
Markov Chains
+

Bayesian Inference for
Parameter Estimation

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 13

Oct. 12, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders
• Homework 2: Learning to Search for RNNs
– Programming + Empirical Questions
• Due: Mon, Oct 24 at 9:00am

– Policy: 65 points or more on the autograder
gives 100% autograder credit

• Homework 3: General Graph CRF Module
– Out: Thu, Sep 29
– Due: Mon, Oct 10 at 11:59pm

• Practice Problems 1
• Exam 1: Fri, Oct 14, in-class

2

METROPOLIS-HASTINGS

5

Metropolis-Hastings

Whiteboard
– Metropolis Algorithm
– Metropolis-Hastings Algorithm

6

Random Walk Behavior of M-H
• For Metropolis-Hastings, a generic proposal

distribution is:

• If ϵ is large, many rejections
• If ϵ is small, slow mixing

7

�max

�min

⇢✏

p(x)

q(x|x(t))

Figure from Bishop (2006)

q(x|x(t)) = N (0, ✏2)

Random Walk Behavior of M-H
• For Rejection Sampling, the accepted samples

are are independent
• But for Metropolis-Hastings, the samples are

correlated
• Question: How long must we wait to get

effectively independent samples?

8

�max

�min

⇢✏

p(x)

q(x|x(t))

A: independent
states in the M-H
random walk are
separated by
roughly
steps

(�max/�min)
2

Figure from Bishop (2006)

Gibbs Sampling as M-H
• Gibbs Sampling is a special case of Metropolis-Hastings

10

MCMC PRACTICAL ISSUES

11

Practical Issues
• Question: Is it better to move along one dimension

or many?

• Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time
– Q: Given a sequence of 1D proposals, compare rate of

movement for one-at-a-time vs. concatenation.

• Answer: For Gibbs Sampling, sometimes better to
sample a block of variables at a time
– Q: When is it tractable to sample a block of variables?

12

Blocked Gibbs Sampling
Goal:
Draw samples from a distribution y1, y2, …, yJ ∼ p(y1, y2, …, yJ)

Algorithm:
– Initialize y1, y2, …, yJ to arbitrary values
– For t = 1, 2, …:

for b in B: where b ⊆ {1, …, J}
yb ∼ p(yb | y¬b)

– Example: B = set of factors in a factor graph

Why use blocks?
– As in Gibbs Sampler, this will eventually yield samples from

p(y1, y2, …, yJ)
– Might improve mixing time (i.e. “eventually” will be a bit

sooner)

13

Practical Issues
• Question: How do we assess convergence of

the Markov chain?
• Answer: It’s not easy!
– Compare statistics of multiple independent chains
– Ex: Compare log-likelihoods

14

of MCMC steps

Lo
g-

lik
el

ih
oo

d

of MCMC steps

Lo
g-

lik
el

ih
oo

d

Chain 1 Chain 2

Practical Issues
• Question: How do we assess convergence of

the Markov chain?
• Answer: It’s not easy!
– Compare statistics of multiple independent chains
– Ex: Compare log-likelihoods

15

of MCMC steps

Lo
g-

lik
el

ih
oo

d

of MCMC steps

Lo
g-

lik
el

ih
oo

d

Chain 1 Chain 2

Practical Issues
• Question: Is one long Markov chain better than many

short ones?
• Note: typical to discard initial samples (aka. “burn-

in”) since the chain might not yet have mixed

16

• Answer: Often a balance is
best:
– Compared to one long chain:

More independent samples
– Compared to many small

chains: Less samples
discarded for burn-in

– We can still parallelize
– Allows us to assess mixing

by comparing chains

MCMC Summary

• Pros
– Very general purpose
– Often easy to implement
– Good theoretical guarantees as

• Cons
– Lots of tunable parameters / design choices
– Can be quite slow to converge
– Difficult to tell whether it's working

17

Slide adapted from Daphe Koller

t ! 1

MARKOV CHAINS
Definitions and Theoretical Justification for MCMC

18

Markov Chains

19

we’re focused
on first order

only

Markov Chains

Whiteboard
– Invariant distribution
– Equilibrium distribution
– Sufficient conditions for MCMC
– Markov chain as a WFSM

20

Detailed Balance

Detailed balance means that, for each pair of
states x and x’,

arriving at x then x’ and arriving at x’ then x
are equiprobable.

21

x

x'

x

x'

S(x0 x)p(x) = S(x x0)p(x0)

MCMC Summary

• Pros
– Very general purpose
– Often easy to implement
– Good theoretical guarantees as

• Cons
– Lots of tunable parameters / design choices
– Can be quite slow to converge
– Difficult to tell whether it's working

23

Slide adapted from Daphe Koller

t ! 1

MCMC (AUXILIARY VARIABLE
METHODS)

Slice Sampling, Hamiltonian Monte Carlo

24

Extra Slides

25

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Slide from Ian Murray

Extra Slides

Slice Sampling
• Motivation:
– Want samples from p(x) and don’t know the

normalizer Z
– Choosing a proposal at the correct scale is difficult

• Properties:
– Similar to Gibbs Sampling: one-dimensional

transitions in the state space
– Similar to Rejection Sampling: (asymptotically) draws

samples from the region under the curve

– An MCMC method with an adaptive proposal

26

p̃(x)

Extra Slides

27

Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u

0 otherwise
= “Uniform on the slice”

Slide from Ian Murray

This is just an
auxiliary-variable
Gibbs Sampler!

Problem: Sampling
from the conditional

p(x | u) might be
infeasible.

Extra Slides

Slice Sampling

28

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

376 29 — Monte Carlo Methods

1 2

3a,3b,3c 3d,3e

5,6 8

5,6,7

Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29

Extra Slides

Slice Sampling

29

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

376 29 — Monte Carlo Methods

1 2

3a,3b,3c 3d,3e

5,6 8

5,6,7

Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29

Extra Slides

Slice Sampling

30

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

376 29 — Monte Carlo Methods

1 2

3a,3b,3c 3d,3e

5,6 8

5,6,7

Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29

Extra Slides

Slice Sampling

31

A
lg

or
ith

m
:

Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u

Extra Slides

Slice Sampling

32

Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u

A
lg

or
ith

m
:

Extra Slides

Slice Sampling

33

Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u

A
lg

or
ith

m
:

Extra Slides

Slice Sampling

Multivariate Distributions
– Resample each variable xi one-at-a-time (just like

Gibbs Sampling)
– Does not require sampling from

– Only need to evaluate a quantity proportional to
the conditional

34

p(xi|{xj}j 6=i)

p(xi|{xj}j 6=i) / p̃(xi|{xj}j 6=i)

Extra Slides

Hamiltonian Monte Carlo

• Suppose we have a distribution of the form:

• We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information

• If we can evaluate it, the gradient tells us
where to look for high-probability regions!

35

p(x) = exp{�E(x)}/Z

rxE(x)

x 2 RN

p 2 RN

where

Extra Slides

Background: Hamiltonian Dynamics
Applications:
– Following the motion of atoms in a fluid through

time
– Integrating the motion of a solar system over time
– Considering the evolution of a galaxy (i.e. the

motion of its stars)
– “molecular dynamics”
– “N-body simulations”

Properties:
– Total energy of the system H(x,p) stays constant
– Dynamics are reversible

36

Important for
detailed balance

Extra Slides

Background: Hamiltonian Dynamics

37

Let x 2 RN

p 2 RN

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

be a position

be a momentum

Potential energy:

Kinetic energy:

Total energy:

Hamiltonian function

Given a starting position x(1) and a starting momentum p(1) we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.

Extra Slides

Background: Hamiltonian Dynamics
Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

38

for ⌧ in 1 . . . L:

p = p� ✏

2
rxE(x)

x = x+ ✏p

p = p� ✏

2
rxE(x)

Extra Slides

Background: Hamiltonian Dynamics

39

120 Handbook of Markov Chain Monte Carlo

at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.

(a)

M
om

en
tu

m
 (p

)

Euler’s method, stepsize 0.3

−2

−1

0

1

2

−2

−1

0

1

2
(b) Modified Euler’s method, stepsize 0.3

M
om

en
tu

m
 (p

)

M
om

en
tu

m
 (p

)

−2

−1

0

1

2

−2

−1

0

1

2

M
om

en
tu

m
 (p

)

(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Figure from Neal (2011)

Extra Slides

Since p(x,p) is
separable…

Hamiltonian Monte Carlo

40

Figure from Neal (2011)

p(x) = exp{�E(x)}/Z x 2 RN

p 2 RN

where

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

Goal:

Define:

Note:

p(x,p) = exp{�H(x,p)}/ZH

= exp{�E(x} exp{�K(p)}/ZH

)
X

p

p(x,p) = exp{�E(x}/Z

)
X

x

p(x,p) = exp{�K(x}/ZK

Target dist.

Gaussian

Preliminaries

Extra Slides

Whiteboard

• Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)

41

Extra Slides

Hamiltonian Monte Carlo

42

128 Handbook of Markov Chain Monte Carlo

Position coordinates

−2 −1 0 1 2
−2

−1

0

1

2

−2

−1

0

1

2
Momentum coordinates

−2 −1 0 1 2

Value of Hamiltonian

0 5 10 15 2520
2.2

2.3

2.4

2.5

2.6

FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50, −1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.

Figure from Neal (2011)

Extra Slides

M-H vs. HMC

43

MCMC Using Hamiltonian Dynamics 129

Random−walk Metropolis

−2 −1 0 1 2

−2

−1

0

1

2

−2

−1

0

1

2

Hamiltonian Monte Carlo

−2 −1 0 1 2

FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.

Random−walk Metropolis

Fi
rst

 p
os

iti
on

 co
or

di
na

te

0 50 100 150 200

−2

−3

−1

0

1

2

3

Fi
rst

 p
os

iti
on

 co
or

di
na

te

−2

−3

−1

0

1

2

3
Hamiltonian Monte Carlo

0 50 100 150 200

FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.

Figure from Neal (2011)

Extra Slides

SUPERVISED TRAINING WITH
GIBBS SAMPLING

44

Motivation: Graphical Models

• Most recent advancements in NLP
come from better text input
representation from modern neural
architectures

• Graphical models provide expressive
modeling of the output label space

%(57��2XUV�

7UP 7UP 7UP

7UP 7UP 7UP

���

���

�7� 7� 71���

�(� (� �(1���

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

models pre-trained on ImageNet (Deng et al.,
2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. We first cover the model ar-
chitecture and the input representation for BERT.
We then introduce the pre-training tasks, the core
innovation in this paper, in Section 3.3. The
pre-training procedures, and fine-tuning proce-
dures are detailed in Section 3.4 and 3.5, respec-
tively. Finally, the differences between BERT and
OpenAI GPT are discussed in Section 3.6.

3.1 Model Architecture

BERT’s model architecture is a multi-layer bidi-
rectional Transformer encoder based on the orig-
inal implementation described in Vaswani et al.
(2017) and released in the tensor2tensor li-
brary.2 Because the use of Transformers has be-
come ubiquitous recently and our implementation
is effectively identical to the original, we will
omit an exhaustive background description of the
model architecture and refer readers to Vaswani
et al. (2017) as well as excellent guides such as
“The Annotated Transformer.”3

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.
In all cases we set the feed-forward/filter size to
be 4H , i.e., 3072 for the H = 768 and 4096 for
the H = 1024. We primarily report results on two
model sizes:

• BERTBASE: L=12, H=768, A=12, Total Pa-
rameters=110M

2https://github.com/tensorflow/tensor2tensor
3http://nlp.seas.harvard.edu/2018/04/03/attention.html

• BERTLARGE: L=24, H=1024, A=16, Total
Parameters=340M

BERTBASE was chosen to have an identical
model size as OpenAI GPT for comparison pur-
poses. Critically, however, the BERT Transformer
uses bidirectional self-attention, while the GPT
Transformer uses constrained self-attention where
every token can only attend to context to its left.
We note that in the literature the bidirectional
Transformer is often referred to as a “Transformer
encoder” while the left-context-only version is re-
ferred to as a “Transformer decoder” since it can
be used for text generation. The comparisons be-
tween BERT, OpenAI GPT and ELMo are shown
visually in Figure 1.

3.2 Input Representation

Our input representation is able to unambiguously
represent both a single text sentence or a pair of
text sentences (e.g., [Question, Answer]) in one
token sequence.4 For a given token, its input rep-
resentation is constructed by summing the cor-
responding token, segment and position embed-
dings. A visual representation of our input rep-
resentation is given in Figure 2.

The specifics are:

• We use WordPiece embeddings (Wu et al.,
2016) with a 30,000 token vocabulary. We
denote split word pieces with ##.

• We use learned positional embeddings with
supported sequence lengths up to 512 tokens.

4Throughout this work, a “sentence” can be an arbitrary
span of contiguous text, rather than an actual linguistic sen-
tence. A “sequence” refers to the input token sequence to
BERT, which may be a single sentence or two sentences
packed together.

Figure from Devlin et al. (2018)Y1 ψ2 Y2 ψ3 Y3
… …

Yt-1 ψ2 Yt ψ3 Yt+1
… …

Hong Kong Open

the Open starts

45

Background: Linear-chain CRF

• Prior state-of-the-art approaches
for sequence labeling have
adopted linear-chain CRFs
– Model bi-gram dependencies of

adjacent labels
– Exact inference can be done in

polynomial time with forward-
backward and Viterbi

• We are interested in more
complex and expressive CRFs
– Exact inference may no longer be

affordable

46

Y1 ψ12 Y2 ψ23 Y3… …

Hong Kong Open

ψ1 ψ2 ψ3

……
Neural linear-chain CRF seen in e.g. Lample
et al., 2016; Yang et al., 2016

Skip-chain CRFs for NER

47

Y1 ψ12 Y2 ψ23 Y3… …

Hong Kong Open

ψ1 ψ2 ψ3

……

• Different occurrences of the same token often have the same label
• Skip-chains: long-range factors connecting recurring tokens

Yt-1 ψt-1,t Yt …

the Open

ψt-1 ψt

…

ψ3,t

Inference for Neural CRFs
• A neural CRF defines a conditional distribution:

• Training time inference: compute the partition
function

• Inference time: find the output with the highest
probability

48

Inference for Neural CRFs

49

• Approximate inference: Gibbs sampling with annealing
• Gibbs sampling decoding is a local search algorithm for the maxima

Y1 ψ2 Y2 ψ3 Y3
… …

Yt-1 ψ2 Yt ψ3 Yt+1
… …

Hong Kong Open

the Open starts

O

O

B-LOCB-MISC

B-PER I-ORGB-LOC

B-MISC

B-MISCI-LOC

O I-MISC

B-MISC I-MISC I-MISC

O

Computational Efficiency

• Decompose the scoring function for computational efficiency

50

YtY1 ψ12 Y2 ψ23 Y3… Yt-1 ψt-1,t… …

ψ3,t

ψ1 ψ2 ψ3 ψt-1 ψt

• Neural net component:
• Expensive to compute, but only depends on the input
• Computes only once before taking any samples

Computational Efficiency

• Decompose the scoring function for computational efficiency

51

• Graphical model component:
• Depends on both input and output, but cheap to compute
• Local computation to take each sample

YtY1 ψ12 Y2 ψ23 Y3… Yt-1 ψt-1,t… …

ψ3,t

ψ1 ψ2 ψ3 ψt-1 ψt

?

Training for Gibbs Sampling

• Vanilla MLE only enforces a high score on the ground truth
output
– Extreme worst case: uniform low scores for all incorrect outputs

• An ideal scoring function should be able to differentiate
between incorrect outputs, to guide the local search

52

Neural SampleRank (NSR)

• Training objective: for each pair of outputs, the one with higher
quality (i.e. closer to ground truth) also gets higher score

53

Metric (e.g.
negative hamming
distance)

Neural SampleRank (NSR)

54

• The loss is accumulated across a sequence of samples during training
• A full inference is not needed
• Compared to SampleRank (Wick et al., 2011), the loss can be easily used to

train neural net scoring factors

Results: NER (CoNLL-02/03)

Model Learning English F1 German F1 Dutch F1

ELMo (Peters et al., 2018) MLE 92.22 ---- ----

BERT (Devlin et al., 2018) MLE 92.80 ---- ----

Flair (Akbik er al., 2019) MLE 93.18 88.27 90.44

Our baseline Flair MLE 92.58 88.30 90.63

+ skip-chain CRF NSR 92.56 87.97 91.44*

55

English German Dutch

token 204,567 207,484 202,931

document 946 553 287

skip-chain 29,309 31,683 44,309

• Models with contextualized embeddings

Results: NER (CoNLL-02/03)

56

Model Learning English F1

BiLSTM-CRF (Lample et al., 2016) MLE 90.94

BiGRU-CRF (Yang et al., 2016) MLE 91.20

Our baseline BiLSTM-CRF MLE 91.01

+ skip-chain CRF NSR 91.68*

Model Learning German F1

BiLSTM-CRF (Lample et al., 2016) MLE 78.76

BiLSTM (Riedl and Padó, 2018) MLE 82.99

Our baseline BiLSTM-CRF MLE 83.55

+ skip-chain CRF NSR 84.50*

• Models without contextualized embeddings

Results: Qualitative Analysis

57

…Nasser Hussain and Peter Such gave them
a firm grip on their match…

…that into a 37-run advantage but
off-spinner Such had scuttled their…

… …

……

SUPERVISED LEARNING FOR
BAYES NETS

59

Recipe for Gradient-based Learning
1. Write down the objective

function
2. Compute the partial

derivatives of the
objective (i.e. gradient,
and maybe Hessian)

3. Feed objective function
and derivatives into black
box

4. Retrieve optimal
parameters from black
box

60

Optimization

• This is how we
trained MRFs and
CRFs

• The same approach
also applies to
Bayesian Networks

• We just compute the
gradient of the Bayes
Net’s log-likelihood
of the data

But sometimes
there’s an even easier

way…

SUPERVISED LEARNING FOR
BAYES NETS (BY “COUNTING”)

61

Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down
at θMLE

62

Machine Learning

63

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

Machine Learning

64

Data
Model

Learning

Inference

(Inference is usually
called as a subroutine

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5

Learning Fully Observed BNs

65

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

66

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and
marginal distributions for a Bayes Net?

67

X1

X3X2

X4 X5

Learning Fully Observed BNs

68

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed
Bayesian Network is
equivalent to learning five
(small / simple) independent
networks from the same data

Learning Fully Observed BNs

69

X1

X3X2

X4 X5

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax
✓1

log p(X1|✓1)

✓⇤2 = argmax
✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax
✓3

log p(X3|✓3)

✓⇤4 = argmax
✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax
✓5

log p(X5|X3, ✓5)

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these
conditional and marginal

distributions for a Bayes Net?

Example: Tornado Alarms
1. Imagine that

you work at the
911 call center
in Dallas

2. You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you
conclude?

70

Learning Fully Observed BNs

72

BAYESIAN INFERENCE FOR NAÏVE
BAYES

76

Beta-Bernoulli Model

• Beta Distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1

0

1

2

3

4

f
(¡

|Æ
,Ø

)

0 0.2 0.4 0.6 0.8 1
¡

Æ = 0.1,Ø = 0.9
Æ = 0.5,Ø = 0.5
Æ = 1.0,Ø = 1.0
Æ = 5.0,Ø = 5.0
Æ = 10.0,Ø = 5.0

Beta-Bernoulli Model

• Generative Process

• Example corpus (heads/tails)

H T T H H T T H H H

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

Beta-Bernoulli

⇤ ⇥ Beta(�,⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Bernoulli(⇤) [draw word]

Dirichlet-Multinomial

⌅ ⇥ Dir(⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Mult(1,⌅) [draw word]

Dirichlet-Multinomial mixture model

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

⇤ ⇥ Dir(�) [draw distribution over topics]
For each document m ⇤ {1, . . . ,M}

zm ⇥ Mult(1,⇤) [draw topic assignment]
For each word n ⇤ {1, . . . , Nm}

xmn ⇥ Mult(1,⌅zmi
) [draw word]

LDA

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

For each document m ⇤ {1, . . . ,M}
⇤m ⇥ Dir(�) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1,⇤m) [draw topic assignment]
xmn ⇥ ⌅zmi

[draw word]

1

Dirichlet-Multinomial Model

• Dirichlet Distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

f(⌅|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⌅cx�V
v=1

⇥C
c=1 ⌅cv

(1)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⇥c over the V words from a Dirichlet
parametrized by �. Next, we generate a K ⇥ C binary matrix using the finite IBP prior. We select
the probability ⇤c of each component c being on (bkc = 1) from a Beta distribution parametrized

1

0

1

2

3

4

f
(¡

|Æ
,Ø

)

0 0.2 0.4 0.6 0.8 1
¡

Æ = 0.1,Ø = 0.9
Æ = 0.5,Ø = 0.5
Æ = 1.0,Ø = 1.0
Æ = 5.0,Ø = 5.0
Æ = 10.0,Ø = 5.0

Dirichlet-Multinomial Model

• Dirichlet Distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

2 SCTM

A Product of Experts (PoE) [1] model p(x|⇥1, . . . ,⇥C) =
QC

c=1 ⌅cxPV
v=1

QC
c=1 ⌅cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1) [draw probability of component c]

For each topic k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⇥1, . . . ,⇥C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇤ {1, . . . , K}:
�k ⇥ Dir(�) [draw distribution over words]

For each document m ⇤ {1, . . . , M}
✓m ⇥ Dir(↵) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1, ✓m) [draw topic]
xmn ⇥ �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇤ {1, . . . , C}: [columns]

⇤c ⇥ Beta(�
C , 1)

For each class k ⇤ {1, . . . , K}: [rows]
bkc ⇥ Bernoulli(⇤c)

1

0
0.2

0.4
0.6

0.8
1

¡2

0

0.25

0.5

0.75

1

¡
1

1.5

2

2.5

3

p(~¡|~Æ)

0
0.2

0.4
0.6

0.8
1

¡2

0

0.25

0.5

0.75

1

¡
1

0

5

10

15

p(~¡|~Æ)

Dirichlet-Multinomial Model

• Generative Process

• Example corpus

the he is the and the she she is is

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

Beta-Bernoulli

⇤ ⇥ Beta(�,⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Bernoulli(⇤) [draw word]

Dirichlet-Multinomial

⌅ ⇥ Dir(⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Mult(1,⌅) [draw word]

Dirichlet-Multinomial mixture model

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

⇤ ⇥ Dir(�) [draw distribution over topics]
For each document m ⇤ {1, . . . ,M}

zm ⇥ Mult(1,⇤) [draw topic assignment]
For each word n ⇤ {1, . . . , Nm}

xmn ⇥ Mult(1,⌅zmi
) [draw word]

LDA

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

For each document m ⇤ {1, . . . ,M}
⇤m ⇥ Dir(�) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1,⇤m) [draw topic assignment]
xmn ⇥ ⌅zmi

[draw word]

1

Dirichlet-Multinomial Model
The Dirichlet is conjugate
to the Multinomial

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

Beta-Bernoulli

⇤ ⇥ Beta(�,⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Bernoulli(⇤) [draw word]

Dirichlet-Multinomial

⌅ ⇥ Dir(⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Mult(1,⌅) [draw word]

Dirichlet-Multinomial conjugacy

• The posterior of ⇤ is p(⇤|X) = p(X|⇤)p(⇤)
P (X)

• Define the count vector n such that nt denotes the number of
times word t appeared

• Then the posterior is also a Dirichlet distribution:
p(⇤|X) ⇥ Dir(⇥ + n)

Dirichlet-Multinomial mixture model

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

⇤ ⇥ Dir(�) [draw distribution over topics]
For each document m ⇤ {1, . . . ,M}

zm ⇥ Mult(1,⇤) [draw topic assignment]
For each word n ⇤ {1, . . . , Nm}

xmn ⇥ Mult(1,⌅zmi
) [draw word]

LDA

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation
Address
email

1 Distributions

Beta

f(⇤|�,⇥) =
1

B(�,⇥)
x��1(1� x)⇥�1

Dirichlet

p(⌅⇤|�) =
1

B(�)

K⇤

k=1

⇤�k�1
k where B(�) =

⇥K
k=1 �(�k)

�(
�K

k=1 �k)
(1)

Beta-Bernoulli

⇤ ⇥ Beta(�,⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Bernoulli(⇤) [draw word]

Dirichlet-Multinomial

⌅ ⇥ Dir(⇥) [draw distribution over words]
For each word n ⇤ {1, . . . , N}

xn ⇥ Mult(1,⌅) [draw word]

Dirichlet-Multinomial mixture model

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

⇤ ⇥ Dir(�) [draw distribution over topics]
For each document m ⇤ {1, . . . ,M}

zm ⇥ Mult(1,⇤) [draw topic assignment]
For each word n ⇤ {1, . . . , Nm}

xmn ⇥ Mult(1,⌅zmi
) [draw word]

LDA

For each topic k ⇤ {1, . . . ,K}:
⌅k ⇥ Dir(⇥) [draw distribution over words]

For each document m ⇤ {1, . . . ,M}
⇤m ⇥ Dir(�) [draw distribution over topics]
For each word n ⇤ {1, . . . , Nm}

zmn ⇥ Mult(1,⇤m) [draw topic assignment]
xmn ⇥ ⌅zmi

[draw word]

1

Dirichlet-Multinomial Mixture Model

• Generative Process

• Example corpus

the he is

x11 x12 x13

the and the

x21 x22 x23

she she is is

x31 x32 x33 x34

Document 1 Document 2 Document 3

Figure from Wallach, JHU 2011, slides

Dirichlet-Multinomial Mixture Model

• Generative Process

• Example corpus

the he is

x11 x12 x13

the and the

x21 x22 x23

she she is is

x31 x32 x33 x34

Document 1 Document 2 Document 3

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Shared Components Topic Models

Anonymous Author(s)
Affiliation

Address

email

1 Distributions

Beta

f(�|↵,�) = 1

B(↵,�)
x↵�1(1� x)��1

Dirichlet

p(~�|↵) =
1

B(↵)

KY

k=1

�↵k�1
k where B(↵) =

QK
k=1 �(↵k)

�(
PK

k=1 ↵k)
(1)

Beta-Bernoulli

� ⇠ Beta(↵,�) [draw distribution over words]

For each word n 2 {1, . . . , N}
xn ⇠ Bernoulli(�) [draw word]

Dirichlet-Multinomial

� ⇠ Dir(�) [draw distribution over words]

For each word n 2 {1, . . . , N}
xn ⇠ Mult(1,�) [draw word]

Dirichlet-Multinomial conjugacy

• The posterior of � is p(�|X) = p(X|�)p(�)
P (X)

• Define the count vector n such that nt denotes the number of

times word t appeared

• Then the posterior is also a Dirichlet distribution:

p(�|X) ⇠ Dir(� + n)

Dirichlet-Multinomial mixture model

For each topic k 2 {1, . . . ,K}:

�k ⇠ Dir(�) [draw distribution over words]

✓ ⇠ Dir(↵) [draw distribution over topics]

For each document m 2 {1, . . . ,M}
zm ⇠ Mult(1,✓) [draw topic assignment]
For each word n 2 {1, . . . , Nm}

xmn ⇠ Mult(1,�zm) [draw word]

LDA

1

Bayesian Inference for Naïve Bayes

Whiteboard:
– Naïve Bayes is not Bayesian
– What if we observed both words and topics?
– Dirichlet-Multinomial in the fully observed

setting is just Naïve Bayes
– Three ways of estimating parameters:

1. MLE for Naïve Bayes
2. MAP estimation for Naïve Bayes
3. Bayesian parameter estimation for Naïve Bayes

87

