
Learning to Search (Part II)

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 5

Sep. 14, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 1: Neural Networks for
Sequence Tagging
– Out: Wed, Sep 7 (later today!)
– Due: Fri, Sep 16 at 11:59pm

• Homework 2: Learning to Search for RNNs
– Out: Fri, Sep 16
– Due: Wed, Sep 28 at 11:59pm

2

IMITATION LEARNING

4

Imitation Learning

9
Figures from Pan et al. (2018)

state (sensors)

action (left / right)

agent (car)

policy (neural network)

Imitation Learning

Whiteboard:
– Fully supervised imitation learning
– The pitfall of fully supervised imitation learning
– DAgger for imitation learning

10

Imitation Learning
• Policies:

– Def: a policy is a function that maps from a state to an action
– Def: a model policy is one that is parameterized such that we

can learn its parameters
– Def: an expert policy is the one we want to learn to mimic

• Trajectories:
– Def: a trajectory is sequence of state/action pairs
– Def: the time horizon (e.g. T) is the length of the trajectory
– Def: a training trajectory is a trajectory where the actions

were those taken by an expert policy
– (in imitation learning, the training dataset is a collection of

training trajectories)

11

τ = [(s1, a1), (s2, a2), . . . , (sT , aT)]

π : S → A

D = {τ (i)}Ni=1

Imitation Learning
Here we consider two algorithms:
– Algorithm 1: Supervised Imitation Learning
– Algorithm 2: DAgger Imitation Learning

We will describe both for the setting where
training is done by Stochastic Gradient Descent
(SGD)

However, both are general enough that they
could be employed with any optimization
technique (e.g. Gradient Descent)

12

Imitation Learning

• blue: expert policy
trajectory

• green arrows: training
examples (st, at) of state st
visited by expert, and
action at taken by expert

• Key idea:
– follow the expert policy to

collect the sequence of
states that it visits and the
actions it takes

– then train a multi-class
classifier to take similar
actions to the expert

13

Algorithm 1: Supervised Imitation Learning

Imitation Learning

• blue: expert policy trajectory
• red: model policy trajectory
• purple arrows: training

examples (st, at) of state st
visited by model, and action at
taken by expert

• grey box: the purple states
inside would never be visited if
we were only following the
expert policy

• Key idea:
– follow the model policy to collect

the sequence of states, but use
the expert policy to record what
action should have been taken

– then train a multi-class classifier
to take similar actions to the
expert

– in this way, we learn how to
correct for the model’s mistakes!

14

Algorithm 2: DAgger Imitation Learning

Imitation Learning

def trainSupervised(𝜋*, E):
initialize policy 𝜋θ
for i in 1…N:

for t in 1…T:
observe state st
take action at = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

Dtrain = Dtrain ∪ {𝝉(i)}

for 𝝉(i) in Dtrain:
for (st, at) in 𝝉(i) :

update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = hθ(st)
incur loss ℓt

15

Algorithm 1: Supervised Imitation Learning (Version 1)

create training
dataset

train model
policy (i.e.
classifer)

Imitation Learning

def trainSupervised(𝜋*, E):
initialize policy 𝜋θ
for i in 1…N:

for t in 1…T:
observe state st

take action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt

16

Algorithm 1: Supervised Imitation Learning (Version 1)

This returns exactly the
same model policy as the

previous version.

The only change is that
we’ve combined the

collection of training data
and the SGD update.

create training dataset and
train model policy (i.e. classifer)

Imitation Learning

def trainDAgger(𝜋*, E):
𝜋θ = trainSupervised(𝜋*, 1)
for i in 1…N:

for t in 1…T:
observe state st

take action ât = 𝜋θ(st)
store action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E-1 epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt

17

Algorithm 2: DAgger for Imitation Learning (Version 1)

Now the action we take is given
by the model policy

We still train by updating on the
expert policy’s action

We initialize by running 1 epoch
of supervised imitation learning

Imitation Learning

def trainDAgger(𝜋*, E, 𝛽 = [𝛽1,…, 𝛽N]):
initialize policy 𝜋θ

for i in 1…N:
𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

for t in 1…T:
observe state st

sample action ât ~ 𝜋i(st)
store action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt

18

Algorithm 2: DAgger for Imitation Learning (Version 2)

We’ve dropped the call the
supervised imitation learning

Instead, we compute a policy at
each iteration that is a

probabilistic mixture of the
expert policy and our (current)

model policy

Since the mixture policy is
stochastic, we sample a policy

𝛽 = [𝛽1,…, 𝛽N] is our schedule
for how much weight to put on
the expert/model policies in the

mnixture

Imitation Learning

def trainDAgger(𝜋*, E, 𝛽 = [𝛽1,…, 𝛽N]):
initialize policy 𝜋θ

for i in 1…N:
𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

for t in 1…T:
observe state st
sample action ât ~ 𝜋i(st)
store action at = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

for (st, at) in 𝝉(i) :
update policy 𝜋θ with
one step of SGD on
example (st, at)

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt

19

Algorithm 2: DAgger for Imitation Learning (Version 3)

Build the i’th trajectory

Take T steps of SGD to train on
the the i’th trajectory

Mixing Policies
Question:
How would you implement the
mixture policy if the model and
expert policies were
deterministic?

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

20

Answer:

Question:
How would you implement the
mixture policy if the model and
expert policies were stochastic?

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

Answer:

STRUCTURED PREDICTION AS
SEARCH

21

Structured Prediction as Search
• Key idea: convert your structured prediction

problem to a search problem!
• Example: for POS tagging, each node in the search

space corresponds to a partial tag sequence

22

Basic Neural Network

23

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

time likeflies an arrow x

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

Basic Neural Network

24

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

Basic Neural Network

25

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

Learning to Search

Whiteboard:
– Problem Setting
– Ex: POS Tagging
– Other Solutions:

• Completely Independent Predictions
• Sharing Parameters / Multi-task Learning
• Graphical Models

– Today’s Solution: Structured Prediction to Search
• Search spaces
• Cost functions
• Policies

26

