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Reminders

• Homework 1: Neural Networks for
Sequence Tagging
– Out: Wed, Sep 7  (later today!)
– Due: Fri, Sep 16 at 11:59pm

• Homework 2: Learning to Search for RNNs
– Out: Fri, Sep 16
– Due: Wed, Sep 28 at 11:59pm
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IMITATION LEARNING
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Imitation Learning
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Figures from Pan et al. (2018)

state (sensors)

action (left / right)

agent (car)

policy (neural network)



Imitation Learning

Whiteboard:
– Fully supervised imitation learning
– The pitfall of fully supervised imitation learning
– DAgger for imitation learning
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Imitation Learning
• Policies:

– Def: a policy is a function that maps from a state to an action
– Def: a model policy is one that is parameterized such that we 

can learn its parameters
– Def: an expert policy is the one we want to learn to mimic

• Trajectories:
– Def: a trajectory is sequence of state/action pairs
– Def: the time horizon (e.g. T) is the length of the trajectory
– Def: a training trajectory is a trajectory where the actions 

were those taken by an expert policy
– (in imitation learning, the training dataset is a collection of 

training trajectories                                      )
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τ = [(s1, a1), (s2, a2), . . . , (sT , aT )]

π : S → A

D = {τ (i)}Ni=1



Imitation Learning
Here we consider two algorithms:
– Algorithm 1: Supervised Imitation Learning
– Algorithm 2: DAgger Imitation Learning

We will describe both for the setting where 
training is done by Stochastic Gradient Descent 
(SGD)

However, both are general enough that they 
could be employed with any optimization 
technique (e.g. Gradient Descent)
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Imitation Learning

• blue: expert policy 
trajectory

• green arrows: training 
examples (st, at) of state st
visited by expert, and 
action at taken by expert

• Key idea: 
– follow the expert policy to 

collect the sequence of 
states that it visits and the 
actions it takes

– then train a multi-class 
classifier to take similar 
actions to the expert
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Algorithm 1: Supervised Imitation Learning



Imitation Learning

• blue: expert policy trajectory
• red: model policy trajectory
• purple arrows: training 

examples (st, at) of state st
visited by model, and action at
taken by expert

• grey box: the purple states 
inside would never be visited if 
we were only following the 
expert policy

• Key idea: 
– follow the model policy to collect 

the sequence of states, but use 
the expert policy to record what 
action should have been taken

– then train a multi-class classifier 
to take similar actions to the 
expert

– in this way, we learn how to 
correct for the model’s mistakes!
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Algorithm 2: DAgger Imitation Learning



Imitation Learning

def trainSupervised(𝜋*, E):
initialize policy 𝜋θ
for i in 1…N:

for t in 1…T:
observe state st
take action at = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

Dtrain = Dtrain ∪ {𝝉(i)}

for 𝝉(i) in Dtrain:
for (st, at) in 𝝉(i) :

update policy 𝜋θ with
one step of SGD on 
example (st, at) 

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = hθ(st)
incur loss ℓt
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Algorithm 1: Supervised Imitation Learning (Version 1)

create training 
dataset

train model 
policy (i.e. 
classifer)



Imitation Learning

def trainSupervised(𝜋*, E):
initialize policy 𝜋θ
for i in 1…N:

for t in 1…T:
observe state st

take action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on 
example (st, at) 

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt
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Algorithm 1: Supervised Imitation Learning (Version 1)

This returns exactly the 
same model policy as the 

previous version.

The only change is that 
we’ve combined the 

collection of training data 
and the SGD update.

create training dataset and 
train model policy (i.e. classifer)



Imitation Learning

def trainDAgger(𝜋*, E):
𝜋θ = trainSupervised(𝜋*, 1)
for i in 1…N:

for t in 1…T:
observe state st

take action ât = 𝜋θ(st)
store action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on 
example (st, at) 

repeat for E-1 epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt
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Algorithm 2: DAgger for Imitation Learning (Version 1)

Now the action we take is given 
by the model policy

We still train by updating on the 
expert policy’s action

We initialize by running 1 epoch 
of supervised imitation learning



Imitation Learning

def trainDAgger(𝜋*, E, 𝛽 = [𝛽1,…, 𝛽N]):
initialize policy 𝜋θ

for i in 1…N:
𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

for t in 1…T:
observe state st

sample action ât ~ 𝜋i(st)
store action at = 𝜋*(st)

update policy 𝜋θ with
one step of SGD on 
example (st, at) 

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt
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Algorithm 2: DAgger for Imitation Learning (Version 2)

We’ve dropped the call the 
supervised imitation learning

Instead, we compute a policy at 
each iteration that is a 

probabilistic mixture of the 
expert policy and our (current) 

model policy

Since the mixture policy is 
stochastic, we sample a policy

𝛽 = [𝛽1,…, 𝛽N] is our schedule 
for how much weight to put on 
the expert/model policies in the 

mnixture



Imitation Learning

def trainDAgger(𝜋*, E, 𝛽 = [𝛽1,…, 𝛽N]):
initialize policy 𝜋θ

for i in 1…N:
𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

for t in 1…T:
observe state st
sample action ât ~ 𝜋i(st)
store action at = 𝜋*(st)
𝝉(i) = 𝝉(i) + [(st, at)]

for (st, at) in 𝝉(i) :
update policy 𝜋θ with
one step of SGD on 
example (st, at) 

repeat for E epochs
return 𝜋θ

def predict(𝜋θ):
for t in 1…T:

observe state st
take action at = 𝜋θ(st)
incur loss ℓt
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Algorithm 2: DAgger for Imitation Learning (Version 3)

Build the i’th trajectory

Take T steps of SGD to train on 
the the i’th trajectory



Mixing Policies
Question:
How would you implement the 
mixture policy if the model and 
expert policies were 
deterministic?

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ
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Answer:

Question:
How would you implement the 
mixture policy if the model and 
expert policies were stochastic?

𝜋i = 𝛽i 𝜋* + (1 - 𝛽i) 𝜋θ

Answer:



STRUCTURED PREDICTION AS 
SEARCH
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Structured Prediction as Search
• Key idea: convert your structured prediction 

problem to a search problem!
• Example: for POS tagging, each node in the search 

space corresponds to a partial tag sequence
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Basic Neural Network
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• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag 

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax

time likeflies an arrow x

n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax



Basic Neural Network
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n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag 

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax



Basic Neural Network
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n v p d n y

y1 y2 y3 y4 y5

argmax argmax argmax argmax argmax

time likeflies an arrow x

• Suppose we wish to predict the tags greedily left to right
• Simple neural network looks at the previous word, the previous tag 

prediction, the current word, and the next word
• From these it builds a probability distribution over output tags
• Then it selects the argmax



Learning to Search

Whiteboard:
– Problem Setting
– Ex: POS Tagging
– Other Solutions:

• Completely Independent Predictions
• Sharing Parameters / Multi-task Learning
• Graphical Models

– Today’s Solution: Structured Prediction to Search
• Search spaces
• Cost functions
• Policies
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