10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Causal Inference

\square
Bayesian Nonparametrics

Matt Gormley
Lecture 24
Nov. 30, 2022

Reminders

- Homework 6: VAE + Structured SVM
- Out: Wed, Nov 16
- Due: Wed, Nov 30 at 11:59pm
- 10-618 Mini-Project
- Team Formation Due: Tue, Nov 29
- Proposal Due: Thu, Dec 1
- Summary \& Code Due: Fri, Dec 9

CAUSAL INFERENCE

Causal Hierarchy

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information from level i or higher is available.

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association $P(y \mid x)$	Seeing	What is? How would seeing X change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention P(yldo(x), z)	Doing, Intervening	What if? What if I do X ?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals $P\left(y_{x} \mid x^{\prime}, y^{\prime}\right)$	Imagining, Retrospection	Why? Was it X that caused Y ? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smoking the past two years?

Causal Models

Whiteboard:

- Structural Causal Models
- Example: Linear SCM (structural equation model)
- Example: Nonparametric SCM
- Intervention
- Graphical model induced by SCM
- Post-Intervention Distribution vs. Conditional Distribution
- Treatment Efficacy
- average difference
- experimental risk ratio

Identification

Identification:

- whether the causal effects are identifiable
- the central question in analysis of causal effects

Can the post-intervention distribution $p\left(y \mid \mathrm{do}\left(x_{0}\right)\right)$ be estimated by data sampled from the pre-intervention distribution $p(x, y, z)$?

Yes! (Sometimes.)

Case 1: when the model M is acyclic with all error terms (U_{x}, $\mathrm{U}_{\mathrm{r}}, \mathrm{U}_{\mathrm{z}}$) jointly independent, all causal effects are identifiable.
Case 2: when we can marginalize out the causal effects

Causal Markov Theorem

Theorem 1 (The Causal Markov Condition). Any distribution generated by a Markovian model M can be factorized as:

$$
\begin{equation*}
P\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\prod_{i} P\left(v_{i} \mid p a_{i}\right) \tag{15}
\end{equation*}
$$

where $V_{1}, V_{2}, \ldots, V_{n}$ are the endogenous variables in M, and $p a_{i}$ are (values of) the endogenous "parents" of V_{i} in the causal diagram associated with M.

Corollary 1 (Truncated factorization). For any Markovian model, the distribution generated by an intervention do $\left(X=x_{0}\right)$ on a set X of endogenous variables is given by the truncated factorization

$$
\begin{equation*}
P\left(v_{1}, v_{2}, \ldots, v_{k} \mid d o\left(x_{0}\right)\right)=\left.\prod_{i \mid V_{i} \notin X} P\left(v_{i} \mid p a_{i}\right)\right|_{x=x_{0}} \tag{17}
\end{equation*}
$$

where $P\left(v_{i} \mid p a_{i}\right)$ are the pre-intervention conditional probabilities. ${ }^{8}$

Identification

Example: Model M (error terms not shown)

1. All of the terms in the postintervention distribution are from the preintervention distribution
2. Those terms could be learned from observational data

Pre-intervention distribution:

$$
\begin{aligned}
& P\left(x, z_{1}, z_{2}, z_{3}, y\right)=P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(x \mid z_{1}, z_{3}\right) P\left(y \mid z_{2}, z_{3}, x\right) \\
& \text { Post-intervention distribution: } \\
& P\left(z_{1}, z_{2}, z_{3}, y \mid d o\left(x_{0}\right)\right)=P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(y \mid z_{2}, z_{3}, x_{0}\right)
\end{aligned}
$$

Causal effect of X on Y :

$$
P\left(y \mid d o\left(x_{0}\right)\right)=\sum_{z_{1}, z_{2}, z_{3}} P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(y \mid z_{2}, z_{3}, x_{0}\right)
$$

Identification

Identification:

- whether the causal effects are identifiable
- the central question in analysis of causal effects

Can the post-intervention distribution $p\left(y \mid \mathrm{do}\left(x_{0}\right)\right)$ be estimated by data sampled from the pre-intervention distribution $p(x, y, z)$?

Yes! (Sometimes.)

Case 1: when the model M is acyclic with all error terms (U_{x}, $\mathrm{U}_{\mathrm{r}}, \mathrm{U}_{\mathrm{z}}$) jointly independent, all causal effects are identifiable.
Case 2: when we can marginalize out the causal effects

Unmeasured Confounders

Example: Model M (error terms not shown)

Pre-intervention distribution:

Suppose in our previous

 identifiability example, we didn't observe z_{2} in our data. Can we still estimate $p(y \mid$ do $\left(x_{0}\right)$)?$$
P\left(x, z_{1}, z_{2}, z_{3}, y\right)=P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(x \mid z_{1}, z_{3}\right) P\left(y \mid z_{2}, z_{3}, x\right)
$$

Post-intervention distribution: dits to learn these!!

$$
P\left(z_{1}, z_{2}, z_{3}, y \mid d o\left(x_{0}\right)\right)=P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(y \mid z_{2}, z_{3}, x_{0}\right)
$$

Causal effect of X on Y :

$$
P\left(y \mid d o\left(x_{0}\right)\right)=\sum_{z_{1}, z_{2}, z_{3}} P\left(z_{1}\right) P\left(z_{2}\right) P\left(z_{3} \mid z_{1}, z_{2}\right) P\left(y \mid z_{2}, z_{3}, x_{0}\right)
$$

$$
P\left(y \mid d o\left(x_{0}\right)\right)=\sum_{z_{1}, z_{3}} P\left(z_{1}\right) P\left(z_{3} \mid z_{1}\right) P\left(y \mid z_{1}, z_{3}, x_{0}\right)
$$

Yes! Just marginalize over Z_{2}

Unmeasured Confounders

- Suppose we wish to measure causal effect of X on Y
- But some confounding variables are unmeasurable (e.g. genetic trait) and some are measureable (e.g. height)
- How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets - the back-door criterion). A set S is admissible (or "sufficient") for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S "block" all "back-door" paths from X to Y, namely all paths that end with an arrow pointing to X.

Definition 1 (d-separation). A set S of nodes is said to block a path p if either (i) p contains at least one arrow-emitting node that is in S, or (ii) p contains at least one collision node that is outside S and has no descendant in S. If S blocks all paths from X to Y, it is said to " d-separate X and Y," and then, X and Y are independent given S, written $X \Perp Y \mid S$.

Unmeasured Confounders

- Suppose we wish to measure causal effect of X on Y
- But some confounding variables are unmeasurable (e.g. genetic trait) and some are measureable (e.g. height)
- How to pick an admissible set of confounders which, if measured, would enable inference?

Definition 3 (Admissible sets - the back-door criterion). A set S is admissible (or "sufficient") for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S "block" all "back-door" paths from X to Y, namely all paths that end with an arrow pointing to X.

Based on this criterion we see, for example, that the sets $\left\{Z_{1}, Z_{2}, Z_{3}\right\},\left\{Z_{1}, Z_{3}\right\}$, $\left\{W_{1}, Z_{3}\right\}$, and $\left\{W_{2}, Z_{3}\right\}$, each is sufficient for adjustment, because each blocks all back-door paths between X and Y. The set $\left\{Z_{3}\right\}$, however, is not sufficient for adjustment because, as explained above, it does not block the path $X \leftarrow W_{1} \leftarrow Z_{1} \rightarrow Z_{3} \leftarrow Z_{2} \rightarrow W_{2} \rightarrow Y$.

EXAMPLE: IDENTIFYING CAUSAL EFFECT

Simpson's Paradox

	Treatment A	Treatment B
Small Stones	Group 1 $\mathbf{9 3 \% (8 1 / 8 7)}$	Group 2 $87 \%(234 / 270)$
Large Stones	Group 3 $\mathbf{7 3 \% (1 9 2 / 2 6 3)}$	Group 4 $69 \%(55 / 80)$
Both	$78 \%(273 / 350)$	$\mathbf{8 3 \% (2 8 9 / 3 5 0)}$

For people with Small Stones,
93% of those who received $\mathrm{PSO}{ }^{\prime} \mathrm{S}$ Paradox Treatment A recovered; but only 87% of those who received Treatment B recovered.

So Treatment A is better than
Treatment B right?

	Treatment A	Treatment B
Small Stones	Group 1 $93 \%(81 / 87)$	Group 2 $87 \%(234 / 270)$
	Group 3	Group 4
	$\mathbf{7 3 \%}(\mathbf{1 9 2 / 2 6 3)}$	$69 \%(55 / 80)$
Both	$78 \%(\underline{273 / 350)}$	$\mathbf{8 3 \% (2 8 9 / 3 5 0)}$

Not quite! Because if you look at both groups, 83% of those who received Treatment B recovered vs only 78% of those with

Treatment A.

The problem is HOW the data was collected: i.e. the doctor's looked at stone size when selecting Treatment A or B

Identification of Causal Effects

$$
P(X 3 \mid \text { do }(X 2=1))
$$

- "Golden standard": randomized controlled experiments
- All the other factors that influence the outcome variable are either fixed or vary at random, so any changes in the outcome variable must be due to the controlled variable

- Usually expensive or impossible to do!

Identification of Causal Effects

Whiteboard:

- Stone-size example:
- Model 1: path diagram for randomized control trial
- Model 2: path diagram for observational data
- Model 3: path diagram for intervention

Identification of Causal Effects: Example

	Treatment A	Treatment B
Small Stones	Group 1 $\mathbf{9 3 \%}$ (81/87)	Group 2 $87 \%(234 / 270)$
Large Stones	Group 3 $73 \%(192 / 263)$	Group 4 $69 \%(55 / 80)$
Both	$78 \%(273 / 350)$	$\mathbf{8 3 \% (2 8 9 / 3 5 0)}$

$$
\begin{aligned}
& P(R \mid T)=\sum_{S} P(R \mid T, S) P(S \mid T) \\
& P(R \mid d o(T))=\sum_{S} P(R \mid T, S) P(S)
\end{aligned}
$$

Treatment A/B
conditioning vs. manipulating

Identification of Causal Effects: Example

Identification of Causal Effects: Example

	Treatment A	Treatment B
Small Stones	Group 1 $\mathbf{9 3 \% (8 1 / 8 7)}$	Group 2 87\% (234/270)
Large Stones	Group 3 $\mathbf{7 3 \% (1 9 2 / 2 6 3)}$	Group 4 $69 \%(55 / 80)$
Both	$\mathbf{7 8 \% (2 7 3 / 3 5 0)}$	$\mathbf{8 3 \% (2 8 9 / 3 5 0)}$

conditioning vs. manipulating

Identification of Causal Effects: Example

COUNTERFACTUAL INFERENCE

Counterfactual Inference vs. Prediction

- Suppose $\mathrm{X} \rightarrow \mathrm{Y}$ with $\mathrm{Y}=\log (\mathrm{X}+\mathrm{E}+3)$. For an individual with (x, y), what would Y be if X had been x '?

Counterfactual Inference vs. Prediction

- Suppose $\mathrm{X} \rightarrow \mathrm{Y}$ with $\mathrm{Y}=\log (\mathrm{X}+\mathrm{E}+3)$. For an individual with (x, y), what would Y be if X had been x '?

Counterfactual Inference vs. Prediction

- Suppose $\mathrm{X} \rightarrow \mathrm{Y}$ with $\mathrm{Y}=\log (\mathrm{X}+\mathrm{E}+3)$. For an individual with (x, y), what would Y be if X had been x '?

Standard Counterfactual Questions

- We talk about a particular situation (or unit) $\mathrm{U}=u$, in which $\mathrm{X}=x$ and $\mathrm{Y}=y$
- What value would Y be had X been x^{\prime} in situation u ? I.e., we want to know $\mathrm{Y}_{\mathrm{X}=x^{\prime}}(u)$, the value of Y in situation u if we $\operatorname{do}\left(\mathrm{X}=x^{\prime}\right)$
- u is not directly observable, so $\mathrm{P}\left(\mathrm{Y}_{\mathrm{X}=x^{\prime}} \mid \mathrm{X}=x, \mathrm{Y}=y\right)$ instead

For identification of causal effects, U is randomized. It is fixed for counterfactual inference.

Counterfactual Inference

$$
\begin{array}{|l|}
\hline W=U_{W} \\
X=f_{X}\left(W, U_{X}\right) \\
Z=f_{Z}\left(W, U_{Z}\right) \\
Y=f_{Y}\left(X, Z, U_{Z}\right) \\
\hline
\end{array}
$$

$$
\mathrm{P}\left(\mathrm{Y}_{\mathrm{X}=x}, \frac{\mathrm{X}=x, \mathrm{Y}=y, \mathrm{~W}=w}{\text { evidence }}\right)
$$

- Three steps
- Abduction: find $\mathrm{P}(\mathrm{U} \mid$ evidence $)$
- Action: Replace the equation for X by $\mathrm{X}=x$,
- Prediction: Use the modified model to predict Y

CAUSAL DISCOVERY

Causal Discovery

- Goal:
- Find a path diagram (i.e. causal model) that is best supported by the data
- Key Idea:
- find causal structures that are consistent (in a dseparation sense) with the set of conditional independencies supported by the data
- Where to learn more?
- Kun Zhang (CMU, Philosophy / ML) guest lectures from Spring 2020 10-708:
http://www.cs.cmu.edu/~epxing/Class/1070820/lectures.htm

Causal Structure vs. Statistical Independence (SGS, et al.)

Causal Markov condition: each variable is ind. of its nondescendants conditional on its parents

causal structure (causal graph)

Statistical

 independence(s) $Y \rightarrow X \rightarrow Z$Y -- X -- Z ?

Faithfulness: all observed (conditional) independencies are entailed by Markov condition in the causal graph

$$
\text { Recall: } Y \Perp Z \Leftrightarrow P(Y \mid Z)=P(Y) ; Y \Perp Z \mid X \Leftrightarrow P(Y \mid Z, X)=P(Y \mid X)
$$

Constraint-Based vs. Score-Based

- Constraint-based methods

- Score-based methods

A CONUNDRUM: HOW TO PICK THE NUMBER OF LATENT CLUSTERS?

K-Means Algorithm

- Given unlabeled feature vectors
$\mathrm{D}=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(\mathrm{N})}\right\}$
- Initialize cluster centers $c=\left\{\mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(K)}\right\}$
and cluster assignments $z=\left\{\mathbf{z}^{(1)}, \mathrm{z}^{(2)}, \ldots, \mathrm{z}^{(\mathrm{N})}\right\}$
- Repeat until convergence:
- for j in $\{1, \ldots, K\}$
$c^{(j)}=$ mean of all points assigned to cluster j
- for i in $\{1, \ldots, N\}$
$z^{(i)}=$ index j of cluster center nearest to $\mathbf{x}^{(i)}$

Example: GMM

Clustering with GMM ($\mathrm{k}=3$, init=random, cov=spherical, iter=13)

LDA for Topic Modeling

Familiar models for unsupervised learning:

1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?

Outline

- Motivation / Applications
- Background
- de Finetti Theorem
- Exchangeability
- Aglommerative and decimative properties of Dirichlet distribution
- CRP and CRP Mixture Model
- Chinese Restaurant Process (CRP) definition
- Gibbs sampling for CRP-MM

- DP and DP Mixture Model
- Ferguson definition of Dirichlet process (DP)
- Stick breaking construction of DP
- Uncollapsed blocked Gibbs sampler for DP-MM
analogy to GMM
- Expected number of clusters
- Truncated variational inference for DP-MM
- DP Properties
- Related Models
- Hierarchical Dirichlet process Mixture Models (HDP-MM)
- Infinite HMM

- Infinite PCFG

BAYESIAN NONPARAMETRICS

Parametric vs. Nonparametric

- Parametric models:
- Finite and fixed number of parameters
- Number of parameters is independent of the dataset
- Nonparametric models:
- Have parameters ("infinite dimensional" would be a better name)
- Can be understood as having an infinite number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset
- Semiparametric models:
- Have a parametric component and a nonparametric component

Parametric vs. Nonparametric

\(\left.$$
\begin{array}{|lll|}\hline & \text { Frequentist } & \text { Bayesian } \\
\hline \text { Parametric } & \begin{array}{l}\text { Logistic regression, } \\
\text { ANOVA, Fisher } \\
\text { discriminant analysis, }\end{array} & \begin{array}{l}\text { Conjugate analysis, } \\
\text { hierarchical models, } \\
\text { conditional random } \\
\text { fields }\end{array} \\
\text { Semiparametric etc. }\end{array}
$$ $$
\begin{array}{l}\text { Independent } \\
\text { component analysis, } \\
\text { Cox model, nonmetric }\end{array}
$$, \begin{array}{l}[Hybrids of the above

and below cells]\end{array}\right]\)| MDS, etc. |
| :--- |

Parametric vs. Nonparametric

Application	Parametric	Nonparametric			
function approximation	polynomial regression	Gaussian processes			
classification	mixture model, k- means	Dirichlet process mixture model			
clustering	hidden Markov model	infinite HMM			
classifiers			$	$	time series
:---					
feature discovery					
factor analysis, pPCA, PMF					
infinite latent factor models					

Parametric vs. Nonparametric

- Def: a model is a collection of distributions

$$
\left\{p_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\right\}
$$

- parametric model: the parameter vector is finite dimensional

$$
\Theta \subset \mathcal{R}^{k}
$$

- nonparametric model: the parameters are from a possibly infinite dimensional space, \mathcal{F}

$$
\Theta \subset \mathcal{F}
$$

Motivation \#1

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

1. Parametric approaches: cross-validation, bootstrap, AIC, BIC, DIC, MDL, Laplace, bridge sampling, etc.
2. Nonparametric approach: average of an infinite set of models

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Prior:

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: draws.

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.

EXCHANGEABILITY AND DE FINETTI'S THEOREM

Background: Mixed Distribution

Suppose we have a random variable X drawn from some distribution $P_{\theta}(X)$ and X ranges over a set \mathcal{S}.

- Discrete distribution: \mathcal{S} is a countable set.
- Continuous distribution:

$$
P_{\theta}(X=x)=0 \text { for all } x \in \mathcal{S}
$$

- Mixed distribution:
\mathcal{S} can be partitioned into two disjoint sets \mathcal{D} and \mathcal{C} s.t.

1. \mathcal{D} is countable and $0<P_{\theta}(X \in D)<1$
2. $P_{\theta}(X=x)=0$ for all $x \in \mathcal{C}$

Background: Mixed Distribution Example:

$$
\begin{aligned}
& x^{\prime} \sim p_{\text {mixed }}=\left[1 / 4 \sum_{i=1}^{3} \delta_{x^{(3)}}=1 / 4 \mathrm{Beta}(\alpha, \beta)=H\right.
\end{aligned}
$$

point mass distribution where all port. mass is placed on subscript value

$$
x \sim \delta_{x}(1)
$$

$$
\Rightarrow x=\left\{\begin{array}{l}
x^{(1)} \text { w/prob } 1.0 \\
\text { any other } x^{\prime \prime} \neq x^{(1)} \text { w/prob } 0.0
\end{array}\right.
$$

Exchangability and de Finetti's Theorem

Exchangeability:

- Def \#1: a joint probability distribution is exchangeable if it is invariant to permutation
- Def \#2: The possibly infinite sequence of random variables ($X_{1}, X_{2}, X_{3}, \ldots$) is exchangeable if for any finite permutation s of the indices $(1,2, \ldots n)$:

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{s(l)}, X_{s(2)}, \ldots, X_{s(n)}\right)
$$

Notes:

- i.i.d. and exchangeable are not the same!
- the latter says that if our data are reordered it doesn't matter

Exchangability and de Finetti's Theorem

Theorem (De Finetti, 1935). If $\left(x_{1}, x_{2}, \ldots\right)$ are infinitely exchangeable, then the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ has a representation as a mixture:

$$
\underline{p\left(x_{1}, x_{2}, \ldots, x_{N}\right)}=\int\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d P(\theta)
$$

for some random variable θ.

- The theorem wouldn't be true if we limited ourselves to parameters θ ranging over Euclidean vector spaces
- In particular, we need to allow θ to range over measures, in which case $P(\theta)$ is a measure on measures
- the Dirichlet process is an example of a measure on measures...

Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. The original version was given for the Bernoulli distribution

Exchangability and de Finetti's Theorem

- A plate is a "macro" that allows subgraphs to be replicated:

- Note that this is a graphical representation of the De Finetti theorem

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int p(\theta)\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d \theta
$$

Parametric vs. Nonparametric

Type of Model	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Chinese Restaurant Process \& Stick-breaking Constructions

DIRICHLET PROCESS

Dirichlet Process

Ferguson Definition

- Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, $\alpha \in \mathcal{R}$

- We say $G \sim \operatorname{DP}(\alpha, H)$
if for any partition $A_{1} \cup A_{2} \cup \ldots \cup A_{K}=\Theta$ we have:
$\left(G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
- The first customer sits at the first unoccupied table
- Each subsequent customer chooses a table according to the following probability distribution:

```
p(kth occupied table) }\propto\mp@subsup{n}{k}{
p(next unoccupied table) }\alpha
```

where n_{k} is the number of people sitting at the table k

Chinese Restaurant Process

Properties:

1. CRP defines a distribution over clusterings (i.e. partitions) of the indices $1, \ldots, n$

- customer = index
- table = cluster

2. We write $z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)$ to denote a sequence of cluster indices drawn from a Chinese Restaurant Process
3. The CRP is an exchangeable process
4. Expected number of clusters given n customers
(i.e. observations) is $O(\alpha \log (n))$

- rich-get-richer effect on clusters: popular tables tend to get more crowded

5. Behavior of CRP with α :

- As α goes to 0 , the number of clusters goes to 1
- As α goes to $+\infty$, the number of clusters goes to n

CRP vs. DP

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out G

Properties of the DP

1. Base distribution is the "mean" of the DP:

$$
\mathbb{E}[G(A)]=H(A) \text { for any } A \subset \Theta
$$

2. Strength parameter is like "inverse variance"

$$
V[G(A)]=H(A)(1-H(A)) /(\alpha+1)
$$

3. Samples from a DP are discrete distributions (stick-breaking construction of $G \sim \operatorname{DP}(\alpha, H)$ makes this clear)
4. Posterior distribution of $G \sim \mathrm{DP}(\alpha, H)$ given samples $\theta_{l}, \ldots, \theta_{n}$ from G is a DP

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim \operatorname{DP}\left(\alpha+n, \frac{\alpha}{\alpha+n} H+\frac{n}{\alpha+n} \frac{\sum_{i=1}^{n} \delta_{\theta_{i}}}{n}\right)
$$

Exchangability

Question:

Answer:

Select All: Which of the following properties of an infinite sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ ensure that they are infinitely exchangeable?
A. For any pair of orderings $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $\left(j_{1}\right.$, $\left.\dot{j}_{2}, \ldots, \dot{j}_{n}\right)$ of the indices $(1, \ldots, n)$ the joint probability of the two orderings is the same
B. The joint distribution is invariant to permutation
C. The joint distribution of the first n random variables can be represented as a mixture
D. The random variables are independent and $4 / 3$ identically distributed

