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Reminders

• Homework 5: Variational Inference
– Out: Fri, Nov 4
– Due: Wed, Nov 16 at 11:59pm

• Homework 6: VAE + Structured SVM
– Out: Wed, Nov 16
– Due: Wed, Nov 30 at 11:59pm
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AUTOENCODERS
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Unsupervised Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
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� Idea: (Two Steps)
� Use supervised learning, but pick a better starting point
� Train each level of the model in a greedy way



Unsupervised Pre-training
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training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.
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Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)



Unsupervised Pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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Unsupervised Pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
Supervised fine-tuning
Backprop and update all 
parameters
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Deep Network Training 
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� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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VARIATIONAL AUTOENCODERS
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Why VAEs?
• Autoencoders:
– learn a low dimensional representation of the 

input, but hard to work with as a generative 
model

– one of the key limitations of autoencoders is 
that we have no way of sampling from them!

• Variational autoencoders (VAEs)
– by contrast learn a continuous latent space that 

is easy to sample from!
– can generate new data (e.g. images) by 

sampling from the learned generative model
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Variational Autoencoders
Graphical Model Perspective
• The DGM diagram shows that the VAE model is 

quite simple as a graphical model 
(ignoring the neural net details that give rise to 
x)

• Sampling from the model is easy:
– Consider a DGM where x = gɸ(z/10 + z/||z||)

(i.e. we don’t use parameters ɸ)
– Then we can draw samples of z and directly convert 

them to values x
• Key idea of VAE: define gɸ(z) as a neural net and 

learn ɸ from data
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Figure from Doersch (2016)
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Variational Autoencoders
Neural Network Perspective
• We can view a variational autoencoder (VAE) as an autoencoder 

consisting of two neural networks
• VAEs (as encoders) define two distributions:

– encoder: qθ(z | x)
– decoder: pɸ(x | z) 

• Parameters θ and ɸ are neural network parameters (i.e. θ are not the 
variational parameters)
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Variational Autoencoders
Graphical Model Perspective
• We can also view the VAE from the perspective of variational inference
• In this case we have two distributions:

– model: pɸ(z | x) 
– variational approximation: qλ=f(x; θ)(z | x)

• We have the same model parameters ɸ
• The variational parameters λ are a function of  NN parameters θ
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Variational Autoencoders

Whiteboard
– Variational Autoencoder = VAE
– VAE as a Probability Model
– Parameterizing the VAE with Neural Nets
– Variational EM for VAEs
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Reparameterization Trick
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Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to
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Figure from Doersch (2016)



VAE RESULTS
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VAEs for Image Generation
Kingma & Welling (2014)
• introduced VAEs
• applied to image generation
Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is a multivariate 

Gaussian with mean and 
variance computed by an 
MLP,  fully connected neural 
network with a single hidden 
layer with parameters ɸ

• qθ(z | x) is a multivariate 
Gaussian with diagonal 
covariance structure and with 
mean and variance computed 
by an MLP with parameters θ
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Figure from Kingma & Welling (2014)



VAEs for Image Generation
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Figure from Kingma & Welling (2014)



VAEs for Image Generation
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Figure from Kingma & Welling (2014)



VAEs for Image Generation
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Figure from Kingma & Welling (2014)



VAEs for Text Generation
Bowman et al. (2015)
• example of an application of 

VAEs to discrete data
• built on the sequence-to-

sequence framework:
– input is read in by an LSTM
– output is generated by an 

LSTM-LM

Model
• pɸ(z) ~ N(z; 0, I)
• pɸ(x | z) is an LSTM Language 

Model with parameters ɸ
• qθ(z | x) is a multivariate 

Gaussian with mean and 
variance computed by an 
LSTM with parameters θ
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Figure from Bowman et al. (2015)



VAEs for Text Generation
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Figure from Bowman et al. (2015)



VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous 

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample 

conditioned on it

31
Figure from van den Oord et al. (2018)



VQ-VAE
• Vector Quantized VAE (VQ-VAE) learns a continuous 

codebook, but the encoder outputs discrete codes
• Decoder takes a code and generates a sample 

conditioned on it
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Figure from van den Oord et al. (2018)

https://avdnoord.github.io/homepage/vqvae

Example: Generating Audio

https://avdnoord.github.io/homepage/vqvae


VQ-VAE
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Figure from Razavi et al. (2019)

• VQ-VAE-2 
extended the 
original idea 
by learning 
two levels 
(bottom and 
top) and a 
strong prior 
over the latent 
space

• Samples from 
this new 
model can be 
convincing 
even at high-
fidelity
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