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Reminders

* 10-618 Mini-Project
— Team Formation Due: Tue, Nov 29
— Proposal Due: Thu, Dec 1
— Summary & Code Due: Fri, Dec 9

 Practice Problems 2
— Out: Wed, Dec 8

* Exam 2:
— Thu, Dec 15, 5:30 - 7:30 PM




Chinese Restaurant Process & Stick-breaking Constructions

DIRICHLET PROCESS



Dirichlet Process

Ferguson Definition
 Parameters of a DP:
1. Base distribution, H, is a probability distribution over ®
2. Strength parameter, & € R
* Wesay G ~DP(a, H)
if for any partition A, UA,U...UAx = O
we have:

(G(Ay1),...,G(Ak)) ~ Dirichlet(aH(A1),...,aH(Ak))

A partition of the space @

In English: the DP is a

distribution over A A
probability measures s.t. A
marginals on finite A A
partitions are Dirichlet Ao

distributed



Chinese Restaurant Process

* Imagine a Chinese restaurant with an infinite number of tables

* Each customer enters and sits down at a table
— The first customer sits at the first unoccupied table
— Each subsequent customer chooses a table according to the
following probability distribution:

p(kth occupied table) o¢ny,
p(next unoccupied table) o

where 7, is the number of people sitting at the table £
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CRP Mixture Model

Draw n cluster indices from a CRP:
Z5, 2y ..., 2, ~ CRP(0)

For each of the resulting K clusters:
9]{*’\“ H
where H is a base distribution

Draw n observations: Customer i orders a dish x;
e / (observation) from a table-
Lg N p(xz ‘ HZZ ) specific distribution over
dishes 6," (cluster parameters)
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(color denotes different values of x,)
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CRP Mixture Model

Draw n cluster indices from a CRP:
Z1, 23, - Zyp ~ CRP(at)
For each of the resulting K clusters:

0, ~H
where H is a base distribution

Draw n observations:

zi ~p(z; | 07)

E—— e
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(color denotes different values of x,) P(X\ﬁge\ P(Xu?l\




CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors
* Alg. 1: (uncollapsed)

— Markov chain state: per-customer parameters 9, ..., 0,
— Fori=1, ..., n: Draw 6’l-~p(6’,- | 6., x)
* Alg. 2: (uncollapsed) ¥ \ All the thetas except 6,
— Markov chain state: per-customer clusterindices z,, ..., z, and
per-cluster parameters 6,7, ..., 6,

— Fori=1, ..., n: Draw z; ~ p(z; | 2, X 07)

— Set K = number of clustersin z

— Fork=1, .., K:Draw 68,” ~ p(8,” |{x z—k})
« Alg.3: (collapsed)

— Markov chain state: per-customer clusterindices z,, ..., z

— Fori=1, ..., n:Draw z; ~ p(z; | 2, X)

n



CRP Mixture Model

* Q: How can the Alg. 2 Gibbs samplers permit
an infinite set of clusters in finite space?
* A: Easy!

— We are only representing a finite number of
clusters at a time — those to which the data have
been assigned

— We can always bring back the parameters for
the “next unoccupied table” if we need them



CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G,
we have the following predictive distribution:

1 n
0,01100,....6, ~ b1 5.

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process Mixture Model is
just a different construction of the Dirichlet
Process Mixture Model where we have
marginalized out=Gg
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Slide from Eric Xing (2014)

Graphical Models for DPMMs

The Poélya urn construction The Stick-breaking construction

B D
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model

initial iteration 2 iteration 5

Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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GMM VS. DPMM EXAMPLE
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=5)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=10)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=15)




Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=20)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=25)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=30)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=35)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=39)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=0)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=1)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=2)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=3)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=4)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=5)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=6)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=7)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=8)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=9)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=10)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=11)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=12)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=13)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=14)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=15)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=16)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=17)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=18)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=19)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=20)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=21)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=22)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=23)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=24)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=25)
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Summary of DP and DP-MM

* DP has many different representations:
— Chinese Restaurant Process
— Stick-breaking construction
— Blackwell-MacQueen Urn Scheme

— etc.

* These representations give rise to a variety of
inference techniques for the DP-MM and related
models

— Gibbs sampler (CRP)

— Gibbs sampler (stick-breaking)

— Variational inference (stick-breaking)
— etc.




HIERARCHICAL DIRICHLET
PROCESS (HDP)



Related Models

* Hierarchical Dirichlet Process Mixture Model
(HDP-MM)

* [nfinite HMM

e [nfinite PCFG



Slide from 10-708, 2015

HDP-MM

e In LDA, we have M independent samples from a Dirichlet
distribution.

e The weights are different, but the topics are fixed to be the
same.

e If we replace the Dirichlet distributions with Dirichlet
processes, each atom of each Dirichlet process will pick a

“topic independently of the other topics.

e Because the base measure is continuous, we have zero |
probability of picking the same topic twice.

e If we want to pick the same topic twice, we need to use a

discri measure.

e For example, if we chose the base measure to be

K
H =) ads, then we would have LDA again.
=1

e \We want there to be an infinite number of topics, so we want
an infinite, discrete base measure.

e \We want the location of the topics to be random, so we want
an infinite, discrete, random base measure.
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Figure from Teh MLSS 2007

HDP-MM

Hierarchical Dirichlet process: @_,

Galv, H ~ DP(v, H) I
Gjla, Go ~ DP(a, Go) @—»@
0iilGj ~ G |
‘
GO||.\.|‘| =
/N
G1|. ‘.I‘| G2||.‘||‘.
X l ) X, l

64



Figure from Teh 2004

HDP-MM

Perplexity on test abstacts of LDA and HDP mixture Posterior over number of topics in HDP mixture
1050 T T T T T T T T T T 1 5 T T T T T T
‘‘‘‘‘ LDA
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Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.
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HDP-HMM (Infinite HMM)

Number of
hidden states in
Infinite HMM is

countably

infinite
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Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.
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Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB
trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too

small to see).



Figures from Liang et al. (2007)

HDP-PCFG (Infinite PCFG)

HDP-PCFG
B ~ GEM(«) [draw top-level symbol weights]
For each grammar symbol z € {1,2,... }:
¢ ~ Dirichlet(a”) [draw rule type parameters] CbZB
¢E ~ Dirichlet(a®) [draw emission parameters]

»Z ~ DP(a®,887) [draw binary production parameters] a e
For each node 7 in the parse tree:
t; ~ Multinomial(qfi) [choose rule type] *
If ¢; = EMISSION: @
z; ~ Multinomial(¢Z)) [emit terminal symbol] e e

If t;, = BINARY-PRODUCTION:
(2L(i), ZR(1)) ~ Multinomial(qszi ) [generate children symbols]

B ~ GEM() | 1.,

state

left child state

BB"

right child state

left child state

right child state



Parametric vs. Nonparametric

Type of Model

Parametric
Example

Nonparametric
Example

Construction #1 Construction #2

distribution over

Dirichlet-

Dirichlet Process (DP)

counts Multinomial Model | Chinese Restaurant Stick-breaking
— - Process (CRP) construction
: : Dirichlet Process Mixture Model (DPMM)
mixture Gaussian Mixture
Model (GMM) CRP Mixture Model Stlck-breal.qng
B construction
Hierarchical Dirichlet Process Mixture
. Latent Dirichlet e S GRRILD
admixture : . _ :
e e Allocation (LDA) | Chinese Restaurant |  Stick-breaking

Franchise construction




Summary of DP and DP-MM

* DP has many different representations:
— Chinese Restaurant Process
— Stick-breaking construction
— Blackwell-MacQueen Urn Scheme

— etc.

* These representations give rise to a variety of
inference techniques for the DP-MM and related
models

— Gibbs sampler (CRP)

— Gibbs sampler (stick-breaking)

— Variational inference (stick-breaking)
— etc.




GRAPH NEURAL NETWORKS



Background: Graphs

Def: a graph G = (V,E) consists of
vertices V and edges E

— vertices are also called nodes

— Letnodev,eVand|V|=

— Let edge (vl, v;) € Eand |E| - /U
Def: an adjacency matrix A for

graph G is a binary matrix such that:

— Ajj=1if (v, vy) EE

— Ajj=0if(v,v)€&E
Def: an adjacency list is simply an
ordered version of the set of edges,

e.g. list(E)

Def: the neighbors N(v;) of a node v;

are all nodes v; such that (viyv;) EE

m O N @ >

[(A,B), (A,D), (B,A), (B,D),

(GE), (E,A), (E,B)]
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Background: Graphs

* The graph we just definedis a * For an undirected graph:
directed graph because each (vipyv)EE=> (v, Vv, EE
edge (v;, v;) € E is an ordered each undirected edge is just two
pair directed edges

* Anundirected graph is a special
case in which the adjacency
matrix is symmetric

e (© =8 (S
X X
QG A B C D E QG A B C D E

T

m O N @ X
m O N @ >




The graph we just defined is a
directed graph because each
edge (v, v;) € Eis an ordered

pair

Def: a self-loop (v, v;) € Eis an

Background: Graphs

edge from a node to itself

A self-loop corresponds to a
diagonal entry in the adjacency

matrix

R~

m O N @ X

A B C D E

For an undirected graph:
(vipyv)EE=> (v, Vv, EE

each undirected edge is just two
directed edges

An undirected graph is a special
case in which the adjacency
matrix is symmetric

(An undirected self-loop is only
one directed edge)

205
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Data as Graphs

e citation networks



Data as Graphs

& > o
tg{wx
o

Figure from https://chemrxiv.org/engage/chemrxiv/article-details/6246035d3affe4aa143¢3848

* molecules

1A
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https://chemrxiv.org/engage/chemrxiv/article-details/6246035d3affe4aa143c3848

Data as Graphs

* semantic parsing

PREDICT-01
( PERSON ] ARGO EVENT ]
A ARG1 4
\ X i

Many [people] now claim to have [predicted] [Black Monday]

Figure from
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https://ai.googleblog.com/2017/11/sling-natural-language-frame-semantic.html

Data as Graphs

 social networks

Gentleman.3
Gratiano

Gentleman.2
lago

Desdemona
Gentleman.1

Duke
Messenger

Montano

:.ﬁ:i!ﬂ;

Bianca
Brabantio
Clown
Gentleman
Lodovico
Musician.1
Officer
Othello
Roderigo
Sailor
Senator
Senator.1
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Cassio
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Senator
Senator.1
Senator.2

(Left) Image of a scene from the play “Othello”. (Center) Adjacency matrix of the interaction between characters in the play. (Right) Graph representat'gn of these inté?actions.

Figure from https://distill.pub/2021/gnn-intro/
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https://distill.pub/2021/gnn-intro/

Data as Graphs

* images

agniin® =

watching |

In (b), above, the original image (a) has been segmented into five entities: each of the fighters, the referee, the
audience and the mat. (C) shows the relationships between these entities.

_ 79
Figure from


https://distill.pub/2021/gnn-intro/

Graph Neural Networks

Decomposition of tasks for GNNs

* Node-level
— node classification: predict a label for each node
— node regression: predict a value for each node
* Edge-level
— edge classification: predict a label for each edge
— link prediction: predict presence/absence/strength of an
edge
* Graph-level
— graph classification: predict a label for the entire graph
— graph regression: predict a value for the entire graph



Types of GNNs

A Taxonomy of Graph Neural Networks (GNNs)
from Wu et al. (2020):

1. Recurrent GNNs F—
2. Convolutional GNNs

a. Spectral-based
b. Spatial-based &—

3. Graph autoencoders
a. for network embedding
b. for graph generation

4. Spatial-temporal GNNs

Taxonomy from


https://arxiv.org/pdf/1901.00596.pdf

Node and Edge Representations
nmlo.-—/eeve(

* Def:eachnodev

has a node feature;Z
vector x, € RM

* Def:each edgee
has an edge feature
vector x, € R™

* For undirected
graphs, we (usually)
assume there is
only one vector per
undirected edge
(i.e. not one for
each of the two
corresponding
directed edges)

XA

1
4
>
0
.6




RECURRENT GRAPH NEURAL
NETWORKS



Recurrent GNNs

* Some of the early GNNs capitalized on acyclic
graphs (or acyclic substructure of graphs)

* This is akin to how Loopy Belief Propagation
and Tree Reweighted Belief Propagation (two
variational message passing techniques that
came long before) are implemented

* The backbone of these Recurrent GNNs was a
variant of the LSTM



* Two types:

Child-Sum
TreeLSTM (handles
binary trees)

N-ary TreeLSTM

(handles arbitrary
tees)
* Key insight:

generalize the
LSTM from chains
to trees

the hidden unit for
a non-terminal
nodeis a
parameterized
function of its
children

Tree LSTMs

NP VPI_%l

WDT,NN/ \\ WV NN /

\

T 0 0 1

The [movie] showed [peace]
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Tree LSTMs

Standard LSTM on a chain

——

output gate —p-m

l output vector

A

output vector

Tq— output gate

e | T

input gate —>¢
==

T4 Xy

}Fmai et al. (2015)

Figures from Tai et al. (2015) ACL slides:

forget gate
C—

input vector

step ¢

T<— input gate

input vector

stept+1

/

forget

| gate

\J

output

T4— output gate

L<— input gate

input
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https://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
https://aclanthology.org/P15-1150

Graph LSTMs

* The Graph LSTM (Peng et al., 2017) decomposes a directed cyclic graph
into two directed acyclic graphs

* The computation graph first runs a TreeLSTM left-to-right along the first
acyclic graph, then right-to-left through the second acyclic graph

e P

All = patients = were = treated = with = gefitinib = and = showed = a = partial = response.

~TA A jqozc\;cm

A—\ ‘XJ htl E: (]l —
kG / mlc\l?, Z..
@) < @) < © 1, S (% %,(_ ”- }

o i, - ZU" v
ke,
T h = qu(v.k)hltc_l
ket

Equations from
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Figures from


https://aclanthology.org/Q17-1008
https://arxiv.org/abs/1812.08434

SPATIAL GRAPH NEURAL
NETWORKS



Spatial Graph Neural Networks

Whiteboard:
— Basic node-only GNN
— Basic neighbor-only GNN

— Visualizing the k-hop neighborhood
computation graph

— Incorporating self-loops
— Normalization techniques
— Adding edge features



