 2
⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + �N + 2`max

N [n� +
T

PN
i=n�+1 �i], for �N the average regret of ⇡̂1:N .

Proof. The last lemma implies Es⇠d⇡̂i
(`i(s, ⇡̂i)) 

Es⇠d⇡i
(`i(s, ⇡̂i)) + 2`max min(1, T�i). Then:

min⇡̂2⇡̂1:N Es⇠d⇡̂ [`(s, ⇡̂)]
 1

N

PN
i=1 Es⇠d⇡̂i

(`(s, ⇡̂i))
 1

N

PN
i=1[Es⇠d⇡i

(`(s, ⇡̂i)) + 2`max min(1, T�i)]
 �N + 2`max

N [n� + T
PN

i=n�+1 �i] + min⇡2⇧
PN

i=1 `i(⇡)
= �N + ✏N + 2`max

N [n� + T
PN

i=n�+1 �i]

Under an error reduction assumption that for any input dis-
tribution, there is some policy ⇡ 2 ⇧ that achieves sur-
rogate loss of ✏, this implies we are guaranteed to find a
policy ⇡̂ which achieves ✏ surrogate loss under its own
state distribution in the limit, provided �N ! 0. For in-
stance, if we choose �i to be of the form (1 � ↵)i�1, then
1
N [n� + T

PN
i=n�+1 �i]  1

N↵ [log T + 1] and this extra
penalty becomes negligible for N as Õ(T). As we need
at least Õ(T) iterations to make �N negligible, the num-
ber of iterations required by DAGGER is similar to that re-
quired by any no-regret algorithm. Note that this is not
as strong as the general error or regret reductions consid-
ered in (Beygelzimer et al., 2005; Ross and Bagnell, 2010;
Daumé III et al., 2009) which require only classification:
we require a no-regret method or strongly convex surrogate
loss function, a stronger (albeit common) assumption.

Finite Sample Case: The previous results hold if the on-
line learning algorithm observes the infinite sample loss,
i.e. the loss on the true distribution of trajectories induced
by the current policy ⇡i. In practice however the algorithm
would only observe its loss on a small sample of trajecto-
ries at each iteration. We wish to bound the true loss under
its own distribution of the best policy in the sequence as a
function of the regret on the finite sample of trajectories.

At each iteration i, we assume the algorithm samples m

trajectories using ⇡i and then observes the loss `i(⇡) =
Es⇠Di(`(s, ⇡)), for Di the dataset of those m trajectories.
The online learner guarantees 1

N

PN
i=1 Es⇠Di(`(s, ⇡i)) �

min⇡2⇧
1
N

PN
i=1 Es⇠Di(`(s, ⇡))  �N . Let ✏̂N =

min⇡2⇧
1
N

PN
i=1 Es⇠Di [`(s, ⇡)] the training loss of the

best policy in hindsight. Following a similar analysis to
Cesa-Bianchi et al. (2004), we obtain:
Theorem 4.2. For DAGGER, with probability at least 1��,

there exists a policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N +

�N + 2`max
N [n� + T

PN
i=n�+1 �i] + `max

q
2 log(1/�)

mN , for

�N the average regret of ⇡̂1:N .

Proof. Let Yij be the difference between the expected per
step loss of ⇡̂i under state distribution d⇡i and the aver-
age per step loss of ⇡̂i under the j

th sample trajectory
with ⇡i at iteration i. The random variables Yij over all
i 2 {1, 2, . . . , N} and j 2 {1, 2, . . . ,m} are all zero
mean, bounded in [�`max, `max] and form a martingale
(considering the order Y11, Y12, . . . , Y1m, Y21, . . . , YNm).
By Azuma-Hoeffding’s inequality 1

mN

PN
i=1

Pm
j=1 Yij 

From Ross et al. (2011) “A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning”...

• The key idea is to choose the loss function to be that of the loss on the
distribution over states given by the current policy chosen by the online
learner

 631

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

loss functions `n+1 may vary in an unknown or even adver-
sarial fashion over time. A no-regret algorithm is an algo-
rithm that produces a sequence of policies ⇡1, ⇡2, . . . ,⇡N

such that the average regret with respect to the best policy
in hindsight goes to 0 as N goes to1:

1
N

NX

i=1

`i(⇡i)�min
⇡2⇧

1
N

NX

i=1

`i(⇡)  �N (3)

for limN!1 �N = 0. Many no-regret algorithms guar-
antee that �N is Õ(1

N) (e.g. when ` is strongly convex)
(Hazan et al., 2006; Kakade and Shalev-Shwartz, 2008;
Kakade and Tewari, 2009).

4.2 No Regret Algorithms Guarantees

Now we show that no-regret algorithms can be used to find
a policy which has good performance guarantees under its
own distribution of states in our imitation learning setting.
To do so, we must choose the loss functions to be the loss
under the distribution of states of the current policy chosen
by the online algorithm: `i(⇡) = Es⇠d⇡i

[`(s, ⇡)].

For our analysis of DAGGER, we need to bound the to-
tal variation distance between the distribution of states en-
countered by ⇡̂i and ⇡i, which continues to call the expert.
The following lemma is useful:

Lemma 4.1. ||d⇡i � d⇡̂i ||1  2T�i.

Proof. Let d the distribution of states over T steps condi-
tioned on ⇡i picking ⇡

⇤ at least once over T steps. Since ⇡i

always executes ⇡̂i over T steps with probability (1��i)T

we have d⇡i = (1� �i)T
d⇡̂i + (1� (1� �i)T)d. Thus

||d⇡i � d⇡̂i ||1
= (1� (1� �i)T)||d� d⇡̂i ||1
 2(1� (1� �i)T)
 2T�i

The last inequality follows from the fact that (1 � �)T �
1� �T for any � 2 [0, 1].

This is only better than the trivial bound ||d⇡i � d⇡̂i ||1  2
for �i  1

T . Assume �i is non-increasing and define
n� the largest n  N such that �n >

1
T . Let ✏N =

min⇡2⇧
1
N

PN
i=1 Es⇠d⇡i

[`(s, ⇡)] the loss of the best pol-
icy in hindsight after N iterations and let `max be an upper
bound on the loss, i.e. `i(s, ⇡̂i)  `max for all policies ⇡̂i,
and state s such that d⇡̂i(s) > 0. We have the following:

Theorem 4.1. For DAGGER, there exists a policy ⇡̂ 2
⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏N + �N + 2`max

N [n� +
T

PN
i=n�+1 �i], for �N the average regret of ⇡̂1:N .

Proof. The last lemma implies Es⇠d⇡̂i
(`i(s, ⇡̂i)) 

Es⇠d⇡i
(`i(s, ⇡̂i)) + 2`max min(1, T�i). Then:

min⇡̂2⇡̂1:N Es⇠d⇡̂ [`(s, ⇡̂)]
 1

N

PN
i=1 Es⇠d⇡̂i

(`(s, ⇡̂i))
 1

N

PN
i=1[Es⇠d⇡i

(`(s, ⇡̂i)) + 2`max min(1, T�i)]
 �N + 2`max

N [n� + T
PN

i=n�+1 �i] + min⇡2⇧
PN

i=1 `i(⇡)
= �N + ✏N + 2`max

N [n� + T
PN

i=n�+1 �i]

Under an error reduction assumption that for any input dis-
tribution, there is some policy ⇡ 2 ⇧ that achieves sur-
rogate loss of ✏, this implies we are guaranteed to find a
policy ⇡̂ which achieves ✏ surrogate loss under its own
state distribution in the limit, provided �N ! 0. For in-
stance, if we choose �i to be of the form (1 � ↵)i�1, then
1
N [n� + T

PN
i=n�+1 �i]  1

N↵ [log T + 1] and this extra
penalty becomes negligible for N as Õ(T). As we need
at least Õ(T) iterations to make �N negligible, the num-
ber of iterations required by DAGGER is similar to that re-
quired by any no-regret algorithm. Note that this is not
as strong as the general error or regret reductions consid-
ered in (Beygelzimer et al., 2005; Ross and Bagnell, 2010;
Daumé III et al., 2009) which require only classification:
we require a no-regret method or strongly convex surrogate
loss function, a stronger (albeit common) assumption.

Finite Sample Case: The previous results hold if the on-
line learning algorithm observes the infinite sample loss,
i.e. the loss on the true distribution of trajectories induced
by the current policy ⇡i. In practice however the algorithm
would only observe its loss on a small sample of trajecto-
ries at each iteration. We wish to bound the true loss under
its own distribution of the best policy in the sequence as a
function of the regret on the finite sample of trajectories.

At each iteration i, we assume the algorithm samples m

trajectories using ⇡i and then observes the loss `i(⇡) =
Es⇠Di(`(s, ⇡)), for Di the dataset of those m trajectories.
The online learner guarantees 1

N

PN
i=1 Es⇠Di(`(s, ⇡i)) �

min⇡2⇧
1
N

PN
i=1 Es⇠Di(`(s, ⇡))  �N . Let ✏̂N =

min⇡2⇧
1
N

PN
i=1 Es⇠Di [`(s, ⇡)] the training loss of the

best policy in hindsight. Following a similar analysis to
Cesa-Bianchi et al. (2004), we obtain:
Theorem 4.2. For DAGGER, with probability at least 1��,

there exists a policy ⇡̂ 2 ⇡̂1:N s.t. Es⇠d⇡̂ [`(s, ⇡̂)]  ✏̂N +

�N + 2`max
N [n� + T

PN
i=n�+1 �i] + `max

q
2 log(1/�)

mN , for

�N the average regret of ⇡̂1:N .

Proof. Let Yij be the difference between the expected per
step loss of ⇡̂i under state distribution d⇡i and the aver-
age per step loss of ⇡̂i under the j

th sample trajectory
with ⇡i at iteration i. The random variables Yij over all
i 2 {1, 2, . . . , N} and j 2 {1, 2, . . . ,m} are all zero
mean, bounded in [�`max, `max] and form a martingale
(considering the order Y11, Y12, . . . , Y1m, Y21, . . . , YNm).
By Azuma-Hoeffding’s inequality 1

mN

PN
i=1

Pm
j=1 Yij 

Learning 2 Search

Some key challenges:
– performance depends heavily on search order,

but have to pick this by hand
– expert policy is critical, but what if it’s too

difficult to design one
– not always easy to make efficient on a GPU

75
Adapted from Langford & Daume III (ICML tutorial, 2015)

Learning Objectives
Structured Prediction as Search

You should be able to…
1. Reduce a structured prediction problem to a

search problem
2. Implement Dagger, a learning to search

algorithm
3. (If you already know RL…) Contrast imitation

learning with reinforcement learning
4. Explain the reduction of structured prediction

to no-regret online learning
5. Contrast various learning2search algorithms

based on their properties
76

