10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Recurrent Neural Networks
(RNNs)
=
Module-based Automatic
Differentiation

Matt Gormley
Lecture 2
Aug. 31,2022

RECURRENT NEURAL NETWORKS

Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OIS,
Sample 4: ‘ ‘ ‘ ‘ ‘

Dataset for Supervised
Handwriting Recognition
Data: D = {z™ ymWN_

N JOXOROIOXOI JOROIOMNEE

ANGEHEEEEHN |-
B YoYoX JoYoroY MR

LA |CR——
" 90000000 -
IIIIEIEI =

Figures from (Chatzis & Demiris, 201

Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z\™, ym

QQQQQQQQQQ oy

Figures from (Jansen & Niyogi, 2013)

Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

®© 0 ® @ O !
& T

Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a

prediction task with variable length input/output?

®© 00 ® 0 O

} s
b

Time Series Data

Question 2: How could we incorporate context (e.g.
words to the left/right, or tags to ’;&1 left/right) into our
solution? < ol xr—] f

‘® @ @ 1

— a
O] "OL ¢ ® }-
Multiple Li-1 o Xi+1 Yi-1 Vi Yit1
Choice: A Y
: B v
Working left- - 7 ;
to-right,use | Y ¥ y v
features of... ¢ 7 7 7 7 'ﬁ
F VRV VN
IG v v v (v |/
H v v v v v (v)

Recurrent Neural Networks (RNNs)

inputs: x = (x1,x2, ..., xr),x; € 727
hidden units: h = (hq, ho, ..., hr),hi € RY
= (Y1, Y2, -, y7) i ERY/

outputs:
nonlinearityf_ H l € ig 9, tc'u / exu}

tz1

Definition of the RNN: /

hi = H (Wanxt + Whhht 1 + bn)
Yh— Whyht =+ Y

RT

<o R Hig\lk\

11

Recurrent Neural Networks (RNNs)

inputs: x = (z1,22,..., rr),x; € R
hidden units: h = (hq, ho, .. ., hr),h; € R’

outputs: y = (y1,¥2,...,yr),y; € R"
nonlinearity: H

N N N

N

Definition of the RNN:

he = H Wenxe + Whphi—1 + bp)
Yt — Whyht =+ by

D

i

a0 GO 4 b

This form of RNN is
called an
Elman Network

N N

Recurrent Neural Networks (RNNs)

inputs: x = (x1,x2,...,27),T; € RI
hidden units: h = (h1,hs,...,hr), h; € R’

outputs: y = (y1,92,...,yr),yi € R®
nonlinearity: H

Definition of the RNN:
hy = H (Wynxe + Whphe—1 + bp)
Yt — Whyht + by

13

A Recipe for

Background : :
& Machine Learning
1. Given training data: 3. Define goal:
{@i y;}i 3
i Yisi=i 6 = argmin)~ K(fo(:).)
2. Choose each of these:
— Decision function 4. Train with SGD:
) = fo (mz) (take small steps
oo\vkopposne the gradient)
— Loss function :o"
A \7 0 — 0 VU fo(a:).u.)
€69,9:) € R, S04, ke et
[\1\ Yo - \(TI [‘1 7

sion functioi

'S fe(fL‘z')

neVE(fo(xi), y;)

Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs:

nonlinearity:

i%rx

(‘1‘171'2, o o
(h17h2, “ ..

(Y1, Y2, -+, yr), yi € RE

Jax7),xz; € RT | Definition of the RNN:

h)7hi€RJ ht

.

B

—H (thxt + Whhht—l + bh)
yt = Whyhy + by

Recurrent Neural Networks (RNNs)

inputs: x = (x1,x2,...,27),T; € RI
hidden units: h = (h, Ao, ... hy) by € R7 | Pt = H (

OUtPUtS: Yy = (y17y27"'7yT)7yi ERK yt —
nonlinearity: H

Definition of the RNN:

xh%jt +{Whhglt—1 + bn)
he + b,

17

Background: Backprop through time

Recurrent neural
network:

BPTT:

1. Unroll the
computation
over time

7)
cangide
on & ,\9883

2. Run
backprop
through the
resulting feed-
forward
network

inputs:

hidden units

outputs

nonlinearity

. H a
Ly =
: H

Bidirectional RNN

ndt

(Y1, Y2, - -

x = (x1,29,...,27),2; € R!

7yT)7y'L' < RK

Recursive Definition:

— —
o= H (W, o+ Wyy b

t—1 + bﬁ)
— —
by =H (W, w0+ Wars b + by)

— —
yt=Wﬁ>yht—|—W<ﬁyht—|—by

inputs:

hidden units

outputs

nonlinearity

X =

%
: h a
Ly =
: H

\

(x17x27'°'7xT)7xi€RI N
S @ H(Wmﬁwt—l—Wﬁ I, 1+b7)

<_
oo € RF | () = 1 (W, + Wieof By +)

Bidirectional RNN

Recursive Definition:

— <—
yt:Wﬁyht+W<ﬁyht+by

- —_
-
.

é

20

Bidirectional RNN

Recursive Definition:

inputs: x = (x1,x2,...,27),T; e R! N
He=H (W, g+ Wiy

%
hidden units: h and ﬁ
o “
outputs: y = (y1,y2, . .%%T), y €RE | hi=H (Wxgaft + Weehppr + b%)

nonlinearityl: ‘H x gy = Wes ﬁt—l—W<— %t—l_by
hy hy

%
b1+ bﬁ)

21

Deep RNNs

: Recursive Definition:
inputs: x = (x1,22,...,27),%; € RI

outputs: y = (y1,%2,...,yr),ys € R | hf =H (Whn-1pnhy ™" + Whnpnhy_ | + b})
b S—

nonlinearity: H N
Yy = Wynyhy' + by

22
Figure from (Graves et al., 2013)

Deep Bidirectional RNNs

inputs: x = (x1,29,...,27),2; € R

outputs: y = (y1,¥2,--.,yr), ¥ € R"
nonlinearity: H

Figure from (Graves et al., 2013)

23

Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue

‘ Yi \ ‘ \j) \ (‘ Y1 \) ‘ Yr \
N\ N\ N\ N\
5 -8 - G50
N N\ N\ N\

—_—

Xl X2 cee XT_l XT

Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

* Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

4 _‘\.’
Qutputs |
&7
Hdden Lo P o A 7N ~ ™
Layer ’ -’ .k _/. -"_ _,/' -'-.__ " ¥ ' .“--._ s
i A i i A

Inputs !. ' i - 2] [k. 41 [T
= - 9
f

Time 1 2 3 1 “ 6

Figure from (Graves, 2012)

25

Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates” determine the propagation of information
and can choose to “remember” or “forget” information

DG IDE

Cover Q* o0 Q* ‘*O‘* Q

@b bbb

Time

Figure from (Graves, 2012)

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Lt Lt

N\

Lt —p

/7

it = 0 (Waixe + Whihy—1 + Weicp—1 + b;)
fi=0Wgrxe + Whhi—1 + Wepci—1 + by)
cy = frci—1 + g tanh (Wiexy + Wichi—1 + bc)
o = 0 (Waoxs + Whohi—1 + Weoer + by)

hy = o tanh(c;)
Figure from (Graves et al., 2013)

28

Long Short-Term Memory (LSTM)

n

Deep Bidirectional LSTM (DBLSTM)

Figure from (Graves et al., 2013)

Deep Bidirectional LSTM (DBLSTM)

How important is this
particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

RNN Training Tricks

* Deep Learning models tend to consist largely of
matrix multiplications

* Training tricks:
—I mini-batching ﬁlith masking
Metric DyC++ DyPy Chainer | DyC++ Seq Theano TF

RNNLM (MB=1) words/sec | [190 [190 114 494 189 [2981
RNNLM (MB=4) words/sec 830 825 295 1510 567 473
RNNLM (MB=16) words/sec 1820 1880 794 2400 1100 _606
(

RNNLM (MB=64) words/sec] 2440 l 2470 1340 2820 1260| 636 !

=
— sorting into buckets of similar-length sequences, so
that mini-batches have same length sentences

— truncated BPTT, when sequences are too long, divide
sequences into chunks and use the final vector of the
previous chunk as the initial vector for the next chunk
(but don’t backprop from next chunk to previous chunk)

Table from Neubig et al. (2017)

RNN Summary

* RNNSs

— Applicable to tasks such as sequence labeling,
speech recognition, machine translation, etc.

— Able to learn context features for time series
data

— Vanishing gradients are still a problem - but
LSTM units can help

* Other Resources
— Christopher Olah’s blog post on LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

MODULE-BASED AUTOMATIC
DIFFERENTIATION

Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1.

Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direc;g;l acyclic graph, where each variable is a node (i.e. the “computation
grap

Visit each node in topological order.

For variable u, with inputs v,,..., vy

a. Computeu, =g(v,..., Vy)

b. Store the result at the node

Backward Computation (Version A)

1.
2l

Initialize dy/dy = 1.

Visit each node v; in reverse topological order.

Let u,,..., uy denote all the nodes with v;as an input

Assuming that y = h(u) = h(u,,..., uy)

and u = g(v) or equivalently u; = g(v,,..., Vj,..., vy) for all i

a. We already know dy/du; for all i

b. Compute dy/dv; as below (Choice of algorithm ensures computing

(dUi/dV]‘) is easy5 dy M dy du;

%j -~ i1 dui d’Uj

Return partial derivatives dy/du;for all variables

Backpropagation

Automatic Differentiation — Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
directed acyclic graph, where each variable is a node (i.e. the “computation

graph”)
2. Visit each node in topological order.
For variable u, with inputs v,,..., vy

a. Computeu,=g(v,..., Vy)
b. Store the result at the node

Backward Computation (Version B)
1. Initialize all partial derivatives dy/du; to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.
For variable u; = g(v,,..., vy)
a. We already know dy/du,
b. Increment dy/dv; by (dy/du;)(du;/dv))
(Choice of algorithm ensures computing (du;/dv;) is easy)

Return partial derivatives dy/du;for all variables

Training ~ Backpropagation

Why is the backpropagation algorithm efficient?

1. Reuses computation from the forward pass in
the backward pass

2. Reuses partial derivatives throughout the
backward pass (but only if the algorithm reuses
shared computation in the forward pass)

(

sion functioi

= fo(x;

‘unction

-V fo(xi), y;)

Backpropagation:
Abstract Picture

(F) Loss
J =S yilog(yk)
?

Output

[(E) Output (softmax)
Y = exp(bg)
leil exp(bl)

Hidden Layer

J

?

[(D) Output (linear)
b = Y7o Brjzy Yk

?

Forward Backward [(C) Hidden (nonlinear)
CJ=—Flogy 6. gg=-y=+¥ | zj = o(a;), Vj
.y = softmax(b) 7. b = gg (diag(y) —y3")) f
b= Bz 8. g5 = glz’ (B) Hidden (g]\efr)

a; = i=0 XjiLi, V.]
8z — /Bng : ; -
. z=o(a) 10. 8a=8,0z0 (1 —2)
. (A) Input
. a=0oX 11. 8o = 8aX Given z;, V1

Backpropagation:
Procedural Method

Algorithm 1 Forward Computation Drawbacks of

1: procedure NNFORWARD(Training example (x, y), Params o, 3) Procedural Method

2 a=oxX 1. Hardtoreuse/

3 z=o0(a) adapt for other

4 b=pz models

A S_Oft:,mlzx(})) 2. (Possibly) harder to
. :Oby,ectg(;’a 2 b9, J) make individual

’ o AL steps more efficient

8 return intermediate quantities o

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Params «, 3,
Intermediates o)

2: Place intermAediate quantities x,a, z,b,y, J in o in scope only that there is an
R ey~ o in
T e
5 88 = Ep7 code)

6 g.=08 g

7¢ ga:gz@ZQ(l_z)

8: ga = gaxT

9: return parameter gradients g, g3

Module-based AutoDiff

Module-based automatic differentiation (AD / Autodiff) is a
technique that has long been used to develop libraries for
deep learning

* Dynamic neural network packages allow a specification

of t mputation graph dynamically at runtime
PyTorch
— Torc

— DyNet
* Static neural network packages require a static

specification o raph which is
subsequently.compiled into co

— TensorFlow
— Aesara (and Theano)

— (These libraries are also module-based, but herein by “module-
based AD” we mean the dynamic approach)

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff

* Key ldea:
— componentize the computation of the neural-network into layers
— each layer consolidates multiple in the
computatlon graph (a subset of them) into one vector-valued node
(aka. g
. Each modutsi&apable of two actions:
1. Forward computation of output b = [by,...,bg] given input
9% a = [ay,...,a,] via some differentiable function f. That is

b = f(a).

T3, s] giventhe gradient of output gy, = ViJ = [5-, ..., 2],

lw"u" ‘ 2. Backward computation of the gradient of theinputg, = VaJ =

da1

where J is the ﬁnal real- vaIued output of the entire computa

=B
1=1 db da;

foralli {1,...,A}.

42

Module-based AutoDiff

Dimensions: input a € R4, output b € R?, gradient

of output g, = V,.J € R4, and gradient of input g, = Linear Module The linear layer has two inputs: a vec-

VyJ € RB, tor a and parameters w € RF*4. The output b
is not used by LINEARBACKWARD, but we passitin

for consistency of form.

Sigmoid Module The sigmoid layer has only one input

vectora. Below o is the sigmoid applied element- 1: procedure LINEARFORWARD(a, w)
wise, and ® is element-wise multiplication s.t. u® 2 b =wa
v = [uyvy, ..., UpU)- 3 return b
1: procedure SIGMOIDFORWARD(a) 4: procedure LINEARBACKWARD(a, w, b, gp)
» b=oc(a) 5 8w =gba
3 return b 6 ga = wlgp
4: procedure SIGMOIDBACKWARD(a, b, g,) 7 return g, ga
5 ga=8bObO(1-b)
6 return g, Cross-Entropy Module The cross-entropy layer has twoin-
puts: a gold one-hot vector a and a predicted proba-
Softmax Module The softmaxlayer has only oneinput bility distribution a. It’s output b € R is a scalar. Be-
vector a. For any vector v € R”, we have that low = is element-wise division. The output b is not
diag(v) returns a D x D diagonal matrix whose used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entriesare vy, v, . .., vp and whose non- for consistency of form.

diagonal entries are zero. : procedure CROSSENTROPYFORWARD(a, a)

)
1: procedure SOFTMAXFORWARD(a) 2 b= —alloga

2 b = softmax(a) 3 return b

3 return b 4: procedure CROSSENTROPYBACKWARD(a, a, b, g;,)
4: procedure SOFTMAXBACKWARD(a, b, g,) 5 ga = —gr(a=+a)

5 ga = gi, (diag(b) — bb™) 6 return gg

6 return g,

Module-based AutoDiff

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «,

B)

C

a = LINEARFORWARD(X, ot Jt——

Z = %&l&fORWARD(a) G

b = LINEARFORWARD(z, 3)%——

y = SOFTMAXFORWARD(b) 4———

J = CROSSENTROPYFORWARD(Y, y) v=—
o = object(x,a,z,b,y, J)

return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters

L Bl oy

«,

3, Intermediates o)
Place intermediate quantities x,a,z, b, y, J in o in scope

gJ:g—jzl > Base case

8y = CROSSENTROPYBACKWARD(Y, Y, J, 97) ¢—

21, = SOFTMAXBACKWARD(b, ¥, gy)ﬁ-

g3, 8z :E EINEARBACKWARD(Z, b,gp) =—

ga = SIEN ACKWARD(a, z, g,) <—

€a,8x = LINEARBACKWARD(X, a,8a) 4+ > Wediscard gy
return parameter gradients g, g3

Advantages of
Module-based
AutoDiff

1.

Easy to reuse/
adapt for other
models

Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

Easier to find
bugs because we
can run a finite-
difference check
on each layer
separately

Module-based AutoDiff (oop version)

Object-Oriented Implementation:
— Let each module be an object

— Then allow the control flow dictate the creation
of the computation graph

— No longer need to implement NNBackward(+),
just follow the computation graph in reverse
topological order

Module-based AutoDiff (oop version)

Object-Oriented Implementation:

— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(+), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=gp Obo (1 -b)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8y, (diag(b) — bb")
return g,

(o BN (o) NNV 2 B S UV] N =\

N O v AW N A

class Linear (Module)

method forward(a, w)
b = wa
return b
method backward(a, w, b, gp)
Bw = gbaT
8a = ngb

L return g,,,La

class CrossEntropy (Module)

method forward(a, a)
b=—alloga
return b

method backward(a, a, b, g)
ga = —gr(a~+a)
return g,

Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
-~ sig_layer = Sigmoid ()
lin2_layer = Linear()
soft_layer = Softmax() -
ce_layer = CrossEntropy ()

O 00 N O U1 A~ W N A

method forward(Tensor x, Tensor y, Tensor o, Tensor 3)

a =linl_layer}apply
—_L,)

7z =sig_ layer. Lpply_fwd
b =linl_layer|.apply fw
y =soft_ layey.apply_fwd[b)
J =ce_layer.
return J.ou

—_
o

=
—_

=\ N - =
v b~ W N

=\
(o))

- =
(- BN

method backward(Tensor x, Tensor y, Tensor oo, Tensor 3)

—tape bwd()

return linl layer.in gradients[1] , lin2_ layer.in gradients[1]

N -
o

Module-based AutoDiff (oop version)

global tape = stack()
class Module:

1

2

3

4

5 method init ()
6 |ess out_tensor = null
7

8

9

“lesor out_gradient = 1

method aBEIZ fwd (List in modules) @ }«-j. L7}
10 in_ tensors = [x.out_tensor, for x in in__ m ules]
11 ~3Y-out_ tensor = forward (1n_tensors) /\i

12 J tape.push (self) s L/l
13 return self
——
4 el leas
15 meﬁ bwd () :
16 in_ gradientS)= backward (in_tensors , out_ tensor , out_ gradient)
17 i—a—t ..., len(in__modules) :
18 in__modules[i] .out gradient¥= in gradients[i]
19 return self

20
21 function tape bwd():
2 while len(tape) > 0
23 m = tape.pop()
24 m.apply_ bwd() 48

PyTorch

* Q: Why don’t we call linear.forward() in PyTorch?

* A:This is just syntactic sugar. There’s a special method in Python
call that allows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
linear(x) <+—

is equivalent to running:
linear. call (x)

which in PyTorch is (nearly) the same as running:
linear.forward(x)

This is because PyTorch defines every Module’s call method
to be something like this:
def call (self):
self.forward()

PyTorch

* Q: Why don’t we pass in the parameters to a
PyTorch Module?

* A: This just makes your code cleaner.

In PyTorch, you store the parameters inside
the Module and “mark” them as parameters
that should contribute to the eventual
gradient used by an optimizer

