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Reminders

• Homework 6: VAE + Structured SVM
– Out: Wed, Nov 16
– Due: Wed, Nov 30 at 11:59pm

• 10-618 Mini-Project
– Team Formation Due: Tue, Nov 29 
– Proposal Due: Thu, Dec 1
– Summary & Code Due: Fri, Dec 9
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CAUSAL INFERENCE
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Causal Hierarchy
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Table from Pearl (2018)



Causal Models
Whiteboard:
– Structural Causal Models
• Example: Linear SCM (structural equation model)
• Example: Nonparametric SCM
• Intervention
• Graphical model induced by SCM

– Post-Intervention Distribution vs. Conditional 
Distribution

– Treatment Efficacy
• average difference
• experimental risk ratio
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Identification
Identification:

– whether the causal effects are identifiable
– the central question in analysis of causal effects

16

Can the post-intervention distribution p(y | do(x0)) be 
estimated by data sampled from the pre-intervention 
distribution p(x, y, z)?

Yes! (Sometimes.)
Case 1: when the model M is acyclic with all error terms (UX, 
UY, UZ) jointly independent, all causal effects are 
identifiable.
Case 2: when we can marginalize out the causal effects



Causal Markov Theorem

17
Figures from Pearl (2009)



Identification
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Example: Model M 
(error terms not shown)

Pre-intervention distribution:

Post-intervention distribution:

Causal effect of X on Y:

1. All of the terms in the post-
intervention distribution 
are from the pre-
intervention distribution

2. Those terms could be 
learned from observational 
data

Figures from Pearl (2009)
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Can the post-intervention distribution p(y | do(x0)) be 
estimated by data sampled from the pre-intervention 
distribution p(x, y, z)?

Yes! (Sometimes.)
Case 1: when the model M is acyclic with all error terms (UX, 
UY, UZ) jointly independent, all causal effects are 
identifiable.
Case 2: when we can marginalize out the causal effects



Unmeasured Confounders

20

Example: Model M 
(error terms not shown)

Pre-intervention distribution:

Post-intervention distribution:

Causal effect of X on Y:

Suppose in our previous 
identifiability example, we 
didn’t observe z2 in our data. 
Can we still estimate p(y | 
do(x0))? 

Yes! Just marginalize 
over z2Figures from Pearl (2009)



Unmeasured Confounders
• Suppose we wish to measure causal effect of X on Y
• But some confounding variables are unmeasurable (e.g. genetic trait) and 

some are measureable (e.g. height)
• How to pick an admissible set of confounders which, if measured, would 

enable inference?

21
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Fig 4. Markovian model illustrating the back-door criterion. Error terms are not shown ex-
plicitly.

adjustment. The problem of defining an admissible set, let alone finding one, has
baffled epidemiologists and social scientists for decades (see (Greenland et al.,
1999; Pearl, 1998) for review).

The following criterion, named “back-door” in (Pearl, 1993a), settles this
problem by providing a graphical method of selecting admissible sets of factors
for adjustment.

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y , namely all

paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example, the
set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the arrow-
emitting node Z3 is in S. However, the set S = {Z3} does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because none of the arrow-emitting
nodes, Z1 and Z2, is in S, and the collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each blocks
all back-door paths between X and Y . The set {Z3}, however, is not suffi-
cient for adjustment because, as explained above, it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causative, namely, it correctly represents the target
quantity: the causal effect of X on Y . The reason for excluding descendants of
X (e.g., W3 or any of its descendants) is given in (Pearl, 2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying on
S is guaranteed to remove all confounding bias relative the causal effect of X
on Y . In other words, the risk difference in each stratum of S gives the correct
causal effect in that stratum. In the binary case, for example, the risk difference
in stratum s of S is given by

P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)

Figures from Pearl (2009)



Unmeasured Confounders
• Suppose we wish to measure causal effect of X on Y
• But some confounding variables are unmeasurable (e.g. genetic trait) and 

some are measureable (e.g. height)
• How to pick an admissible set of confounders which, if measured, would 

enable inference?

22

J. Pearl/Causal inference in statistics 114

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Fig 4. Markovian model illustrating the back-door criterion. Error terms are not shown ex-
plicitly.

adjustment. The problem of defining an admissible set, let alone finding one, has
baffled epidemiologists and social scientists for decades (see (Greenland et al.,
1999; Pearl, 1998) for review).

The following criterion, named “back-door” in (Pearl, 1993a), settles this
problem by providing a graphical method of selecting admissible sets of factors
for adjustment.

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y , namely all

paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example, the
set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the arrow-
emitting node Z3 is in S. However, the set S = {Z3} does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because none of the arrow-emitting
nodes, Z1 and Z2, is in S, and the collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each blocks
all back-door paths between X and Y . The set {Z3}, however, is not suffi-
cient for adjustment because, as explained above, it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causative, namely, it correctly represents the target
quantity: the causal effect of X on Y . The reason for excluding descendants of
X (e.g., W3 or any of its descendants) is given in (Pearl, 2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying on
S is guaranteed to remove all confounding bias relative the causal effect of X
on Y . In other words, the risk difference in each stratum of S gives the correct
causal effect in that stratum. In the binary case, for example, the risk difference
in stratum s of S is given by

P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)

Figures from Pearl (2009)

J. Pearl/Causal inference in statistics 114

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Fig 4. Markovian model illustrating the back-door criterion. Error terms are not shown ex-
plicitly.

adjustment. The problem of defining an admissible set, let alone finding one, has
baffled epidemiologists and social scientists for decades (see (Greenland et al.,
1999; Pearl, 1998) for review).

The following criterion, named “back-door” in (Pearl, 1993a), settles this
problem by providing a graphical method of selecting admissible sets of factors
for adjustment.

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y , namely all

paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example, the
set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the arrow-
emitting node Z3 is in S. However, the set S = {Z3} does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because none of the arrow-emitting
nodes, Z1 and Z2, is in S, and the collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each blocks
all back-door paths between X and Y . The set {Z3}, however, is not suffi-
cient for adjustment because, as explained above, it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causative, namely, it correctly represents the target
quantity: the causal effect of X on Y . The reason for excluding descendants of
X (e.g., W3 or any of its descendants) is given in (Pearl, 2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying on
S is guaranteed to remove all confounding bias relative the causal effect of X
on Y . In other words, the risk difference in each stratum of S gives the correct
causal effect in that stratum. In the binary case, for example, the risk difference
in stratum s of S is given by

P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)

J. Pearl/Causal inference in statistics 114

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Fig 4. Markovian model illustrating the back-door criterion. Error terms are not shown ex-
plicitly.

adjustment. The problem of defining an admissible set, let alone finding one, has
baffled epidemiologists and social scientists for decades (see (Greenland et al.,
1999; Pearl, 1998) for review).

The following criterion, named “back-door” in (Pearl, 1993a), settles this
problem by providing a graphical method of selecting admissible sets of factors
for adjustment.

Definition 3 (Admissible sets – the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y , namely all

paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example, the
set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the arrow-
emitting node Z3 is in S. However, the set S = {Z3} does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because none of the arrow-emitting
nodes, Z1 and Z2, is in S, and the collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each blocks
all back-door paths between X and Y . The set {Z3}, however, is not suffi-
cient for adjustment because, as explained above, it does not block the path
X ←W1 ← Z1 → Z3 ← Z2 →W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the paths
directed along the arrows from X to Y carry causative associations. Blocking
the former paths (by conditioning on S) ensures that the measured association
between X and Y is purely causative, namely, it correctly represents the target
quantity: the causal effect of X on Y . The reason for excluding descendants of
X (e.g., W3 or any of its descendants) is given in (Pearl, 2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying on
S is guaranteed to remove all confounding bias relative the causal effect of X
on Y . In other words, the risk difference in each stratum of S gives the correct
causal effect in that stratum. In the binary case, for example, the risk difference
in stratum s of S is given by

P (Y = 1|X = 1, S = s) − P (Y = 1|X = 0, S = s)



EXAMPLE: IDENTIFYING CAUSAL 
EFFECT

23



Simpson’s Paradox

24

Causal Thinking (2)

• Dependence vs. causality 

• Simpson’s paradox 

• “Strange” dependence

8

Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Simpson’s Paradox

25

Causal Thinking (2)

• Dependence vs. causality 

• Simpson’s paradox 

• “Strange” dependence

8

Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures

For people with Small Stones, 
93% of those who received 

Treatment A recovered; but 
only 87% of those who 
received Treatment B 

recovered.

For people with Large 
Stones, 73% of those who 

received Treatment A 
recovered; but only 69% of 

those who received 
Treatment B recovered.

Not quite! Because if you 
look at both groups, 83% of 

those who received 
Treatment B recovered vs 

only 78% of those with 
Treatment A.

So Treatment A is better than 
Treatment B right?

The problem is HOW 
the data was 

collected: i.e. the 
doctor’s looked at 

stone size when 
selecting Treatment 

A or B
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Identification of Causal Effects

• “Golden standard”: randomized controlled experiments

• All the other factors that influence the outcome 
variable are either fixed or vary at random, so any 
changes in the outcome variable must be due to the 
controlled variable

• Usually expensive or impossible to do!

P(X3 | do (X2=1))

27Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Identification of Causal Effects

Whiteboard:
– Stone-size example:
• Model 1: path diagram for randomized control trial
• Model 2: path diagram for observational data
• Model 3: path diagram for intervention

27
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Identification of Causal Effects: Example

conditioning vs. manipulating

P (R|T ) =
X

S

P (R|T, S)P (S|T )

28

P (R | do(T )) =
X

S

P (R |T, S)P (S)

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Identification of Causal Effects: Example
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29
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X
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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X
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



COUNTERFACTUAL INFERENCE
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Counterfactual Inference vs. Prediction

-2 -1 0 1 2
X
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0

1
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Y
• Suppose X→Y with Y = log(X + E + 3). For an individual 

with (x,y), what would Y be if X had been x’ ?

-2 -1 0 1 2
X

-3

-2

-1

0

1

2
Y

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Counterfactual Inference vs. Prediction
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Counterfactual Inference vs. Prediction

-2 -1 0 1 2
X

-3

-2

-1

0

1

2

Y
• Suppose X→Y with Y = log(X + E + 3). For an individual 

with (x,y), what would Y be if X had been x’ ?

Step 1: find e = exp(y) – x - 3.
Step 2: Set X = x’.
Step 3: Find Y = log(x’ + e +3)

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Counterfactual Inference

• Three steps 

• Abduction: find P(U | evidence)

• Action: Replace the equation for X by X = x’

• Prediction: Use the modified model to predict Y

P(YX=x’ | X = x, Y = y, W = w)
evidence

W

X Z

Y

W = UW
X = fX (W, UX)
Z = fZ (W, UZ)
Y = fY (X, Z, UZ)

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



CAUSAL DISCOVERY
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Causal Discovery
• Goal: 
– Find a path diagram (i.e. causal model) that is best 

supported by the data
• Key Idea:
– find causal structures that are consistent (in a d-

separation sense) with the set of conditional 
independencies supported by the data

• Where to learn more?
– Kun Zhang (CMU, Philosophy / ML) guest lectures 

from Spring 2020 10-708: 
http://www.cs.cmu.edu/~epxing/Class/10708-
20/lectures.html

39

http://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
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Causal Structure vs. Statistical Independence 
(SGS, et al.)

causal structure
(causal graph)
 Y → X → Z

Statistical 
independence(s)

 Y      Z | X

Causal Markov condition: each variable is ind. of its non-
descendants (non-effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies 
are entailed by Markov condition in the causal graph

Recall: Y⫫Z ⇔P(Y|Z)=P(Y); Y⫫Z|X ⇔P(Y|Z,X)=P(Y|X)

 Y -- X -- Z ?

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Constraint-Based vs. Score-Based

• Constraint-based methods

• Score-based methods

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...

X1⫫X3 

X1⫫X4 | X2 

X3⫫X4 | X2

X1 X3

X2

X4

X1 X3

X2

X4

X1 X3X2 X4

X1 X3X2 X4

score 1

score 2

score 3
...

...

Which 
one is 

the best?

(Score may be BIC, AIC, etc.)

 X1       X2      X3     X4  
------------- 

-1.1   1.0     1.3  0.2         
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6   0.6 
 2.3    -0.6    -3.5   0.8 
1.3   2.2     0.9   2.4          

-1.8    0.9    -1.3    0.9  
...       ...      ...       ...

64

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



A CONUNDRUM: HOW TO PICK THE 
NUMBER OF LATENT CLUSTERS?

42



K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)}
and cluster assignments z = {z(1), z(2),…, z(N)}

• Repeat until convergence:
– for j in {1,…,K}

c(j) = mean of all points assigned to cluster j
– for i in {1,…, N}

z(i) = index j of cluster center nearest to x(i)

43
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LDA for Topic Modeling

45

The 54/40' boundary dispute is 
still unresolved, and Canadian 
and US Coast Guard vessels 
regularly if infrequently detain 
each other's fish boats in the 
disputed waters off Dixon…

In the year before 
Lemieux came, Pittsburgh 
finished with 38 points.  
Following his arrival, the 
Pens finished…

The Orioles' pitching staff 
again is having a fine 
exhibition season. Four 
shutouts, low team ERA, 
(Well, I haven't gotten any 
baseball…

θ1= θ2= θ3=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
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(Blei, Ng, & Jordan, 2003)

Dirichlet(β)



Familiar models for unsupervised learning:
1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know 
the right number of clusters / topics?

46



Outline
• Motivation / Applications
• Background

– de Finetti Theorem
– Exchangeability
– Aglommerative and decimative properties of Dirichlet distribution

• CRP and CRP Mixture Model
– Chinese Restaurant Process (CRP) definition
– Gibbs sampling for CRP-MM
– Expected number of clusters

• DP and DP Mixture Model
– Ferguson definition of Dirichlet process (DP)
– Stick breaking construction of DP
– Uncollapsed blocked Gibbs sampler for DP-MM
– Truncated variational inference for DP-MM

• DP Properties
• Related Models

– Hierarchical Dirichlet process Mixture Models (HDP-MM)
– Infinite HMM
– Infinite PCFG

47



BAYESIAN NONPARAMETRICS

48



Parametric vs. Nonparametric
• Parametric models:
– Finite and fixed number of parameters
– Number of parameters is independent of the dataset

• Nonparametric models:
– Have parameters (“infinite dimensional” would be a 

better name)
– Can be understood as having an infinite number of 

parameters
– Can be understood as having a random number of 

parameters
– Number of parameters can grow with the dataset

• Semiparametric models:
– Have a parametric component and a nonparametric

component

49



Parametric vs. Nonparametric

50

Frequentist Bayesian

Parametric Logistic regression, 
ANOVA, Fisher 
discriminant analysis, 
ARMA, etc.

Conjugate analysis, 
hierarchical models, 
conditional random 
fields

Semiparametric Independent 
component analysis, 
Cox model, nonmetric
MDS, etc.

[Hybrids of the above 
and below cells]

Nonparametric Nearest neighbor,
kernel methods, 
boostrap, decision 
trees, etc.

Gaussian processes, 
Dirichlet processes, 
Pitman-Yor processes, 
etc.

Table adapted from Jordan ICML 2005



Parametric vs. Nonparametric

51

Application Parametric Nonparametric

function
approximation

polynomial regression Gaussian processes

classification logistic regression Gaussian process 
classifiers

clustering mixture model, k-
means

Dirichlet process 
mixture model

time series hidden Markov model infinite HMM

feature discovery factor analysis, pPCA,
PMF

infinite latent factor
models

Table adapted from Ghahramani 2015



Parametric vs. Nonparametric

• Def: a model is a collection of distributions

• parametric model: the parameter vector is 
finite dimensional

• nonparametric model: the parameters are 
from a possibly infinite dimensional space, F

52

{p✓ : ✓ 2 ⇥}

⇥ ⇢ Rk

⇥ ⇢ F



Motivation #1

• For clustering:
How many clusters in a 
mixture model?

• For topic modeling: 
How many topics in 
LDA?

• For grammar induction: 
How many non-
terminals in a PCFG?

• For visual scene analysis: 
How many objects, 
parts, features?

53

Model Selection
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• For clustering:
How many clusters in a 
mixture model?

• For topic modeling: 
How many topics in 
LDA?

• For grammar induction: 
How many non-
terminals in a PCFG?

• For visual scene analysis: 
How many objects, 
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55

Model Selection 1. Parametric 
approaches: 
cross-validation, 
bootstrap, AIC, 
BIC, DIC, MDL, 
Laplace, bridge 
sampling, etc.

2. Nonparametric 
approach: 
average of an 
infinite set of 
models



Motivation #2

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions

56

Density Estimation
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Figure from Teh MLSS 2007



Motivation #2

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions
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Density Estimation

Figure from Teh MLSS 2007
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Black: data. Others: draws.
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EXCHANGEABILITY AND DE 
FINETTI’S THEOREM

58



Background: Mixed Distribution

59

Work Notes

Matt

March 20, 2016

Contents
Suppose we have a random variable X drawn from some
distribution P✓(X) and X ranges over a set S.

• Discrete distribution:
S is a countable set.

• Continuous distribution:
P✓(X = x) = 0 for all x 2 S

• Mixed distribution:
S can be partitioned into two disjoint sets D and C s.t.

1. A is countable and 0 < P✓(X 2 D) < 1
2. P✓(X = x) = 0 for all x 2 C

1



Background: Mixed Distribution
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Example:



Exchangability and 
de Finetti’s Theorem

Exchangeability:
• Def #1: a joint probability distribution is 

exchangeable if it is invariant to permutation
• Def #2: The possibly infinite sequence of random 

variables (X1, X2, X3, …) is exchangeable if for any 
finite permutation s of the indices (1, 2,…n):

P(X1, X2, …, Xn) = P(Xs(1), Xs(2), …, Xs(n)) 

Notes: 
• i.i.d. and exchangeable are not the same!
• the latter says that if our data are reordered it 

doesn’t matter
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Exchangability and 
de Finetti’s Theorem

62
Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. 
The original version was given for the Bernoulli distribution

Slide from Jordan 
ICML 2005



Exchangability and 
de Finetti’s Theorem
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Slide from Jordan 
ICML 2005

xiθ
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θ

xN
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Parametric vs. Nonparametric
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Type of Model Parametric
Example

Nonparametric
Example

Construction #1 Construction #2

distribution over 
counts

Dirichlet-
Multinomial Model

Dirichlet Process (DP)

Chinese Restaurant 
Process (CRP)

Stick-breaking 
construction

mixture Gaussian Mixture 
Model (GMM)

Dirichlet Process Mixture Model (DPMM)

CRP Mixture Model Stick-breaking 
construction

admixture Latent Dirichlet 
Allocation (LDA)

Hierarchical Dirichlet Process Mixture 
Model (HDPMM)

Chinese Restaurant 
Franchise

Stick-breaking 
construction



DIRICHLET PROCESS
Chinese Restaurant Process & Stick-breaking Constructions

65



Dirichlet Process
Ferguson Definition
• Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, 

• We say G ~ DP(α, H)
if for any partition
we have:

66
university-logo

Dirichlet Processes
A Proper but Non-Constructive Definition

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A Dirichlet Process (DP) is a distribution over probability measures.

Denote G ⇠ DP if G is a DP-distributed random probability measure.

For any finite set of partitions A1[̇ . . . [̇AK = X, we require
(G(A1), . . . , G(AK )) to be Dirichlet distributed.

6

A

A1

A A
A

A

2

3

4

5
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↵ 2 R

A1 [A2 [ . . . [AK = ⇥

(G(A1), . . . , G(AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK))

In English: the DP is a 
distribution over 
probability measures s.t.
marginals on finite 
partitions are Dirichlet
distributed

A partition of the space Θ



Chinese Restaurant Process
• Imagine a Chinese restaurant with an infinite number of tables
• Each customer enters and sits down at a table

– The first customer sits at the first unoccupied  table
– Each subsequent customer chooses a table according to the 

following probability distribution: 

p(kth occupied table) ∝ nk
p(next unoccupied table) ∝α

where nk is the number of people sitting at the table k
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Chinese Restaurant Process

68

Properties:
1. CRP defines a distribution over clusterings (i.e. partitions) of 

the indices 1,…,n
– customer = index
– table = cluster

2. We write z1, z2, …, zn ~ CRP(α) to denote a sequence of cluster 
indices drawn from a Chinese Restaurant Process

3. The CRP is an exchangeable process
4. Expected number of clusters given n customers 

(i.e. observations) is O(α log(n))
– rich-get-richer effect on clusters: popular tables tend to get more 

crowded
5. Behavior of CRP with α:

– As α goes to 0, the number of clusters goes to 1
– As α goes to +∞, the number of clusters goes to n



CRP vs. DP
Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G, 
we have the following predictive distribution:

The Chinese Restaurant Process is just a different 
construction of the Dirichlet Process where we 
have marginalized out G
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have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

(Blackwell-MacQueen Urn Scheme)



Properties of the DP
1. Base distribution is the “mean” of the DP:

2. Strength parameter is like “inverse variance”

3. Samples from a DP are discrete distributions 
(stick-breaking construction of G ~ DP(α, H)

makes this clear)
4. Posterior distribution of G ~ DP(α, H)

given samples θ1, …, θn from G is a DP
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have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

E[G(A)] = H(A) for any A ⇢ ⇥

V [G(A)] = H(A)(1�H(A))/(↵+ 1)



Exchangability
Question:
Select All: Which of the following 
properties of an infinite sequence of 
random variables X1, X2, X3, …ensure 
that they are infinitely exchangeable?

A. For any pair of orderings (i1, i2, …, in) and (j1, 
j2, …, jn) of the indices (1,…,n) the joint 
probability of the two orderings is the 
same

B. The joint distribution is invariant to 
permutation

C. The joint distribution of the first n random 
variables can be represented as a mixture

D. The random variables are independent and 
identically distributed
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Answer:


