
Bayesian Nonparametrics
+

Graph Neural Networks

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 25

Dec. 7, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• 10-618 Mini-Project
– Team Formation Due: Tue, Nov 29 
– Proposal Due: Thu, Dec 1
– Summary & Code Due: Fri, Dec 9

• Practice Problems 2
– Out: Wed, Dec 8

• Exam 2: 
– Thu, Dec 15, 5:30 – 7:30 PM
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DIRICHLET PROCESS
Chinese Restaurant Process & Stick-breaking Constructions

3



Dirichlet Process
Ferguson Definition
• Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, 

• We say G ~ DP(α, H)
if for any partition
we have:
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Dirichlet Processes
A Proper but Non-Constructive Definition

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A Dirichlet Process (DP) is a distribution over probability measures.

Denote G ⇠ DP if G is a DP-distributed random probability measure.

For any finite set of partitions A1[̇ . . . [̇AK = X, we require
(G(A1), . . . , G(AK )) to be Dirichlet distributed.

6

A

A1

A A
A

A

2

3

4

5

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 32 / 80

↵ 2 R

A1 [A2 [ . . . [AK = ⇥

(G(A1), . . . , G(AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK))

In English: the DP is a 
distribution over 
probability measures s.t.
marginals on finite 
partitions are Dirichlet
distributed

A partition of the space Θ



Chinese Restaurant Process
• Imagine a Chinese restaurant with an infinite number of tables
• Each customer enters and sits down at a table

– The first customer sits at the first unoccupied  table
– Each subsequent customer chooses a table according to the 

following probability distribution: 

p(kth occupied table) ∝ nk
p(next unoccupied table) ∝α

where nk is the number of people sitting at the table k
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DIRICHLET PROCESS MIXTURE 
MODEL

Chinese Restaurant Process & Stick-breaking Constructions
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CRP Mixture Model
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• Draw n cluster indices from a CRP:
z1, z2, …, zn ~ CRP(α)

• For each of the resulting K clusters:
θk*~ H
where H is a base distribution

• Draw n observations:
xi ⇠ p(xi | ✓⇤zi)

θ1
* θ3

*θ2
* θ4

* …

(color denotes different values of xi)

Customer i orders a dish xi
(observation) from a table-
specific distribution over 
dishes θk* (cluster parameters)



CRP Mixture Model
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• Draw n cluster indices from a CRP:
z1, z2, …, zn ~ CRP(α)

• For each of the resulting K clusters:
θk*~ H
where H is a base distribution

• Draw n observations:
xi ⇠ p(xi | ✓⇤zi)

θ1
* θ3

*θ2
* θ4

* …

(color denotes different values of xi)

• The Gibbs sampler is easy 
thanks to exchangeability

• For each observation, we 
remove the customer / dish 
from the restaurant and 
resample as if they were the 
last to enter

• If we collapse out the 
parameters, the Gibbs sampler 
draws from the conditionals:

zi ~ p(zi | z-i, x)



CRP Mixture Model
Overview of 3 Gibbs Samplers for Conjugate Priors
• Alg. 1: (uncollapsed)

– Markov chain state: per-customer parameters θ1, …, θn
– For i = 1, …, n: Draw θi ~ p(θi | θ-i, x)

• Alg. 2: (uncollapsed)
– Markov chain state: per-customer cluster indices z1, …, zn and 

per-cluster parameters θ1
*, …, θk

*

– For i = 1, …, n: Draw zi ~ p(zi | z-i, x, θ*)
– Set K = number of clusters in z
– For k = 1, …, K: Draw θk

* ~ p(θk
* | {xi : zi = k})

• Alg. 3: (collapsed)
– Markov chain state: per-customer cluster indices z1, …, zn
– For i = 1, …, n: Draw zi ~ p(zi | z-i, x)
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All the thetas except θi



CRP Mixture Model

• Q: How can the Alg. 2 Gibbs samplers permit 
an infinite set of clusters in finite space?

• A: Easy! 
– We are only representing a finite number of 

clusters at a time – those to which the data have 
been assigned

– We can always bring back the parameters for 
the “next unoccupied table” if we need them

16



CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G, 
we have the following predictive distribution:

The Chinese Restaurant Process Mixture Model is 
just a different construction of the Dirichlet
Process Mixture Model where we have 
marginalized out G

18

have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

(Blackwell-MacQueen Urn Scheme)



Graphical Models for DPMMs
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Slide from Eric Xing (2014)
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Example: DP Gaussian Mixture Model
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Figure from Blei & Jordan (2006)

D. M. Blei and M. I. Jordan 133
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Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.

5 Empirical comparison

Qualitatively, variational methods offer several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be used to assess convergence. In contrast, assessing convergence
of a Gibbs sampler—namely, determining when the Markov chain has reached its sta-
tionary distribution—is an active field of research. Theoretical bounds on the mixing
time are of little practical use, and there is no consensus on how to choose among the
several empirical methods developed for this purpose (Robert and Casella 2004).

But there are several potential disadvantages of variational methods as well. First,
the optimization procedure can fall prey to local maxima in the variational parameter
space. Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
gence of the procedure. Second, any given fixed variational representation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational representations that approach the posterior in the limit, but these methods
may again incur serious computational costs. Lacking a theory by which these issues can
be evaluated in the general setting of DP mixtures, we turn to experimental evaluation.

We studied the performance of the variational algorithm of Section 3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussians with fixed inverse
covariance matrix Λ (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate base distribution for the DP is Gaussian, with covariance given by Λ/λ2 (see
Equation 7).

Figure 2 provides an illustrative example of variational inference on a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the figure plots the data and presents the



Example: DP Gaussian Mixture Model
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Figure from Blei & Jordan (2006)

134 Variational inference for Dirichlet process mixtures

Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

predictive distribution given by the variational inference algorithm at a given iteration
(see Equation (23)). The truncation level was set to 20. As seen in the first panel, the
initialization of the variational parameters yields a largely flat distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
convergence, it has further refined those modes. Even though 20 mixture components
are represented in the variational distribution, the fitted approximate posterior only
uses five of them.

To compare the variational inference algorithm to the Gibbs sampling algorithms, we
conducted a systematic set of simulation experiments in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a first-order autoregressive process, chosen so that the components are highly
dependent (ρ = 0.9). The base distribution was a zero-mean Gaussian with covariance
appropriately scaled for comparison across dimensions. The scaling parameter α was
set equal to one.

In each case, we generated 100 data points from a DP mixture of Gaussians model
of the chosen dimensionality and generated 100 additional points as held-out data. In
testing on the held-out data, we treated each point as the 101st data point in the
collection and computed its conditional probability using each algorithm’s approximate
predictive distribution.



GMM VS. DPMM EXAMPLE
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Example: Dataset
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Example: GMM
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Example: GMM
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Example: GMM
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Example: GMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM

57



Example: DPMM
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Example: DPMM
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Summary of DP and DP-MM
• DP has many different representations:
– Chinese Restaurant Process
– Stick-breaking construction
– Blackwell-MacQueen Urn Scheme
– Limit of finite mixtures
– etc.

• These representations give rise to a variety of 
inference techniques for the DP-MM and related 
models
– Gibbs sampler (CRP)
– Gibbs sampler (stick-breaking)
– Variational inference (stick-breaking)
– etc.
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HIERARCHICAL DIRICHLET 
PROCESS (HDP)
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Related Models

• Hierarchical Dirichlet Process Mixture Model 
(HDP-MM)

• Infinite HMM
• Infinite PCFG
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Slide from 10-708, 2015

HDP-MM

3/21/2015
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Constructing a topic model with 
infinitely many topics

� LDA: Each distribution is associated with a distribution over K
topics.

� Problem: How to choose the number of topics?
� Solution: 

� Infinitely many topics!
� Replace the Dirichlet distribution over topics with a Dirichlet process!

� Problem: We want to make sure the topics are shared
between documents

47© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Sharing topics
� In LDA, we have M independent samples from a Dirichlet

distribution.
� The weights are different, but the topics are fixed to be the 

same.
� If we replace the Dirichlet distributions with Dirichlet

processes, each atom of each Dirichlet process will pick a 
topic independently of the other topics.

48© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

3/21/2015
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Sharing topics
� Because the base measure is continuous, we have zero 

probability of picking the same topic twice.
� If we want to pick the same topic twice, we need to use a 

discrete base measure.
� For example, if we chose the base measure to be

then we would have LDA again.

� We want there to be an infinite number of topics, so we want 
an infinite, discrete base measure.

� We want the location of the topics to be random, so we want 
an infinite, discrete, random base measure.

49© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Hierarchical Dirichlet Process 
(Teh et al, 2006)

� Solution: Sample the base measure from a Dirichlet process!

50© A. Dubey,S. Williamson, E. Xing @CMU,2014-15
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Hierarchical Dirichlet Processes

Hierarchical Dirichlet process:

G0|�, H ⇠ DP(�, H)

Gj |↵, G0 ⇠ DP(↵, G0)

✓ji |Gj ⇠ Gj

�ji

Gj�

G0

i = 1, . . . , n

H

�

j = 1, . . . , J

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 58 / 80

Figure from Teh MLSS 2007
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Sharing topics
� Because the base measure is continuous, we have zero 

probability of picking the same topic twice.
� If we want to pick the same topic twice, we need to use a 

discrete base measure.
� For example, if we chose the base measure to be

then we would have LDA again.

� We want there to be an infinite number of topics, so we want 
an infinite, discrete base measure.

� We want the location of the topics to be random, so we want 
an infinite, discrete, random base measure.

49© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

Hierarchical Dirichlet Process 
(Teh et al, 2006)

� Solution: Sample the base measure from a Dirichlet process!

50© A. Dubey,S. Williamson, E. Xing @CMU,2014-15

HDP-MM
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Figure from Teh 2004

HDP-MM
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Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

consisting of words w1, . . . , wI is defined to be:

exp

(

−
1

I
log p(w1, . . . , wI |Training corpus)

)

(54)

where p(·) is the probability mass function for a given model. The perplexity can be understood as
the average inverse probability of single words given the training set.

The results are shown in Figure 6.1. For LDA we evaluated the perplexity for mixture com-
ponent cardinalities ranging between 10 and 120. As seen in Figure 6.1(Left), the hierarchical DP
mixture approach—which integrates over the mixture component cardinalities—performs as well
as the best LDA model, doing so without any form of model selection procedure as would be re-
quired for LDA. Moreover, as shown in Figure 6.1(Right), the posterior over the number of topics
obtained under the hierarchical DP mixture model is consistent with this range of the best-fitting
LDA models.

6.2 Multiple corpora

We now consider the problem of sharing clusters among the documents in multiple corpora. We
approach this problem by extending the hierarchical Dirichlet process to a third level. A draw from
a top-level DP yields the base measure for each of a set of corpus-level DPs. Draws from each
of these corpus-level DPs yield the base measures for DPs associated with the documents within a
corpus. Finally, draws from the document-level DPs provide a representation of each document as
a probability distribution across “topics,” which are distributions across words. The model allows
topics to be shared both within corpora and between corpora.

The documents that we used for these experiments consist of articles from the proceedings
of the Neural Information Processing Systems (NIPS) conference for the years 1988-1999. The
original articles are available at http://books.nips.cc; we use a preprocessed version available at
http://www.cs.utoronto.ca/∼roweis/nips. The NIPS conference deals with a range of topics cover-
ing both human and machine intelligence. Articles are separated into nine prototypical sections:
algorithms and architectures (AA), applications (AP), cognitive science (CS), control and naviga-
tion (CN), implementations (IM), learning theory (LT), neuroscience (NS), signal processing (SP),
vision sciences (VS). (These are the sections used in the years 1995-1999. The sectioning in earlier
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HDP-HMM (Infinite HMM)
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Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

refer to the resulting model as a hierarchical Dirichlet process hidden Markov model (HDP-HMM).
The HDP-HMM provides an alternative to methods that place an explicit parametric prior on the
number of states or make use of model selection methods to select a fixed number of states (Stolcke
and Omohundro 1993).

In work that served as an inspiration for the HDP-HMM, Beal et al. (2002) discussed a model
known as the infinite hidden Markov model, in which the number of hidden states of a hidden
Markov model is allowed to be countably infinite. Indeed, Beal et al. (2002) defined a notion of
“hierarchical Dirichlet process” for this model, but their “hierarchical Dirichlet process” is not hier-
archical in the Bayesian sense—involving a distribution on the parameters of a Dirichlet process—
but is instead a description of a coupled set of urn models. In this section we briefly review this
construction, and relate it to our formulation.

Beal et al. (2002) considered the following two-level procedure for determining the transition
probabilities of a Markov chain with an unbounded number of states. At the first level, the prob-
ability of transitioning from a state u to a state v is proportional to the number of times the same
transition is observed at other time steps, while with probability proportional to α0 an “oracle” pro-
cess is invoked. At this second level, the probability of transitioning to state v is proportional to
the number of times state v has been chosen by the oracle (regardless of the previous state), while
the probability of transitioning to a novel state is proportional to γ. The intended role of the oracle
is to tie together the transition models so that they have destination states in common, in much the
same way that the baseline distribution G0 ties together the group-specific mixture components in
the hierarchical Dirichlet process.

To relate this two-level urn model to the hierarchical DP framework, let us describe a repre-
sentation of the latter using the stick-breaking formalism. In particular, consider the hierarchical
Dirichlet process representation shown in Figure 9. The parameters in this representation have the
following distributions:

β | γ ∼ Stick(γ) πk | α0, β ∼ DP(α0, β) θk | H ∼ H , (55)

for each k = 1, 2, . . ., while for each time step t = 1, . . . , T the state and observation distributions
are:

vt | vt−1, (πk)
∞
k=1 ∼ πvt−1

yt | vt, (θk)
∞
k=1 ∼ F (θvt) , (56)

where we assume for simplicity that there is a distinguished initial state v0. If we now consider the
Chinese restaurant franchise representation of this model as discussed in Section 5, it turns out that
the result is equivalent to the coupled urn model of Beal et al. (2002).
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Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB
trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too
small to see).

We have described three different representations that capture aspects of the hierarchical Dirich-
let process. In particular, we described a stick-breaking representation that describes the random
measures explicitly, a representation of marginals in terms of an urn model that we referred to as
the “Chinese restaurant franchise,” and a representation of the process in terms of an infinite limit
of finite mixture models.

These representations led to the formulation of twoMarkov chainMonte Carlo sampling schemes
for posterior inference under hierarchical Dirichlet process mixtures. The first scheme is based di-
rectly on the Chinese restaurant franchise representation, while the second scheme is an auxiliary
variable method that represents the stick-breaking weights explicitly.

Clustering is an important activity in many large-scale data analysis problems in engineering
and science, reflecting the heterogeneity that is often present when data are collected on a large
scale. Clustering problems can be approached within a probabilistic framework via finite mixture
models (and their dynamical cousins the HMM), and recent years have seen numerous examples
of applications of finite mixtures and HMMs in areas such as bioinformatics (Durbin et al. 1998),
speech recognition (Huang et al. 2001), information retrieval (Blei et al. 2003), computational vi-
sion (Forsyth and Ponce 2002) and robotics (Thrun 2000). These areas also provide numerous
instances of data analyses which involve multiple, linked sets of clustering problems, for which clas-
sical clustering methods (model-based or non-model-based) provide little in the way of leverage. In
bioinformatics we have already alluded to the problem of finding haplotype structure in subpopula-
tions. Other examples in bioinformatics include the use of HMMs for amino acid sequences, where
a hierarchical DP version of the HMM would allow motifs to be discovered and shared among dif-
ferent families of proteins. In speech recognition multiple HMMs are already widely used, in the
form of word-specific and speaker-specific models, and adhoc methods are generally used to share
statistical strength among models. We have discussed examples of grouped data in information re-
trieval; other examples include problems in which groups indexed by author or by language. Finally,
computational vision and robotics problems often involve sets of descriptors or objects that are ar-
ranged in a taxonomy. Examples such as these, in which there is substantial uncertainty regarding
appropriate numbers of clusters, and in which the sharing of statistical strength among groups is
natural and desirable, suggest that the hierarchical nonparametric Bayesian approach to clustering
presented here may provide a generally useful extension of model-based clustering.
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HDP-PCFG (Infinite PCFG)
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HDP-PCFG

� ⇠ GEM(↵) [draw top-level symbol weights]
For each grammar symbol z 2 {1, 2, . . . }:
��T

z ⇠ Dirichlet(↵T ) [draw rule type parameters]
��E

z ⇠ Dirichlet(↵E) [draw emission parameters]
��B

z ⇠ DP(↵B , ��T ) [draw binary production parameters]

For each node i in the parse tree:
�ti ⇠ Multinomial(�T

zi
) [choose rule type]

�If ti = EMISSION:
��xi ⇠ Multinomial(�E

zi
) [emit terminal symbol]

�If ti = BINARY-PRODUCTION:
��(zL(i), zR(i)) ⇠ Multinomial(�B

zi
) [generate children symbols]

�

�B
z

�T
z

�E
z

z 1

z1

z2

x2

z3

x3

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types �T

z , (2) an emission distribu-
tion �E

z over terminal symbols, and (3) a binary pro-
duction distribution �B

z over pairs of children gram-
mar symbols. Figure 2 describes the model in detail.

Figure 3 shows the generation of the binary pro-
duction distributions �B

z . We draw �B
z from a DP

centered on ��T , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

� ⇠ GEM(↵)

��T

�B
z ⇠ DP(��T )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities �.
First, � is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
��T is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ��T (c).

centrated in the upper left, just like the top-level dis-
tribution ��T .

Note that we have replaced the general
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For each node i in the parse tree:
�ti ⇠ Multinomial(�T

zi
) [choose rule type]

�If ti = EMISSION:
��xi ⇠ Multinomial(�E

zi
) [emit terminal symbol]

�If ti = BINARY-PRODUCTION:
��(zL(i), zR(i)) ⇠ Multinomial(�B

zi
) [generate children symbols]

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types �T

z , (2) an emission distribu-
tion �E

z over terminal symbols, and (3) a binary pro-
duction distribution �B

z over pairs of children gram-
mar symbols. Figure 2 describes the model in detail.

Figure 3 shows the generation of the binary pro-
duction distributions �B

z . We draw �B
z from a DP

centered on ��T , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

state

right child state

left child state

right child state

left child state

� ⇠ GEM(↵)

��T

�B
z ⇠ DP(��T )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities �.
First, � is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
��T is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ��T (c).

centrated in the upper left, just like the top-level dis-
tribution ��T .

Note that we have replaced the general



Parametric vs. Nonparametric
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Type of Model Parametric
Example

Nonparametric
Example

Construction #1 Construction #2

distribution over 
counts

Dirichlet-
Multinomial Model

Dirichlet Process (DP)

Chinese Restaurant 
Process (CRP)

Stick-breaking 
construction

mixture Gaussian Mixture 
Model (GMM)

Dirichlet Process Mixture Model (DPMM)

CRP Mixture Model Stick-breaking 
construction

admixture Latent Dirichlet 
Allocation (LDA)

Hierarchical Dirichlet Process Mixture 
Model (HDPMM)

Chinese Restaurant 
Franchise

Stick-breaking 
construction



Summary of DP and DP-MM
• DP has many different representations:
– Chinese Restaurant Process
– Stick-breaking construction
– Blackwell-MacQueen Urn Scheme
– Limit of finite mixtures
– etc.

• These representations give rise to a variety of 
inference techniques for the DP-MM and related 
models
– Gibbs sampler (CRP)
– Gibbs sampler (stick-breaking)
– Variational inference (stick-breaking)
– etc.
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GRAPH NEURAL NETWORKS
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Background: Graphs
• Def: a graph G = (V,E) consists of 

vertices V and edges E
– vertices are also called nodes
– Let node vi ∈ V and |V| = N
– Let edge (vi, vj) ∈ E and |E| = M

• Def: an adjacency matrix A for 
graph G is a binary matrix such that:
– Ai,j = 1 if (vi, vj) ∈ E
– Ai,j = 0 if (vi, vj) ∉ E

• Def: an adjacency list is simply an 
ordered version of the set of edges, 
e.g. list(E)

• Def: the neighbors N(vj) of a node vj
are all nodes vi such that (vi, vj) ∈ E
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[(A,B), (A,D), (B,A), (B,D), 
(C,E), (E,A), (E,B)] 
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Background: Graphs
• The graph we just defined is a 

directed graph because each 
edge (vi, vj) ∈ E is an ordered 
pair

• Def: a self-loop (vi, vi) ∈ E is an 
edge from a node to itself 

• A self-loop corresponds to a 
diagonal entry in the adjacency 
matrix

• For an undirected graph:
(vi, vj) ∈ E è (vj, vi) ∈ E
each undirected edge is just two 
directed edges

• An undirected graph is a special 
case in which the adjacency 
matrix is symmetric

• (An undirected self-loop is only 
one directed edge)
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Background: Graphs
• The graph we just defined is a 

directed graph because each 
edge (vi, vj) ∈ E is an ordered 
pair

• Def: a self-loop (vi, vi) ∈ E is an 
edge from a node to itself 

• A self-loop corresponds to a 
diagonal entry in the adjacency 
matrix

• For an undirected graph:
(vi, vj) ∈ E è (vj, vi) ∈ E
each undirected edge is just two 
directed edges

• An undirected graph is a special 
case in which the adjacency 
matrix is symmetric

• (An undirected self-loop is only 
one directed edge)
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Data as Graphs

• citation networks
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Data as Graphs

• molecules

76
Figure from https://chemrxiv.org/engage/chemrxiv/article-details/6246035d3affe4aa143c3848

https://chemrxiv.org/engage/chemrxiv/article-details/6246035d3affe4aa143c3848


Data as Graphs

• semantic parsing

77
Figure from https://ai.googleblog.com/2017/11/sling-natural-language-frame-semantic.html

https://ai.googleblog.com/2017/11/sling-natural-language-frame-semantic.html


Data as Graphs

• social networks
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Figure from https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Data as Graphs

• images

79
Figure from https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Graph Neural Networks
Decomposition of tasks for GNNs
• Node-level
– node classification: predict a label for each node
– node regression: predict a value for each node

• Edge-level
– edge classification: predict a label for each edge
– link prediction: predict presence/absence/strength of an 

edge
• Graph-level
– graph classification: predict a label for the entire graph
– graph regression: predict a value for the entire graph
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Types of GNNs
A Taxonomy of Graph Neural Networks (GNNs) 
from Wu et al. (2020):
1. Recurrent GNNs
2. Convolutional GNNs

a. Spectral-based
b. Spatial-based

3. Graph autoencoders
a. for network embedding
b. for graph generation

4. Spatial-temporal GNNs

82
Taxonomy from https://arxiv.org/pdf/1901.00596.pdf

https://arxiv.org/pdf/1901.00596.pdf


Node and Edge Representations
• Def: each node v 

has a node feature 
vector xv ∈ ℝM

• Def: each edge e 
has an edge feature 
vector xe ∈ ℝM’

• For undirected 
graphs, we (usually) 
assume there is 
only one vector per 
undirected edge 
(i.e. not one for 
each of the two 
corresponding 
directed edges)
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A B C

ED

xA .1 -7 … 2

xB 4 -2 … 3

xC -5 1 … 1

xD 0 3 … .5

xE .6 -.3 … .1

xA,B 2 .4 … -2

xA,D .3 .1 … -.5

xA,E -5 1 … 4

xB,D .9 9 … -9

xB,E 1 -4 … 7

xC,E 6 -.2 … 0



RECURRENT GRAPH NEURAL 
NETWORKS

84



Recurrent GNNs 

• Some of the early GNNs capitalized on acyclic 
graphs (or acyclic substructure of graphs)

• This is akin to how Loopy Belief Propagation 
and Tree Reweighted Belief Propagation (two 
variational message passing techniques that 
came long before) are implemented

• The backbone of these Recurrent GNNs was a 
variant of the LSTM
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Tree LSTMs
• Two types:

– Child-Sum 
TreeLSTM (handles 
binary trees)

– N-ary TreeLSTM
(handles arbitrary 
trees)

• Key insight:
– generalize the 

LSTM from chains 
to trees

– the hidden unit for 
a non-terminal 
node is a 
parameterized 
function of its 
children
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Tree LSTMs
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Standard LSTM on a chain

Tree LSTM on an n-ary tree

Figures from Tai et al. (2015) ACL slides:  https://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
Figures from Tai et al. (2015) https://aclanthology.org/P15-1150

https://kaishengtai.github.io/static/slides/treelstm-acl2015.pdf
https://aclanthology.org/P15-1150


Graph LSTMs
• The Graph LSTM (Peng et al., 2017) decomposes a directed cyclic graph 

into two directed acyclic graphs
• The computation graph first runs a TreeLSTM left-to-right along the first 

acyclic graph, then right-to-left through the second acyclic graph

88
Figures from https://aclanthology.org/Q17-1008
Equations from https://arxiv.org/abs/1812.08434

https://aclanthology.org/Q17-1008
https://arxiv.org/abs/1812.08434


SPATIAL GRAPH NEURAL 
NETWORKS

89



Spatial Graph Neural Networks

Whiteboard:
– Basic node-only GNN
– Basic neighbor-only GNN
– Visualizing the k-hop neighborhood 

computation graph
– Incorporating self-loops
– Normalization techniques
– Adding edge features
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