10-418/10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Variational Autoencoders

Matt Gormley
Lecture 20
Nov. 14, 2022



Reminders

* Homework 5: Variational Inference
— Out: Fri, Nov 4
— Due: Wed, Nov 16 at 11:59pm

* Homework 6: VAE + Structured SVM

— Out: Wed, Nov 16
— Due: Wed, Nov 30 at 11:59pm




AUTOENCODERS



Unsupervised Pre-training

Idea: (Two Steps)
® Use supervised learning, but pick a better starting point

® Train each level of the model in a greedy way

1.  Unsupervised Pre-training
— Use unlabeled data

—  Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

. Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task



Unsupervised Pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

* \What else do we
observe?

* The input!

Output




Auto-Encoders

Unsupervised pre-
training of the first layer:

* What should it predict?

* \What else do we
observe?

* The input!

This topology defines an
Auto-encoder.




Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x

— Loss = || x - DECODER(ENCODER(x)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x., as both input and output.

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

8
Slide adapted from Raman Arora



Unsupervised Pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2.
Then fix its parameters.

— Train hidden layer n.
Then fix its parameters.




Unsupervised Pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. e
Then fix its parameters.

Hidden Layer

— Train hidden layer n.

Then fix its parameters. @ Q @
Input X2 X3




Unsupervised Pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. e
Then fix its parameters.

- s Hidden Layer @ @

— Train hidden layer n. A v

Then fix its parameters. -\
SORONCIERS




Unsupervised Pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hiddenlayer2. e iayer
Then fix its parameters.

Hidden Layer

— Train hidden layern.  rideniayer
Then fix its parameters.

Supervised fine-tuning
Backprop and update all "
parameters



Deep Network Training




Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
> 15 -
1.0 - T T T |
Shallow Net Idea #1 Idea #2 ldea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 14



Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
- I
1.0 - . | | L
Shallow Net Idea #1 Idea #2 ldea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 15



VARIATIONAL AUTOENCODERS



Why VAES?

e Autoencoders:

— learn a low dimensional representation of the
input, but hard to work with as a generative
model

— one of the key limitations of autoencoders is
that we have no way of sampling from them!

* Variational autoencoders (VAEs)

— by contrast learn a continuous latent space that
is easy to sample from!

— can generate new data (e.g. images) by
sampling from the learned generative model

17



Variational Autoencoders

Graphical Model Perspective
pgﬁ(xa Z) P P

.

z ~ Gaussian(0, 1)

Figure from Doersch (2016)

The DGM diagram shows that the VAE model is
quite simple as a graphical model

(ignoring the neural net details that give rise to
X)

Sampling from the model is easy:

— Consider a DGM where x = gy(z/10 + z/||2]|) + &
(i.e. we don’t use parameters ¢)

— Then we can draw samples of z and directly convert
them to values x
Key idea of VAE: define g4(z) as a neural net and
learn ¢ from data




Variational Autoencoders

Neural Network Perspective

* We can view a variational autoencoder (VAE) as an autoencoder
consisting of two neural networks

* VAEs (as encoders) define two distributions:
— encoder: gg(z | x)
— decoder: py(x | z)
* Parameters 0 and ¢ are neural network parameters (i.e. 8 are not the
variational parameters)

Py(x | 2) qo(Z | X)




Variational Autoencoders

Graphical Model Perspective
* We can also view the VAE from the perspective of variational inference
* Inthis case we have two distributions:
— model: py(z | x)
— variational approximation: q,_¢. 0)(z | X)
* We have the same model parameters ¢
* The variational parameters A are a function of NN parameters 0

Py(X, 2) q.(z | x)
ho

N
z ~ Gaussian(0, 1) A=f(x;0)




Variational Autoencoders

Whiteboard
— Variational Autoencoder = VAE
— VAE as a Probability Model
— Parameterizing the VAE with Neural Nets
— Variational EM for VAEs



Reparameterization Trick

KLIN (u(X), S(X)[INV(0, )]

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied

I
X O] X—/GP
A | 1
EI 7
1 | 1
Decoder HICLIN ((X), S(X)||N(0, 1)] Decoder
(P) L A A (P)
1 |
Sample z from N (u(X), 2(X))|,
I
I
 EEX)
I
Encoder : Encoder Sample € from N (0, I)
(@) I Q)
) | 1
X : X

only to the right network.

Figure from Doersch (2016)

22



VAE RESULTS



VAEs for Image Generation

Kingma & Welling (2014)
 introduced VAEs

Auto-Encoding Variational Bayes

* applied toimage generation Dicderik P Kingma —

Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
MOdel dpkingma@gmail.com welling.max@gmail.com

* p¢(z) -~ N(Z; O’ I) Abstract
: M : H rfi fficient inf d learning in directed probabilisti
° P ¢(X I Z) is @ multivariate cidals; itha resaris S COBNBONE IAEHEVARABIES with nFscia pousrioe

distributions, and large datasets? We introduce a stochastic variational inference

L] L]

G a u S S I a n W I t h m e a n a n d and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is

. two-fold. First, we show that a reparameterization of the variational lower bound

V a rl a n C e C O m p u t e d b y a n yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with

continuous latent variables per datapoint, posterior inference can be made espe-

M L P ) fu l Iy C O n n e Ct e d n e u ra l cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.

n e tW O rk W it h a S i n gl e h i d d e n Theoretical advantages are reflected in experimental results.

layer with parameters ¢

* ez | x) is a multivariate
Gaussian with diagonal
covariance structure and with
mean and variance computed
by an MLP with parameters 0

Figure from Kingma & Welling (2014)



VAEs for Image Generation

N

-100 train = 1000 N

-125 train_ 50000

_110 _130" -1

—  Wake-Sleep (train)
- = Wake-Sleep (test)
-  MCEM (train)

- = MCEM (test)

— AEVB (train)

- - AEVB (test)

=135

-140

-145

1 -150

Marginal log-likelihood
[ | [
= w ~
o o o

-160 .
0 10 20 30 40 50 60 0 10 20

# Training samples evaluated (millions)

-160

Figure 3: Comparison of AEVB to the wake-sleep algorithm and Monte Carlo EM, in terms of the
estimated marginal likelihood, for a different number of training points. Monte Carlo EM is not an
on-line algorithm, and (unlike AEVB and the wake-sleep method) can’t be applied efficiently for
the full MNIST dataset.

25
Figure from Kingma & Welling (2014)



VAEs for Image Generation
v O 4?&666&:&@0000000000000
Qaeboaoa22200000000000 2
424222222288565060000002
4a82222223355506006602
49a8222223333585886688522
qqqnazzzaa(g)o 552
999933333338 333355557
99999933333 333355577
r7999999%83 338858587577
7999999888833 84s8¢8¢8757
7999999¢888888846808F85/7
7999999888 8666V66s5s57
79999999886666@666’5‘!
7999999988666 0¢6 6 6 s5vs
79999999986666666¢¢7
799999993588 6C666¢6¢7
799999717173V 0 06¢C¢€¢€¢€4/
799997711 vy V0L 8T
Y9YYYYYYINYVV MM 00040417
777222233 v vyl L]
Z\, ' -
(a) Learned Frey Face manifold _ (b) Learned MNISq manifold 410

o]

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

Figure from Kingma & Welling (2014)

26



VAEs for Image Generation

Qrrxr~DOD-mAd>d
O rr NV~ oOHWUM
AP dH N A - ()
MY e DS
RN OPOAT~S
MNP NI NN
VEMT OO N
ONQO ~NH M e
NS TN
el e Xa i VA Kl il ol 3

WO-" AN\~
OMm=~NWNW>r YV ©
T OSSN Ow S
DA N0 N~
BN O -~
MNAHd OOV >
A SONCR I AN L N @)
M= o\
OO HINNYIST ~
NG~ 0

AN~ TwOraly
NN TN NYD e
O© =M~ o=
~ROYO~m NN
OQMmPeNTN N0
~oNT S e\
WS M~ mMmNY W
L SNnwTooI Y
-~ Mm o=
“LVNAY 9= JF I~

TFrrMVerMen —
=DV e TN
WM~ PDMI QYN
el B AR I L Y
rMamMOIng
(N on 00 (V) 009 =
N~ OMaT e NS0
weedadrhores
QO T o

(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
27

of latent space.
Figure from Kingma & Welling (2014)



VAESs for Text Generation

Bowman et al. (2015) Model
« example of an applicationof ~ * py(z) ~N(z; 0, 1)
VAEs to discrete data * py(x|2)is an LSTM Language
* built on the sequence-to- Model with parameters ¢
sequence framework: ° qe(z X) is a multivariate
— inputis read in by an LSTM Gaussian with mean and
— output is generated by an variance computed by an
LSTM-LM LSTM with parameters 0

RNNs work <EO0S>
t t t

Decoding Decoding Decoding
LST™M | LSTM — LSTM
Cell Cell Cell

f f t

<EOS> RNNs work

Figure 1: The core structure of our variational au-
toencoder language model. Words are represented

using a learned dictionary of embedding vectors.

28
Figure from Bowman et al. (2015)



VAESs for Text Generation

INPUT
MEAN
SAMP.
SAMP.
SAMP.

W N =

we looked out at the setting sun .
they were laughing at the same time .
ill see you in the early morning .

1 looked up at the blue sky .

it was down on the dance floor .

i went to the kitchen .

1 went to the kitchen .

1 went to my apartment .
i1 looked around the room .
1 turned back to the table .

how are you doing ?
what are you doing ?

“ are you sure ?

what are you doing ?
what are you doing ?

“ i want to talk to you .
“t want to be with you .
“ do n’t want to be with you .

»
»

»

i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .

it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
VAE space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

Figure from Bowman et al. (2015)

Table 7: Three sentences which were used as inputs to the VAE, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

29



VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

L4 \

3 eK
Embedding
Space

g

q(zlx) ; eae CNN
- | 2
5 1 -% || lesy
z (x) ~ q(z|]x
z,(x) z 2 z (x) ——— LX) ~ q(z|x)
Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point e;. The gradient V , L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

-

Figure from van den Oord et al. (2018)



VQ-VAE

* Vector Quantized VAE (VQ-VAE) learns a continuous
codebook, but the encoder outputs discrete codes

* Decoder takes a code and generates a sample
conditioned on it

Example: Generating Audio

Discrete
VQ latents

\
Encoder o \
Downsample 64x

Condition

’ WaveNet

a—

................

Sample

Figure from van den Oord et al. (2018)

32


https://avdnoord.github.io/homepage/vqvae

« VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Osynd

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and top levels, respectively. The decoder
reconstructs the image from the two latent maps.

Figure from Razavi et al. (2019)

(b) Multi-stage image generation. The top-level
PixelCNN prior is conditioned on the class label,
the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).

33



« VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

* Samples from
this new
model can be
convincing
even at high-
fidelity

Figure 4: Class conditional random samples. Classes from the top row are: 108 sea anemone, 109
. . brain coral, 114 slug, 11 goldfinch, 130 flamingo, 141 redshank, 154 Pekinese, 157 papillon, 97
Figure from Razavi et al. (2019) drake, and 28 spotted salamander



« VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

 Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)




« VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

 Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)




« VQ-VAE-2
extended the
original idea
by learning
two levels
(bottom and
top) and a
strong prior
over the latent
space

 Samples from
this new
model can be
convincing
even at high-
fidelity

Figure from Razavi et al.
(2019)




