10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Bayesian Nonparametrics $+$ Graph Neural Networks

Matt Gormley Lecture 25
Dec. 7, 2022

Reminders

- 10-618 Mini-Project
- Team Formation Due: Tue, Nov 29
- Proposal Due: Thu, Dec 1
- Summary \& Code Due: Fri, Dec 9
- Practice Problems 2
- Out: Wed, Dec 8
- Exam 2:
- Thu, Dec 15, 5:30-7:30 PM

Chinese Restaurant Process \& Stick-breaking Constructions

DIRICHLET PROCESS

Dirichlet Process

Ferguson Definition

- Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, $\alpha \in \mathcal{R}$

- We say $G \sim \operatorname{DP}(\alpha, H)$
if for any partition $A_{1} \cup A_{2} \cup \ldots \cup A_{K}=\Theta$ we have:
$\left(G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
- The first customer sits at the first unoccupied table
- Each subsequent customer chooses a table according to the following probability distribution:

$p\left(k t h\right.$ occupied table) $\propto n_{k}$ p (next unoccupied table) $\alpha \alpha$

where n_{k} is the number of people sitting at the table k

$\frac{2}{8+\alpha}$
$\frac{\alpha}{8+\alpha}$

Chinese Restaurant Process \& Stick-breaking Constructions

DIRICHLET PROCESS MIXTURE MODEL

CRP Mixture Model

- Draw n cluster indices from a CRP:

$$
z_{1}, z_{2}, \ldots, z_{n} \sim \operatorname{CRP}(\alpha)
$$

- For each of the resulting K clusters:

$$
\begin{aligned}
& \theta_{k}^{*} \sim H \\
& \text { where } H \text { is a base distribution }
\end{aligned}
$$

- Draw n observations:

$$
x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right)
$$

Customer i orders a dish x_{i} (observation) from a tablespecific distribution over dishes $\theta_{k}{ }^{*}$ (cluster parameters)

(color denotes different values of x_{i})

CRP Mixture Model

- Draw n cluster indices from a CRP: $z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)$
- For each of the resulting K clusters:
$\theta_{k}{ }^{*} \sim H$
where H is a base distribution
- Draw n observations:

$$
x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right)
$$

- The Gibbs sampler is easy thanks to exchangeability
- For each observation, we remove the customer / dish from the restaurant and resample as if they were the last to enter
- If we collapse out the parameters, the Gibbs sampler draws from the conditionals:
$z_{i} \sim p\left(z_{i} \mid z_{i j}, x\right) \propto p(x, z)$

CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors

- Alg. 1: (uncollapsed)
- Markov chain state: per-customer parameters $\theta_{l}, \ldots, \theta_{n}$
- For $i=1, \ldots, n$: Draw $\theta_{i} \sim p\left(\theta_{i} \mid \boldsymbol{\theta}_{-i}, \boldsymbol{x}\right)$
- Alg. 2: (uncollapsed)
- Markov chain state: per-customer cluster indices z_{1}, \ldots, z_{n} and per-cluster parameters $\theta_{1}^{*}, \ldots, \theta_{k}^{*}$
- For $i=1, \ldots, n$: Draw $z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}, \boldsymbol{\theta}^{*}\right)$
- Set $K=$ number of clusters in z
- For $k=1, \ldots, K$: Draw $\theta_{k}{ }^{*} \sim p\left(\theta_{k}{ }^{*} \mid\left\{x_{i}: z_{i}=k\right\}\right)$
- Alg. 3: (collapsed)
- Markov chain state: per-customer cluster indices z_{1}, \ldots, z_{n}
- For $i=1, \ldots, n$: Draw $z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}\right)$

CRP Mixture Model

- Q: How can the Alg. 2 Gibbs samplers permit an infinite set of clusters in finite space?
- A: Easy!
- We are only representing a finite number of clusters at a time - those to which the data have been assigned
- We can always bring back the parameters for the "next unoccupied table" if we need them

CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

(Blackwell-MacQueen Urn Scheme)
The Chinese Restaurant Process Mixture Model is just a different construction of the Dirichlet Process Mixture Model where we have marginalized out $\frac{G}{\sqrt{z}}$

Graphical Models for DPMMs

Example: DP Gaussian Mixture Model

Figure 2: The approximate predictive distribution given by variational inference at different stages of the algorithm. The data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.

$$
p\left(\underline{x_{1}, x_{2}} \mid D\right)
$$

Example: DP Gaussian Mixture Model

Figure 3: Mean convergence time and standard error across ten data sets per dimension for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

GMM VS. DPMM EXAMPLE

Example: Dataset

$$
\begin{aligned}
& \text { for } k=1, \ldots, 6: \\
& \vec{M}_{k} \sim \operatorname{Gusan}_{(0, I)} \text { Example: GMM } \\
& \text { for } \sum_{i}=\underline{k} \backslash_{1}, \ldots, N \text { : } \\
& \text { Clustering with GMM (} k=6 \text {, init=random, cov=full, iter=0) }
\end{aligned}
$$

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=5)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=10)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=15)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=20)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=25)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=30)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=35)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=39)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=0)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=1)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=2)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=3)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=4)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=5)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=6)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=7)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=8)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=9)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=10)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=11)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=12)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=13)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=14)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=15)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=16)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=17)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=18)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=19)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=20)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=21)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=22)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=23)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=24)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=25)

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

HIERARCHICAL DIRICHLET PROCESS (HDP)

Related Models

- Hierarchical Dirichlet Process Mixture Model (HDP-MM)
- Infinite HMM
- Infinite PCFG

HDP-MM

- In LDA, we have M independent samples from a Dirichlet ${ }^{\text {t }}$ distribution.
- The weights are different, but the topics are fixed to be the same.
- If we replace the Dirichlet distributions with Dirichlet processes, each atom of each Dirichlet process will pick a topic independently of the other topics.
- Because the base measure is continuous, we have zero probability of picking the same topic twice.
- If we want to pick the same topic twice, we need to use a discrete hase measure.
- For example, if we chose the base measure to be $H=\sum_{k=1}^{K} \alpha_{k} \delta_{\beta_{k}}$ then we would have LDA again.
- We want there to be an infinite number of topics, so we want an infinite, discrete base measure.
- We want the location of the topics to be random, so we want an infinite, discrete, random base measure.

HDP-MM

Hierarchical Dirichlet process:

HDP-MM

Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture. Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

HDP-HMM (Infinite HMM)

Number of

 hidden states in Infinite HMM is countably infinite

Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too small to see).

HDP-PCFG (Infinite PCFG)

Parametric vs. Nonparametric

Type of ModeI	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

GRAPH NEURAL NETWORKS

Background: Graphs

- Def: a graph G = (V,E) consists of vertices V and edges E
- vertices are also called nodes
- Let node $v_{i} \in V$ and $|V|=N$
- Let edge $\left(v_{i}, v_{j}\right) \in E$ and $|E|=$ 面 N^{E}
- Def: an adjacency matrix A for graph G is a binary matrix such that:
$-A_{i, j}=1$ if $\left(v_{i}, v_{i}\right) \in E$
$-A_{i, j}=0$ if $\left(v_{i}, v_{j}\right) \notin E$

- Def: an adjacency list is simply an ordered version of the set of edges, e.g. list(E)
- Def: the neighbors $N\left(v_{j}\right)$ of a node v_{j} are all nodes v_{i} such that $\left(v_{i}, v_{j}\right) \in E$

Background: Graphs

- The graph we just defined is a directed graph because each edge $\left(v_{i}, v_{j}\right) \in E$ is an ordered pair
- For an undirected graph: $\left(v_{i}, v_{j}\right) \in E \rightarrow\left(v_{j}, v_{i}\right) \in E$ each undirected edge is just two directed edges
- An undirected graph is a special case in which the adjacency matrix is symmetric

Background: Graphs

- The graph we just defined is a directed graph because each edge $\left(v_{i}, v_{j}\right) \in E$ is an ordered pair
- Def: a self-loop $\left(v_{i}, v_{i}\right) \in E$ is an edge from a node to itself
- A self-loop corresponds to a diagonal entry in the adjacency matrix

- For an undirected graph:
$\left(v_{i}, v_{j}\right) \in E \rightarrow\left(v_{j}, v_{i}\right) \in E$ each undirected edge is just two directed edges
- An undirected graph is a special case in which the adjacency matrix is symmetric
- (An undirected self-loop is only one directed edge)

Data as Graphs

- citation networks

Data as Graphs

- molecules

Data as Graphs

- semantic parsing

Many [people] now claim to have [predicted] [Black Monday]

Data as Graphs

- social networks

(Left) Image of a scene from the play "Othello". (Center) Adjacency matrix of the interaction between characters in the play. (Right) Graph representation of these interactions. O

Data as Graphs

- images

In (b), above, the original image (a) has been segmented into five entities: each of the fighters, the referee, the audience and the mat. (C) shows the relationships between these entities.

Graph Neural Networks

Decomposition of tasks for GNNs

- Node-level
- node classification: predict a label for each node
- node regression: predict a value for each node
- Edge-level
- edge classification: predict a label for each edge
- link prediction: predict presence/absence/strength of an edge
- Graph-level
- graph classification: predict a label for the entire graph
- graph regression: predict a value for the entire graph

Types of GNNs

A Taxonomy of Graph Neural Networks (GNNs)
from Wu et al. (2020):

1. Recurrent GNNs
2. Convolutional GNNs
a. Spectral-based
b. Spatial-based
3. Graph autoencoders
a. for network embedding
b. for graph generation
4. Spatial-temporal GNNs

Node and Edge Representations

- Def: each node v has a node feature vector $\mathrm{X}_{\mathrm{v}} \in \mathbb{R}^{M}$
- Def: each edge e has an edge feature vector $x_{e} \in \mathbb{R}^{M^{\prime}}$
- For undirected graphs, we (usually) assume there is only one vector per undirected edge (i.e. not one for each of the two corresponding directed edges)

RECURRENT GRAPH NEURAL NETWORKS

Recurrent GNNs

- Some of the early GNNs capitalized on acyclic graphs (or acyclic substructure of graphs)
- This is akin to how Loopy Belief Propagation and Tree Reweighted Belief Propagation (two variational message passing techniques that came long before) are implemented
- The backbone of these Recurrent GNNs was a variant of the LSTM

Tree LSTMs

- Two types:
- Child-Sum TreeLSTM (handles binary trees)
- N-ary TreeLSTM (handles arbitrary trees)
- Key insight:
- generalize the LSTM from chains to trees
- the hidden unit for a non-terminal node is a parameterized
 function of its children

Tree LSTMs

Standard LSTM on a chain

Graph LSTMs

- The Graph LSTM (Peng et al., 2017) decomposes a directed cyclic graph into two directed acyclic graphs
- The computation graph first runs a TreeLSTM left-to-right along the first acyclic graph, then right-to-left through the second acyclic graph

SPATIAL GRAPH NEURAL NETWORKS

Spatial Graph Neural Networks

Whiteboard:

- Basic node-only GNN
- Basic neighbor-only GNN
- Visualizing the k-hop neighborhood computation graph
- Incorporating self-loops
- Normalization techniques
- Adding edge features

