10-418/10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Learning to Search (Part IlI)

Matt Gormley
Lecture 6
Sep. 18, 2022

STRUCTURED PREDICTION AS
SEARCH

Structured Prediction as Search

* Key idea: convert your structured prediction

problem to a search problem!

* Example: for POS tagging, each node in the search
space corresponds to a partial tag sequence

N N

NV

NV N]

NV V]

Joss=0

Joss=1

Basic Neural Network

Suppose we wish to predict the tags greedily left to right

Simple neural network looks at the previous word, the previous tag
prediction, the current word, and the next word

From these it builds a probability distribution over output tags
®©® ® 0

Then it selects the argmax
argmax argmax

argmax argmax :
} -

Basic Neural Network

Suppose we wish to predict the tags greedily left to right

Simple neural network looks at the previous word, the previous tag
prediction, the current word, and the next word

From these it builds a probability distribution over output tags
Then it selects the argmax

@ @ ® ® 0O
argmax argmax argmax argmaxT argmax
ﬁ

& T

Basic Neural Network

Suppose we wish to predict the tags greedily left to right

Simple neural network looks at the previous word, the previous tag
prediction, the current word, and the next word

From these it builds a probability distribution over output tags
Then it selects the argmax

argmax argmax argmax argmaxT =

& T

Learning to Search

Whiteboard:

— Problem Setting
— Ex: POS Tagging
— Other Solutions:
* Completely Independent Predictions

* Sharing Parameters [Multi-task Learning
* Graphical Models

— Today’s Solution: Structured Prediction to Search
* Search spaces
* Cost functions
* Policies

EXPOSURE BIAS

The Exposure Bias Problem

Imagine you join (for the first time ever) a intramural soccer team.
Position, 15t practice:
Position, 2" practice:
Position, 34 practice:
Position, 15t game:

midfielder
midfielder
midfielder
goalie

This could end badly!
After all, you’ve
never had any
training on what to
do as a goalie.

Your training is
biased to the parts
of the field that you

were exposed to
(midfield).

13

The Exposure Bias Problem

To really make this analogy work, we should adjust it slightly:

15t 2nd 3rd practice: your coach assigns each of you to mimic the exact
steps of a specific player in the 1986 world cup final; every practice each
of you make the same maneuvers every time

* 1stgame: you play a real team, that makes creative autonomous
decisions, you are forced to be creative as well

This could end badly!
After all, you’ve never
had any training on
what to do when you
are exposed to the
outcomes of your own
decisions!

Your training is biased
to the 1986 behaviors
to which you were
exposed.

14

The Exposure Bias Problem

Consider two (related) explanations for why maximum likelihood training
(aka. fully supervised imitation learning) is a poor choice for a seg2seq

model.

Mismatched Test-Time
Inference Algorithm

MLE training assumes that at test time we
will do exact inference to find the highest
probability output string (e.g. for an
HMM, using the Viterbi algorithm)

However, in general, exact inference over
the space of exponentially many output
strings is intractable for a seq2seq model
(e.g. unlike an HMM, seq2seq makes no
Markov assumption)

\jrowm

RA e

Exposure Bias

At training time, MLE trains to generate
the next token conditioned on the ground

truth prefix sequence. —

At test time, the model generates the
next token conditioned on model’s prefix
sequence (obtained by greedy decoding

or sampling). \ !7 ?‘\“'7

So the model is exposed to only real
prefixes at training time, and is therefore
biased towards proper behavior only on
those ground truth prefixes.

LEARNING TO SEARCH

Imitation Learning

Algorithm 1: Supervised Imitation Learning (for structured prediction)

.

def trainSupervised(r”, E, X,.s, Y..7):

initialize policy mq def predict(my):

foriin1...N: fortin1...T:
fortin1...T: observe state s; = (Yys , Xy:s)
observe state s;|= (: take action a, = Jy,, = Te(St)

incur loss €, = 10ss(Y,, ¥1:t)

—_——

for (s, a,) in T(: The state is the full input
update policy mg wit sequence and the partial
one step of SGD on output sequence, up to step t
example (s, a;)
— The action is the next output
token wespmedietat step t+1
repeat for E epochs g o0 F —GFom Yot
return 7y This is equivalent to

accumulating the gradient of
the full computation graph for

. /
P)

Imitation Learning

Algorithm 2: DAgger for Imitation Learning (for structured prediction)

def trainDAgger(n™, E, B = [B+---, Bn], Xu:sy Yar1):
e ege e . —_—
initialize policy g
foriin1...N:
:81 T[+ (1 :8) Tlg
rtin ... T:

(y1:t ’ X1:S)
= 9t+1 ~ T[i(st)

observe state s,
sample action a
store action a, =¥,,, = (s,
70 = 70) + [(5:,_ 3:5]-_

for (s, a,) in T():
update policy g with
one step of SGD on
example (s, a;)

repeat for E epochs
return irg

Now the prediction for the next
time step y,,, comes from the
the model policy.+ 6fucle
‘»la.’
This will typically be fed back
into the model.

We still train by updating on the
expert policy’s prediction of y,,,
— this is the output of the

' dynamic oracle ”

Decoding for seg2seq (test time)

7\ 7\ Ve 7\
[{ f
y v N_J(o)((N] [END
= ‘ X ‘ X ‘ x ‘ x
E ! DE;T I ‘“T LB ‘;T
5 | & | & . I &
Tp(tho 4 p(v:Ih.) :Tp(y3|h3>:Tp<y4lh4)'.T»(yslm
| | | |
>l >l > 3 >
A I A | A | I A
h, I| h, : h : h, I| h,
Encoder —— [[T T T T
"""""""""""""""""""""""" A A \ A \ \ A
! ! Vo
J L~ Jo JUN/]
2 s 7

1 1

MLE for seqg2seq (supervised imiton learning)
+ _192__

é)

v LY

Encoder

I

MLE for seqg2seq (supervised imiton learning)
+ | loss

MLE computes, for each
time step, the cross-
entropy between the

ground truth y, and the

model’s softmax p(-|h;)

At training time, it
ignores the predictions

(i.e. argmax) 1P(valhs) Tv(yslhs)
> '| > >
\ N\ N
: n, s
Encoder [[T {111
"""""""""""""""""""""""" “/\ N
\
€ e e o) (o) ()
I 7

1 1

DAgger for seq2seq

nﬁ(ytt)XtS)

By contrast,
DAgger feeds the
argmax back into

the decoder

V] //] / [//]

fL o JL ~[) [enp]

NN | RN I R
© |1 © 1 &

p(yslhs) A P(Yalne) M (yslhs)
| |

> 3 >
|
|

&= N\
1 I h, h, ' h, : h,
Encoder —— T[T T I T T T
e i A A 1 A l 7\ 1 A
1 ‘- ‘ |
e e, e, e, [START | v]I N J D JIL N
M—r—— - 2 s 2

[[T 1
(e) (e) ()

DAgger for seq2seq

T[*(ytt) X1:S) [

Encoder

[11 1

x (flies) (ke] (_a] (plant

23

DAgger for seq2seq

T[*(ytt) X1:S) [

7

In this example, our loss
function is Hamming loss, and
so (Y, , X:.s) happens to be
identical to the ground truth
., but for other losses this
wouldn’t be the case

Encoder —
e, e, e, e, i
—m——rrr—

[[T 1
Jars

aka. Expert Policies for structured prediction problems

DYNAMIC ORACLES

25

Dynamic Oracles

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

%, l 2 % Yy ¢ ¢
& s sl [0 el e]
7 a 1 k S

a S h e t

26

Dynamic Oracles

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

27

Background: Levenshtein Distance

Given: two strings, a source string and a target string

Definition: Levenshtein distance (aka. edit distance) is the

smallestﬁn_,uf%bgiinsertions, deletions, and substitutions to
transform the source string into the target string

Example Transformations:
— leaning = learning (insertion of ‘r’)
— reading = leading (substitution of ‘r’ for I’)
— learning = earning (deletion of ‘I’)

Recursive Definition: (but not quite how it’s implemented)

™ ""‘"7"* I max(A, B) ifA=oorB=0
\, Q’lst(am b,.g) if a, = b;
diSt(a1:A’ b1:B) " - I diSt(az:Ar b1:B)
E— .
1+min 4 dist(a,., b,.g) otherwise
xF .
dISt(aZ:A) bz:B)

28

Background: Levenshtein Distance

Given: two strings, a source string and a target string

Definition: Levenshtein distance (aka. edit distance) is the
smallest number of insertions, deletions, and substitutions to
transform the source string into the target string
Example Transformations:

— leaning = learning (insertion of ‘r’)

— reading = leading (substitution of ‘r’ for I’)

— learning = earning (deletion of ‘I’)

Recursive Definition: (but not quite how it’s implemented)

max(A, B) ifA=oorB=0

dist(@m bis) = dist(aza byp) + 1
mind dist(a;.a, by:g) +1 otherwise

dist(a,.n by) + 1(a; # by)

29

Background: Levenshtein Distance

* Algorithm: use dynamic programming; store the distance
of every pair of substrings in table so that we don’t

recompute any distances B
’ o'y~
~for i = 0.A: table[i][0] = i w %a” :
for j = 0.B:_ table[0@][]] =]
A Q
for 1 = 1.A: l
for j = 1..B:
i1f a[i] eb[j]:
—sub =1
else:
sub = 0@

table[lj[j] = min(table[1i- 1, jl + 1,
> table[1, j-1] + 1,
table[1-1, j-1] + sub)

cehurn 4uLh(ONIt5]

30

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

=

Edit Distance Table OocD m.m.
Targets | dist.

31

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m."'l-
Targets | dist.

32

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m."'l-
Targets | dist.

33

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m."'l-
Targets | dist.

34

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m."'l-
Targets | dist.

35

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m."'l-
Targets | dist.

36

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table OoCD m.m.
Targets | dist.
S (?) N D A Y
! 2 3 4 5 6 S 0

S 1 m 1 2 3 4 13
= 1V
M,ﬁb’ﬁ M’ = i\au—\\) 15

37

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m.m.
Targets | dist.

Dynamic Oracle for CER

Algorithm:

1.
2.

3.

Build edit distance table from current prefix, a,.a, and ground truth, b,
Let M denote the set of column indices that are minima in the last row
The optimal next characters for the last row are M’ = [b,,, for m in M]

Edit Distance Table OoCD m.m.
Targets | dist.

39

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table OoCD m.m.
Targets | dist.

S U N D A Y
[77, 1 2 3 4 5 6 S 0
S 1 0! 1 2 3—— 4 5) U 0
A 2 1 1 2 3 3 4 1

40

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table OoCD m.m.
Targets | dist.

s (u) N b A v
o 1 2 3 4 5 6 S 0
3 4 5 U o0

3 3 4

S 1 o~ 1 2
@ : OO -
- S

41

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

ocDh
Targets

Edit Distance Table

S U
0 1
S 1 0 1

A 2 1 1
T (D

N

3
2

2

&

D
4
3
3
3

UV N B

O NV e

S 0
U 0
U,N 1
U,N, 2

42

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table oey m
Targets

S U N D A Y
0 1 2 3 4 5 6 S 0
S 1 0 1 2 3 4 5 U 0
A 2 1 1 2 3 3 4 U,N 1
T 3 > > 2 3 4 4 U,N,D 2
R 4 3 3 3 3 4 5 UN,D,A 3

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table oey m
Targets

S U N D @ Y
0 1 2 3 4 5 6 S 0
S 1 0 1 2 3 4 5 U 0
A 2 1 1 2 3 3 4 U,N 1
T 3 > > 2 3 4 4 U,N,D 2
R 4 3 4 5 UN,D,A 3
@ 5 4 4 4 4 @ 4 _L 3

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table oey m
Targets

S U N D A Y

0 1 2 3 4 5 6 S 0
S 1 0 1 2 3 4 5 U 0
A 2 1 1 2 3 3 4 U,N 1
T 3 > > 2 3 4 4 U,N,D 2
R 4 3 3 3 3 4 5 UN,D,A 3
A 5 4 4 4 4 3 4 Y 3
P 6 5 5 5 5 4 4 y <[s> 4

Dynamic Oracle for CER

Algorithm:

1. Build edit distance table from current prefix, a,.n, and ground truth, b,.
2. Let M denote the set of column indices that are minima in the last row
3. The optimal next characters for the last row are M’ = [b,,,,, for m in M]

Edit Distance Table oey m
Targets

S U N D A Y

0 1 2 3 4 5 6 S 0
S 1 0 1 2 3 4 5 U 0
A 2 1 1 2 3 3 4 U,N 1
T 3 > > 2 3 4 4 U,N,D 2
R 4 3 3 3 3 4 5 UN,D,A 3
A 5 4 4 4 4 3 4 Y 3
P 6 5 5 5 5 4 4 Y, <[s> 4
Y 7 6 6 6 6 5 4 <[s> 4

Dynamic Oracles

Definition: a dynamic oracle is a function that answers this question:

Given a partial output sequence, what is the completion that
minimizes loss w.r.t the gold output?

Depending on your loss function, there may or may not exist an efficient
dynamic oracle.

For example, these metrics readily admit an efficient dynamic oracle:
* CER for phoneme recognition

* chunking F1 for named entity

* labeled attachment score for arc-eager dependency parsing

But it’s unlikely that there exists an efficient dynamic oracle for:
* BLEU for machine translation
* ROUGE for summarization

TEACHER FORCING, SCHEDULED
SAMPLING, & OCD

Algorithms for Seqg2Seq

Here we consider three algorithms t

nat are

closely related to DAgger and appro
training a seq2seq model:

1. Teacher Forcing
2. Scheduled Sampling
3. Optimal Completion Distillation

driate for

Teacher Forcing

Another name for supervised imitation learning when it is applied to
training RNNLM/seq2seq models is teaching forcing. This is equivalent to
maximum likelihood estimation if cross-entropy is the loss function.

The name ‘teacher forcing’ was coined by Williams & Zipser (1989) A
Learning Algorithm for Continually Running Fully Recurrent Neural Networks.

The only difference between training an RNNLM or seg2seq model is
whether the decoder conditions on the output of an encoder or not.

Algorithm:

1. attraining time, feed the ground truth from the previous time step in
as the decoder input for the next time step

2. ateach timestep minimize cross entropy (or some other loss) of the
ground truth for that time step

Scheduled Sampling

The Scheduled Sampling (SS) algorithm is another learning technique
for seq2seq models, introduced by Bengio et al. (2015) Scheduled
Sampling for Sequence Prediction with Recurrent Neural Networks.

Loyt J dedr

Algorithm: (/ . -‘W .\a 7,-.,\.-& v

1. at training time, flip a weighted coin to decide whether to feed
the model’s prediction or the ground truth from the previous
time step as the decoder input for the next time step

2. at each timestep minimize cross entropy (or some other loss) of
the ground truth for that time step

3. gradually decrease the probability of feeding in the ground
truth with each iteration of training

sampled y(t-2) true y(t-2)

Comments:

e SSisjust like Teacher Forcing except that with some probability we
feed in the model’s prediction from the previous time step.

eSS has the same motivation as DAgger: addressing the problem of
exposure bias (i.e. making the states visited at training time similar
to those that will be visited at test time)

e SSis not DAgger because it only relies on the ground truth
sequence, not a dynamic oracle

* SS does not come with any theoretical gaurantees (DAgger does)

T T
Exponential decay
Inverse sigmoid decay

0.8 Linear decay

o

Figure =2~
schedules.

51
Figure from Bengio et al. (2015) “Scheduled Sampling...”

Optimal Completion Distillation

Optimal Completion Distillation (OCD) was introduced in Sabour et al.
(2019) Optimal Completion Distillation for Sequence Learning.

Algorithm:

1. at training time, feed the model’s prediction from the previous time
step as the decoder input for the next time step

2. ateach timestep minimize cross entropy (or some loss) of the grewmd
“trutit for that time

d iC ocode Tor I //‘\“*)
Comme\x:s‘jn ’ &—*{A ?0 "l

Optimal Completion Distillation (OCD) is a special of the DAgger meta-
algorithm to speech recognition in which:

1. theloss function at each time-step is the KL Divergence between the
softmax output from the model and a uniform distribution over the
dynamic oracle completions

2. the dynamic oracle is a dynamic programming algorithm (similar to
edit distance) for character error rate (CER)

Optimal Completion Distillation

Optimal Completion Distillation (OCD) was introduced in Sabour et al.
(2019) Optimal Completion Distillation for Sequence Learning.

Algorithm:
1. at training time, feed the model’s prediction from the previous time

step as the decoder input for the n jme step
2. at each timestep minimize cross en y (or some loss) of the ground

truth for that time ste

In the original OCD paper, they only feed NG
in model predictions. B

Figure 2: Examples of decay
schedules.

However, because OCD is a special case of DAgger, we
can generalize OCD to use a beta schedule that gives a
mixture of the oracle policy with the model policy, and
feed in a sample from the mixture policy to the decoder.

OCD for seqg2seq
loss

- S
O
%

(y1t7 1S) '/ \ {U} ‘@‘) {UND} {UNDA/}]

N

In OCD, we allow the
dynamic oracle to be
stochastic, and our loss
function is the KL
divergence between the
dynamic oracle distribution
and the model distribution

OCD (with DAgger’s mixture) for qzseq
+ | loss

v

If we use a mixture of
model and oracle policy,
the stochasticity also
affects the decoder

inputs
___Encoder .
e, e, e, e, E
[

Imitation Learning vs. RL

Q: What is the difference between imitation learning and
° reinforcement learning?

A: There are lots of differences but they all stem from one
fundamental difference:

Imitation learning assumes that it has access to an oracle policy
1t*, reinforcement learning does not.

Interesting contrast: Q-Learning vs. DAgger.
— both have some notion of explore/exploit (very loose analogy)

— but Q-learning’s exploration is random, and its exploitation relies on
the model’s policy

— whereas DAgger exploration uses the model’s policy, and its
exploitation follows the oracle

COMPARISON OF LEARNERS

Figure from Chang et al. (2015)

Comparison of Learners

Learning to Search Terminology

roll-in: how we got to the current state

one-step deviations: immediate neighbors in the search space under
consideration

roll-out: completions of deviations (might be optimal, might not)

The learner considers each of the one-step deviations and (typically)
chooses the one with lowest loss

xXe X

’O ’@ »yc9 I(y)=0.0

\ J

rollin

one-step

deviations
<

58

Comparison of Learners

Learner Roll-in Objective (per time step)

MLE ground truth y*
{
Scheduled mixture of mode
Sampling redictions y and
(ground truth y*
Dagger mixture of expert |
policy t* and
model policy 7T
OCD (special model policy 7 =
case of model predictions
DAgger for y
CER)
Policy model policy 7T =

o Gradient (RL) model predictions
y

ground truth y*

ground truth y*

expert policy *

—

expert policy T*
P E—

model policy 7

cross-entropy of ground
truth

cross-entropy of ground
truth

cross-entropy of dynamic
oracle completion

KL Divergence between
uniform distribution over
set of dynamic oracle
completions and model’s
softmax

increase score of sequences
with high reward R(y)

59

Figure from Sabour et al. (2019)

Comparison of Learners
(aW{M) (b) S*cheduled Sam31ing

l

Pt Pt+1 Pt Pt+1

—— E]—

Ve Yi+1 s i1

wd o

T

Dt Di+1 Dt Pr+1
Vi1 Vi
(c) Policy Gradient (d) Optimal Completion Distillation

Figure B.1: Illustration of different training strategies for autoregressive sequence models. (a) Teacher

Forcing: the model conditions on correct prefixes and is taught to predict the next ground truth token.

(b) Scheduled Sampling: the model conditions on tokens either from ground truth or drawn from the
model and is taught to predict the next ground truth token regardless. (c) Policy Gradient: the model
conditions on prefixes drawn from the model and is encouraged to reinforce sequences with a large
sequence reward R(7). (d) Optimal Completion Distillation: the model conditions on prefixes drawn
from the model and is taught to predict an optimal completion policy 7* specific to the prefix.

60

LEARNING TO SEARCH:
EMPIRICAL RESULTS

Dagger for Mario Tux Cart

https://www.youtube.com/watch?v=V00npNnWzSU

Experiments: Vowpal Wabbit L2S
098 — ,,Q&C&Taggin tuned hps)

96.6 461
0.96| 95.7 s 009 95.4
4.9
0.94} |
T 0.92| ¢
@)
= % N
5 0.90}
=
> be
§ 0.88 +
o
O R w
2 0.86
e | w
0.84} ¥ OAA <= CRF++
=—®\ | 2S =P ~StrPerc
0.82} L2S (ft) =+ \StrSVM | -
A— CRFsgd ¢—¢ |StrSVM2
1073 1072 10" 10° 10" 102 103

Training time (minutes)
Figure from Langford & Daume III (ICML tutorial, 2015)

Experiments: Vowpal Wabbit L2S

_ 'N'amec! Entity 'Re'cogni'tion '(tg'n'e”d hps)

0.80} 79,8
p—"
765,765 ¢
~0.75]
>
% 73.6 %
o
)
=
o 0.70]
@)
P
0 O
0-65 %—% OAA << CRF++
o=—® |2S p==p StrPerc
B—l | 2S (ft) 00 StrSVM2
A CRFsgd
0.60 - AEN DR A .
1073 1072 10" 10° 10"

Training time (minutes)

Figure from Langford & Daume III (ICML tutorial, 2015)

64

Experiments: Vowpal Wabbit L2S

Prediction (test-time) Speed

HL2S
WL2S (ft)
® CRFsqgd
N CRF++
® StrPerc
& StrSVM
StrSVM2

0 100 200 300 400 500 60
Thousands of Tokens per Second

————

65
Figure from Langford & Daume III (ICML tutorial, 2015)

Results: Dynamic Oracle for
Dependency Parsing

PRD

PRD

{ SBJ 1 DET { SBJ 1 I DET W
ROOT, He, wrote, hery a, letters 6 ROOT, He, wrote, herg ay letters "
Figure 3: Dependency graphs with loss 3 (left) and loss 1 (right)
| ARA BAS CAT CHI CZE ENG GRE HUN ITA TUR
Unlabeled Attachment Scores
Static 80.60 74.10 91.21 84.13 78.00 86.24 79.16 77.75 84.11 79.02
Y]‘Dynamic-ambiguity 80.72 7490 91.09 83.62 78.38 86.83 79.48 76.17 84.52 78.97
Dynamic-explore 83.06 76.10 _92.01 84.65 79.54 88.81 80.66 77.10 84.77 78.84
/ Labeled Attachment Scores \
Static 71.04 64.42 5 69.49 8490 7094 68.10 79.93 68.80
Dynamic-ambiguity | 71.06 65.18 85.73 79.24 69.39 85.56 71.88 66.99 80.63 68.58
Dynamic-explore 73.54 66.77 86.60 80.74 71.32 87.60 73.83 68.23 81.02 68.76
———— S— e ——

—

Table 2: Results on the CoNLL 2007 data sets

69

Results: Dynamic Oracle for
Dependency Parsing

Training with a dynamic oracle (Dynamic-ambiguity
& Dynamic-explore) consistently outperforms
training to produce the ground truth (Static), across
many different languages.

1

| ARA BAS CAT CHI CZE ENG GRE HUN ITA TUR
Unlabeled Attachment Scores

Static 80.60 74.10 91.21 84.13 78.00 86.24 79.16 77.75 84.11 79.02
Dynamic-ambiguity | 80.72 74.90 91.09 83.62 78.38 86.83 79.48 76.17 84.52 78.97
Dynamic-explore 83.06 76.10 92.01 84.65 79.54 88.81 80.66 77.10 84.77 78.84
Labeled Attachment Scores
Static 71.04 64.42 8596 79.75 69.49 8490 7094 68.10 79.93 68.80
Dynamic-ambiguity | 71.06 65.18 85.73 79.24 69.39 85.56 71.88 6699 80.63 68.58
Dynamic-explore 73.54 66.77 86.60 80.74 71.32 87.60 73.83 68.23 81.02 68.76

Table 2: Results on the CoNLL 2007 data sets

DAGGER: THEORETICAL RESULTS

DAgger Policy During Training

* DAgger assumes that we follow a stochastic
policy that flips a weighted coin (with weight {3,
at timestep i) to decide between the oracle

policy and the model’s policy
T = Bt + (1 — Bi) 7

* We require that (,, B,, B, ...) is chosento be a
sequence such that:

BN:%-Z?ZZ@HO as N — oo.

/

Q: What are examples of such sequences?

DAgger Theoretical Results

* The theory mirrors the intuition that Exposure Bias is bad

* The Supervised Approach to Imitation performs not-so-well even on the oracle
(trainingtime) disécibution over states (i.e. quﬁeaﬁﬁrlw number of mistakes
grows w task horizon T and claSsification cost €)

* DAggeryietdsarmralgorithm that performs well-an the test-time distribution
over states (i.e. number of mistakes grow in task horizon T and
classification cost €)

N\ T
J(m) = 2 1=1 Esar [Cr(s)]
Algo #1: Supervised Approach to Imitation

Theorem 2.1. (Ross and Bagnell, 2010) Let
Esma . [(s,7)] =€ then J(w) < J(7*) + T?e.

Algo #2: DAgger

Theorem 3.2. For DAGGER, if N is O(uT) there exists a
policy m € 1.y s.t. J(7) < J(n*) +uTen + O(1).

eny = Milger & Y, Es-a,, [£(s,)]

DAgger Theoretical Results

* The proof of the results for DAgger relies on a reduction to no-regret
online learning

From Ross et al. (2011) “A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning”...

sarial fashion over time. A no-regret algorithm is an algo-
rithm that produces a sequence of policies 7,72, ..., TN
such that the average regret with respect to the best policy
in hindsight goes to 0 as IV goes to oc:

1 & 1 &
N;fz‘(ﬂi)—glelﬁlﬁgfi(ﬂ) <IN (3)
for limy oo yv = 0. Many no-regret algorithms guar-
antee that vy is O(%) (e.g. when / is strongly convex)
(Hazan et al., 2006; Kakade and Shalev-Shwartz, 2008;
Kakade and Tewari, 2009).

* The key idea is to choose the loss function to be that of the loss on the
distribution over states given by the current policy chosen by the online

learner li(m) = Eswd,, £(s,m)]

Learning 2 Search

Some key challenges:

— performance depends heavily on search order,
but have to pick this by hand

— expert policy is critical, but what if it’s too
difficult to design one

— not always easy to make efficient on a GPU

Adapted from Langford & Daume Il (ICML tutorial, 2015)

Learning Objectives

Structured Prediction as Search

You should be able to...

1.

Reduce a structured prediction problem to a
search problem

Implement Dagger, a learning to search
algorithm

. (If you already know RL...) Contrast imitation

learning with reinforcement learning

. Explain the reduction of structured prediction

to no-regret online learning

Contrast various learning2search algorithms
based on their properties

