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Reminders

Lecture on Friday, Recitation on Monday

Exam Rubrics and Exam Viewings

Homework 4: MCMC

— Out: Mon, Oct 24

— Due: Fri, Nov 3 at 11:59pm
Homework 5: Variational Inference
— Out: Fri, Nov 3

— Due: Wed, Nov 16 at 11:59pm




MEAN FIELD WITH GRADIENT
ASCENT



Mean Field V.I. Overview

Goal: estimate p,(z | x)
we assume this is intractable to compute exactly

Idea: approximate with another distribution g¢(z) = po(z | X)
for each x

Mean Field: assume qg(z) =[] 9«(z; ) ? ? ?
i.e., we decompose over variables

other choices for the decomposition of qg(z) give rise to
“structured mean field”

—

Optimization Problem: pick the g that minimizes KL(q || p)
G(z) = argmin KL(g(z)||p(z | x))

q(z)€Q 'equivalent '
O = aregn(_l)in KL(QO (Z)Hpa (Z | x))
€

Optimization Algorithm: pick your favorite {coordinate
descent, gradient descent, etc.}




Mean Field V.I. Overview

Goal: estimate p,(z | x)
assume this is intractable to compute exactly

we
ea: approximate with another distribution qg(z) = pa(z | X)

for each x

Mean Field: assume qg(z) =[] 9«(z; ) ? ? ?
i.e., we decompose over variables

other choices for the decomposition of qg(z) give rise to
“structured mean field”

—

Optimization Problem: pick the g that minimizes KL(q || p)
0 = argmin KL(gp(2) || pa(z | X)) = argmax ELBO(gy)
0 0

ELBO(qs) = Ly (2) log pa(x,2)] — Ly (2) log q9(z)]

ELBO(q9) = Eyy(2) 108 Pa(z | X)] — Egy(2) [log qo(2)]
Optimization Algorithm: pick your favorite {coordinate
ascent, gradient ascent, etc.}




Mean Field V.I. Overview

Goal: estimate p,(z | x)
we assume this is intractable to compute exactly

Idea: approximate with another distribution g¢(z) = po(z | X)
for each x

Mean Field: assume qg(z) =[] 9«(z; ) ? ? ?
i.e., we decompose over variables

other choices for the decomposition of qg(z) give rise to
“structured mean field”

—

Optimization Problem: pick the g that minimizes KL(q || p)
0 = argmin KL(gp(2) || pa(z | X)) = argmax ELBO(gy)
0 0

ELBO(qs) = Eq,(2) 108 pa(x,2)] — Eq,(2) 108 ¢o(2)]
ELBO(q9) = Eyy () [108 (2 | %)] — oy (a) [log 4o (2)]
Optimization Algorithm: gradient ascent




Mean Field w/Gradient Ascent

* Note: GA does local maximization, but ELBO
is generally non-convex

* Algorithm:
— Initialize ©

— while not converged:

0

Z
A\

0 + vYV9ELBO(qp)

 Gradient of ELBO:

VELBO(gs)

VQEC]@ [logpoz (:IJ, Z)] - VGEQQ [log QG(Z)]

easy b/c of a simple ¢y



BACKGROUND: BLOCK
COORDINATE DESCENT



Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* |dea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.




Block Coordinate Descent

* Goal: minimize some objective (with 2 blocks)
a*, [ = argrilin](c?, E)
ap
* ldea: iteratively pick one block of variables (& or E)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.

while not converged:

a = argmin ](c?, E)
a

B = argmin J(a, E)
p



Block Coordinate Descent

* Goal: minimize some objective (with T blocks)

Qa, ...,y = argmin---argmin J(aq,...,ar)
a1 aT

* |dea: iteratively pick one block of variables (e.g. the
vector a,) and minimize the objective w.r.t. that
block, keeping the other(s) fixed.

while not converged:
fort=1,....T:

a; = argmin J(ag, . . ., ap)
ot



COORDINATE ASCENT
VARIATIONAL INFERENCE (CAVI)



Mean Field V.I. Overview

Goal: estimate p,(z | x)

we assume this is intractable to compute exactly
ea: approximate with another distribution qg(z) = pa(z | X)

for each x

—

. ZT

Mean Field: assume qg(z) =[] 9«(z; )

other choices for the decomposition of qg(z) give rise to
“structured mean field”

Optimization Problem: pick the g that minimizes KL(q || p)
0 = argmin KL(gp(2) || pa(z | X)) = argmax ELBO(gy)
0 0

ELBO(gs) = Eyy(z) [l0g Pa(X,2)] — Eyy(2) 10g qo(2)]
ELBO(Q@) — Eq(;(z) [logﬁa(z ’ X)] - qu(z) [log QG(Z)]
Optimization Algorithm: coordinate ascent
i.e. pick the best g,(z;) based on the other { q.(z,) }..: being fixed

Choosing coordinate descent here yields the Coordinate
Ascent Variational Inference (CAVI) algorithm 5




CAVI Algorithm

Coordinate Ascent Variational Inference (CAVI)
— here we assume a mean field approximation
— application of coordinate ascent to maximization of ELBO
— converges to a local optimum of the nonconvex ELBO objective

1: procedure CAVI(p,,)

2: Let go(z) = Hle qt(2t) > Mean field approx.
3: while ELBO(qgy) has not converged do

4: fort € {1,...,T} do > For each variable
5: Set q;(2¢) ox exp(Ey,_, |logpa (2t | 2, 7)])

6: while keeping all {qs(-) } s2+ fixed

7: Compute ELBO(qy) = Eqy(2) log p, (x,2)] — Eqy(2) llog qo(z)]
8: return gy




CAVI Algorit’

Similar to Belief Propagation: Like Gibbs Sampling, we

can be viewed as message _ (CAVI compute a variable specific

Coordinate ) :
passing where we update our quantity at each step

~ here * variable beliefs based on  't°" conditioned on the Markov
— 3PPl what neighbors think it~ mization boundary
— conv should be iconvex /
1: procedure CAVI(p.) ‘
2: Let go(z) = H;:F:1 qt(2t) > Mean field approx.
3: while ELBO( ¢y ) has not converged do
4: fort € {1)...,T}do > For each variable
5: Set Qt(zt) X eXp(Eqﬁt [lnga (Zt | Z—ty Z)])
6: while keeping all ) } s fixed
7 Compute ELBO(qp) = Ey, (2) o(X,2)] — Eyy () |log qo(z)]
8: return gy

Unlike Gibbs Sampling:

* we compute an entire distribution
(instead of sampling a value)

* we condition on variable marginals
(instead of on variable assignment)




Variational Inference

Whiteboard

— Computing marginals from a trained mean field
approximation



EXAMPLE: CAVI FOR DISCRETE
FACTOR GRAPH



CAVI for a Discrete Factor Graph
Pao(2 H% Zc, X tl;[lqt %)

:
2079 ¢

1: procedure CAVI(p,,)

= Let qp(z) = Hthl qe(2¢) > Mean field approx.
3: while ELBO(¢y) has not converged do

4: fort € {1,...,T} do > For each variable
5: Set q¢(z) ox exp(Ey_, [logpa (2t | 2-t,7)]) <

6: while keeping all {gs(+) } s2+ fixed

7: Compute ELBO(qp) = Ey, (2) 10g pa (%, 2)] — Eyy(2) [log gs(2)]

8: return gy

Gt(2t) o< exp Z H qs(zs) log H Ve(Ze)

ZMB(z4) SEMB(2¢) cEN (z¢)

efficiently computed assuming number of neighbors N(z,) is not too large



CAVI as Message Passing

|
: I |0g¢12(z1, Zz)

Case 1: One Neighbor

q.(z,) dx(2,)
p | exp(0.08 +0.16)/Z Ov1 2 v |0.8
d exp(2.4 + 0)/Z «—e P njo.2
d 3 O
n exp(0.8 + 0.2)/Z ol 1l

O ¢

CAVI message passing differs from BP in several ways:

* the beliefs are normalized (i.e. beliefs = marginals)

* no messages to factors (i.e. all messages are directly to a variable)
* matrix-vector product is exponentiated and normalized

Gt(2t) o< exp Z H qs(zs) log H Ve(Ze)

ZMB(z4) SEMB(2¢) cEN (z¢)



p 0.8+0.16
d| 24+0
n 8+0.2

V| n
p |0.1] 8
d 3|0
n|1|1

Sum-Product Belief Propagatm
Factor Message

v 8
n 0.2




CAVI as Message Passing

Case 2: Two Neighbors

| lo 2., Z
g¢12( 1 2) qz(zz)
p [0.08+0.2 L r81 v |0.8
d 2.4+0 — p 01 n |0.2
d 3|0
0.8 + 0.2 1

n
n| 1
d+(24) m
exp(0.28%3)/Z 7

O |

‘1 Z,
exp(2.4%4)/Z ‘o \
exp(1*1)/Z \< OgY15(2r7;) (313(2

d
p 142 ) 4 d 0-5
1.5 + 2.5 5 0-5
n | 0.5+0.5 »
(,

Gt(2t) o< exp Z H qs(zs) log H Ve(Ze)

ZMB(zy) SEMB(z¢)

23



Case 2: Two Neighbors

l logwu(zv Z,)

CAVI as Message Passing

dx(2,)
p |0.08 +0.2 A I81 v 0.8
d| 24+0 | 0 p |0 n |o0.2
d| 3 0
n | o0.8+0.2
n|1|1
q:(z,) m
p | exp(0.28*%3)/zZ 7, . Z,
d | exp(2.4*4)/Z . \
exp(1*1)/Z \ loglPB\‘v " q3(2
p 142 ) a|d | a |0-5|
d|15+25 \ For a pairwise MRF, we have the following
n | 0.5+0.5 simplified the update rules:

,Us—>t Zt ZQS Zs logws t(Z37Zt)



Variational Inference

Whiteboard

— Computing the CAVI update
e Multinomial full conditionals

— Example: two variable factor graph
* Joint distribution
* Mean Field Variational Inference
* Gibbs Sampling






