

10-418/10-618 Machine Learning for Structured Data

Machine Learning Department School of Computer Science Carnegie Mellon University

Markov Chains

+

Bayesian Inference for Parameter Estimation

Matt Gormley Lecture 13 Oct. 12, 2022

Reminders

- Homework 2: Learning to Search for RNNs
 - Programming + Empirical Questions
 - Due: Mon, Oct 24 at 9:00am
 - Policy: 65 points or more on the autograder gives 100% autograder credit
- Homework 3: General Graph CRF Module
 - Out: Thu, Sep 29
 - Due: Mon, Oct 10 at 11:59pm
- Practice Problems 1
- Exam 1: Fri, Oct 14, in-class

METROPOLIS-HASTINGS

Metropolis-Hastings

Whiteboard

- Metropolis Algorithm
- Metropolis-Hastings Algorithm

Random Walk Behavior of M-H

- For Metropolis-Hastings, a generic proposal distribution is: $q(x|x^{(t)}) = \mathcal{N}(0,\epsilon^2)$
- If ϵ is large, many rejections
- If ϵ is small, slow mixing

Random Walk Behavior of M-H

- For Rejection Sampling, the accepted samples are are independent
- But for Metropolis-Hastings, the samples are correlated
- Question: How long must we wait to get effectively independent samples?

A: independent states in the M-H random walk are separated by roughly $(\sigma_{\text{max}}/\sigma_{\text{min}})^2$ steps

Gibbs Sampling as M-H

Gibbs Sampling is a special case of Metropolis-Hastings

Let
$$q(\vec{x}|\vec{x}(t)) \triangleq \vec{x}_{i} \sim p(x_{i}|\vec{x}_{\tau i}^{(t)})$$
 where in this $(1,...,1)$

$$A(\vec{x} \leftarrow \vec{x}^{(t)}) = \min(1, \frac{\tilde{p}(\vec{x})}{\tilde{p}(\vec{x}^{(t)})} \frac{q(\vec{x}^{(t)}|\vec{x})}{\tilde{q}(\vec{x}^{(t)}|\vec{x}_{\tau i})})$$

$$= \min(1, \frac{p(\vec{x})}{\tilde{p}(\vec{x}^{(t)})} \frac{p(x_{i}^{(t)}|\vec{x}_{\tau i})}{\tilde{p}(x_{i}^{(t)}|\vec{x}_{\tau i})})$$

$$= \min(1, \frac{p(\vec{x}^{(t)}|\vec{x}_{\tau i}^{(t)})}{\tilde{p}(x_{i}^{(t)}|\vec{x}_{\tau i}^{(t)})}$$

$$= \min(1, 1)$$

$$= \min(1, 1)$$

MCMC PRACTICAL ISSUES

- Question: Is it better to move along one dimension or many?
- Answer: For Metropolis-Hasings, it is sometimes better to sample one dimension at a time
 - Q: Given a sequence of 1D proposals, compare rate of movement for one-at-a-time vs. concatenation.
- Answer: For Gibbs Sampling, sometimes better to sample a block of variables at a time
 - Q: When is it tractable to sample a block of variables?

Blocked Gibbs Sampling

Goal:

Draw samples from a distribution $y_1, y_2, ..., y_J \sim p(y_1, y_2, ..., y_J)$

Algorithm:

```
- Initialize y_1, y_2, ..., y_J to arbitrary values
```

```
| 1, 2, ...:

| 1, 2, ...:

| for b in B: | where b \subseteq \{1, ..., J\}

| y_b \sim p(y_b \mid y_{-b})
- For t = 1, 2, ...:
                          y_b \sim p(y_b | y_{\neg b})
```

Example: B = set of factors in a factor graph

Why use blocks?

- As in Gibbs Sampler, this will eventually yield samples from $p(y_1, y_2, ..., y_1)$
- Might improve mixing time (i.e. "eventually" will be a bit sooner)

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods

- Question: Is one long Markov chain better than many short ones?
- Note: typical to discard initial samples (aka. "burn-in") since the chain might not yet have mixed

MCMC Summary

Pros

- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \to \infty$

Cons

- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

Markov Chains

• a **Markov chain** is a random process \hookrightarrow gives a series of random variables

$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(t)}, \mathbf{x}^{(t+1)}$$

first order Markov chain:

$$p(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)},\ldots,\mathbf{x}^{(1)}) = p(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})$$

we're focused on first order only
$$p(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)},\dots,\mathbf{x}^{(1)}) = p(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)},\mathbf{x}^{(t-2)})$$

transition probabilities:

$$R_t(\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)}) \triangleq p(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})$$

• homogeneous Markov chain: $R_t \triangleq R$, i.e. the transition probabilities are the same for all t

Markov Chains

Whiteboard

- Invariant distribution
- Equilibrium distribution
- Sufficient conditions for MCMC
- Markov chain as a WFSM

Detailed Balance

$$S(x' \leftarrow x)p(x) = S(x \leftarrow x')p(x')$$

Detailed balance means that, for each pair of states x and x',

arriving at x then x' and arriving at x' then x

MCMC Summary

Pros

- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \to \infty$

Cons

- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

Extra Slides

Slice Sampling, Hamiltonian Monte Carlo

MCMC (AUXILIARY VARIABLE METHODS)

Auxiliary variables

The point of MCMC is to marginalize out variables, but one can introduce more variables:

$$\int f(x)P(x) dx = \int f(x)P(x,v) dx dv$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x, v \sim P(x,v)$$

We might want to do this if

- ullet P(x|v) and P(v|x) are simple
- \bullet P(x,v) is otherwise easier to navigate

Slice Sampling

Extra Slides

Motivation:

- Want **samples** from p(x) and don't know the normalizer Z
- Choosing a proposal at the correct scale is difficult

Properties:

- Similar to Gibbs Sampling: one-dimensional transitions in the state space
- Similar to Rejection Sampling: (asymptotically) draws samples from the region under the curve

$$\tilde{p}(x)$$

An MCMC method with an adaptive proposal

Slice sampling idea

Extra Slides

Sample point uniformly under curve $\tilde{P}(x) \propto P(x)$

Problem: Sampling from the conditional $p(x \mid u)$ might be infeasible.

$$p(u|x) = \mathsf{Uniform}[0, \tilde{P}(x)]$$

$$p(x|u) \propto \begin{cases} 1 & \tilde{P}(x) \ge u \\ 0 & \text{otherwise} \end{cases} = \text{"Uniform on the slice"}$$

Algorithm:

Slice Sampling

Extra Slides

Goal: sample (x, u) given $(u^{(t)}, x^{(t)})$.

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing $x^{(t)}$.

Expand until endpoints are "outside" region under curve.

Part 2: Sample x (Shrinking)

Draw x from within the interval (x_l, x_r) , then accept or shrink.

Slice Sampling

Extra Slides

```
Goal: sample (x, u) given (u^{(t)}, x^{(t)}).

u \sim \text{Uniform}(0, p(x^{(t)}))

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing x^{(t)}.

r \sim \text{Uniform}(u, w)

(x_l, x_r) = (x^{(t)} - r, x^{(t)} + w - r)

Expand until endpoints are "outside" region under curve.

while (\tilde{p}(x_l) > u) \{x_l = x_l - w\}

while (\tilde{p}(x_r) > u) \{x_r = x_r + w\}

Part 2: Sample x (Shrinking)
```

Draw x from within the interval (x_l, x_r) , then accept or shrink.

Slice Sampling

Extra Slides

```
Goal: sample (x, u) given (u^{(t)}, x^{(t)}).
u \sim \text{Uniform}(0, p(x^{(t)}))
Part 1: Stepping Out
  Sample interval (x_l, x_r) enclosing x^{(t)}.
     r \sim \text{Uniform}(u, w)
     (x_l, x_r) = (x^{(t)} - r, x^{(t)} + w - r)
  Expand until endpoints are "outside" region under curve.
     while (\tilde{p}(x_l) > u) \{ x_l = x_l - w \}
     while (\tilde{p}(x_r) > u) \{x_r = x_r + w\}
Part 2: Sample x (Shrinking)
while(true) {
  Draw x from within the interval (x_l, x_r), then accept or shrink.
     x \sim \text{Uniform}(x_l, x_r)
     if(\tilde{p}(x) > u)\{break\}
     else if(x > x^{(t)}) \{x_r = x\}
     else\{x_I = x\}
x^{(t+1)} = x, \ u^{(t+1)} = u
```

Extra Slides

Slice Sampling

Multivariate Distributions

- Resample each variable x_i one-at-a-time (just like Gibbs Sampling)
- Does not require sampling from

$$p(x_i|\{x_j\}_{j\neq i})$$

 Only need to evaluate a quantity proportional to the conditional

$$p(x_i|\{x_j\}_{j\neq i}) \propto \tilde{p}(x_i|\{x_j\}_{j\neq i})$$

Hamiltonian Monte Can Extra Slides

Suppose we have a distribution of the form:

$$p(oldsymbol{x}) = \exp\{-E(oldsymbol{x})\}/Z$$
 where $oldsymbol{x} \in \mathcal{R}^N$

• We could use random-walk M-H to draw samples, but it seems a shame to discard gradient information $\nabla_{\boldsymbol{x}} E(\boldsymbol{x})$

 If we can evaluate it, the gradient tells us where to look for high-probability regions!

Applications:

- Following the motion of atoms in a fluid through time
- Integrating the motion of a solar system over time
- Considering the evolution of a galaxy (i.e. the motion of its stars)
- "molecular dynamics"
- "N-body simulations"

Properties:

- Total energy of the system H(x,p) stays constant
- Dynamics are reversible

Important for detailed balance

Let
$$oldsymbol{x} \in \mathcal{R}^N$$
 be a position

$$oldsymbol{p} \in \mathcal{R}^N$$
 be a momentum

Potential energy: $E({m x})$

Kinetic energy: $K(\boldsymbol{p}) = \boldsymbol{p}^T \boldsymbol{p}/2$

Total energy: $H(\boldsymbol{x},\boldsymbol{p}) = E(\boldsymbol{x}) + K(\boldsymbol{p})$

Hamiltonian function

Given a starting position $x^{(l)}$ and a starting momentum $p^{(l)}$ we can simulate the Hamiltonian dynamics of the system via:

- Euler's method
- 2. Leapfrog method
- 3. etc.

Parameters to tune:

- 1. Step size, ϵ
- 2. Number of iterations, L

Leapfrog Algorithm:

for τ in $1 \dots L$:

$$\boldsymbol{p} = \boldsymbol{p} - \frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})$$

$$x = x + \epsilon p$$

$$\boldsymbol{p} = \boldsymbol{p} - \frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})$$

from Neal (2011)

Hamiltonian Monte Can

Extra Slides

<u>Preliminaries</u>

Goal:

$$p(\boldsymbol{x}) = \exp\{-E(\boldsymbol{x})\}/Z$$

where $oldsymbol{x} \in \mathcal{R}^N$

Define:

$$K(\mathbf{p}) = \mathbf{p}^T \mathbf{p}/2$$
 $H(\mathbf{x}, \mathbf{p}) = E(\mathbf{x}) + K(\mathbf{p})$
 $p(\mathbf{x}, \mathbf{p}) = \exp\{-H(\mathbf{x}, \mathbf{p})\}/Z_H$
 $= \exp\{-E(\mathbf{x})\} \exp\{-K(\mathbf{p})\}/Z_H$

Note:

Since p(x,p) is separable...

$$\Rightarrow \sum_{m p} p(m x,m p) = \exp\{-E(m x\}/Z$$
 Target dist. $\Rightarrow \sum_{m p} p(m x,m p) = \exp\{-K(m x\}/Z_K$ Gaussian

Whiteboard

Extra Slides

 Hamiltonian Monte Carlo algorithm (aka. Hybrid Monte Carlo)

Hamiltonian Monte Cane Extra Slides

from Neal (2011)

M-H vs. HMC

Extra Slides

SUPERVISED TRAINING WITH GIBBS SAMPLING

Motivation: Graphical Models

- Most recent advancements in NLP come from better text input representation from modern neural architectures
- Graphical models provide expressive modeling of the output label space

Background: Linear-chain CRF

- Prior state-of-the-art approaches for sequence labeling have adopted linear-chain CRFs
 - Model bi-gram dependencies of adjacent labels
 - Exact inference can be done in polynomial time with forwardbackward and Viterbi
- We are interested in more complex and expressive CRFs
 - Exact inference may no longer be affordable

Neural linear-chain CRF seen in e.g. Lample et al., 2016; Yang et al., 2016

Skip-chain CRFs for NER

- Different occurrences of the same token often have the same label
- Skip-chains: long-range factors connecting recurring tokens

Inference for Neural CRFs

A neural CRF defines a conditional distribution:

$$p(y|x;\Theta) = \frac{\exp(s(x,y;\Theta))}{\sum_{y'\in\mathcal{Y}(x)} \exp(s(x,y';\Theta))}$$

- Training time inference: compute the partition function
- Inference time: find the output with the highest probability

$$\hat{y} = \underset{y \in \mathcal{Y}(x)}{\arg \max} s(x, y; \Theta)$$

Inference for Neural CRFs

Letermote analy for BP.

- Approximate inference: Gibbs sampling with annealing
- Gibbs sampling decoding is a local search algorithm for the maxima

Computational Efficiency

- Decompose the scoring function for computational efficiency
- Neural net component:
 - Expensive to compute, but only depends on the input

 $s(x, y; \Theta) = s(x, y, z; \theta_G)$

Computational Efficiency

- Decompose the scoring function for computational efficiency
- Graphical model component:
 - Depends on both input and output, but cheap to compute $z=f(x; heta_N)$
 - Local computation to take each sample

$$s(x, y; \Theta) = s(x, y, z; \theta_G)$$

Training for Gibbs Sampling

- Vanilla MLE only enforces a high score on the ground truth output
 - Extreme worst case: uniform low scores for all incorrect outputs
- An ideal scoring function should be able to differentiate between incorrect outputs, to guide the local search

Neural SampleRank (NSR)

 Training objective: for each pair of outputs, the one with higher quality (i.e. closer to ground truth) also gets higher score

Neural SampleRank (NSR)

- The loss is accumulated across a sequence of samples during training
- A full inference is not needed
- Compared to SampleRank (Wick et al., 2011), the loss can be easily used to train neural net scoring factors

Results: NER (CoNLL-02/03)

Models with contextualized embeddings

Model	Learning	English F1	German F1	Dutch F1
ELMo (Peters et al., 2018)	MLE	92.22		
BERT (Devlin et al., 2018)	MLE	92.80		
Flair (Akbik er al., 2019)	MLE	93.18	88.27	90.44
Our baseline Flair	MLE	92.58	88.30	90.63
+ skip-chain CRF	NSR	92.56	87.97	91.44*

	English	German	Dutch
# token	204,567	207,484	202,931
# document	946	553	287
# skip-chain	29,309	31,683	44,309

Results: NER (CoNLL-02/03)

Models without contextualized embeddings

Model	Learning	English F1
BiLSTM-CRF (Lample et al., 2016)	MLE	90.94
BiGRU-CRF (Yang et al., 2016)	MLE	91.20
Our baseline BiLSTM-CRF	MLE	91.01
+ skip-chain CRF	NSR	91.68*

Model	Learning	German F1
BiLSTM-CRF (Lample et al., 2016)	MLE	78.76
BiLSTM (Riedl and Padó, 2018)	MLE	82.99
Our baseline BiLSTM-CRF	MLE	83.55
+ skip-chain CRF	NSR	84.50*

Results: Qualitative Analysis

SUPERVISED LEARNING FOR BAYES NETS

Recipe for Gradient-based Learning

- Write down the objective function
- 2. Compute the partial derivatives of the objective (i.e. gradient, and maybe Hessian)
- Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

- This is how we trained MRFs and CRFs
 - The same approach also applies to Bayesian Networks
 - We just compute the gradient of the Bayes Net's log-likelihood of the data

But sometimes () there's an even easier way...

SUPERVISED LEARNING FOR BAYES NETS (BY "COUNTING")

Recipe for Closed-form MLE

- 1. Assume data was generated i.i.d. from some model (i.e. write the generative story) $x^{(i)} \sim p(x|\theta)$
- 2. Write log-likelihood

$$\ell(\boldsymbol{\theta}) = \log p(\mathbf{x}^{(1)}|\boldsymbol{\theta}) + \dots + \log p(\mathbf{x}^{(N)}|\boldsymbol{\theta})$$

3. Compute partial derivatives (i.e. gradient)

$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_1} = \dots$$
$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_2} = \dots$$
$$\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_M} = \dots$$

4. Set derivatives to zero and solve for θ

$$\partial \ell(\theta)/\partial \theta_{\rm m} = {\rm o \ for \ all \ m} \in \{1, ..., M\}$$

 $\theta^{\rm MLE} = {\rm solution \ to \ system \ of \ M \ equations \ and \ M \ variables}$

5. Compute the second derivative and check that $\ell(\theta)$ is concave down at θ^{MLE}

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

Machine Learning

$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

How do we learn these conditional and marginal distributions for a Bayes Net?

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data

How do we **learn** these conditional and marginal distributions for a Bayes Net?

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \log p(X_1, X_2, X_3, X_4, X_5)$$

$$= \underset{\theta}{\operatorname{argmax}} \log p(X_5 | X_3, \theta_5) + \log p(X_4 | X_2, X_3, \theta_4)$$

$$+ \log p(X_3 | \theta_3) + \log p(X_2 | X_1, \theta_2)$$

$$+ \log p(X_1 | \theta_1)$$

$$egin{aligned} heta_1^* &= rgmax \log p(X_1| heta_1) \ heta_2^* &= rgmax \log p(X_2|X_1, heta_2) \ heta_3^* &= rgmax \log p(X_3| heta_3) \ heta_4^* &= rgmax \log p(X_4|X_2,X_3, heta_4) \ heta_5^* &= rgmax \log p(X_5|X_3, heta_5) \ heta_5 \end{aligned}$$

Example: Tornado Alarms

- Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

BAYES BAYES

Beta-Bernoulli Model

Beta Distribution

$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Beta-Bernoulli Model

Generative Process

[draw word]

```
\phi \sim \text{Beta}(\alpha, \beta)
                                                 [draw distribution over words]
For each word n \in \{1, \dots, N\}
   x_n \sim \text{Bernoulli}(\phi)
```

Example corpus (heads/tails)

Н	Т	Т	Н	Н	Т	Т	Н	Н	Н
X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	x ₈	x ₉	X ₁₀

Dirichlet Distribution

$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

$$\begin{array}{c} \alpha = 0.1, \beta = 0.9 \\ -\alpha = 0.5, \beta = 0.5 \\ -\alpha = 1.0, \beta = 1.0 \\ -\alpha = 5.0, \beta = 5.0 \\ -\alpha = 10.0, \beta = 5.0 \\ -\alpha = 10.0, \beta = 5.0 \\ \end{array}$$

Dirichlet Distribution

Generative Process

Example corpus

the	he	is	the	and	the	she	she	is	is
X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	x ₇	x ₈	x ₉	X ₁₀

The Dirichlet is **conjugate** to the Multinomial

- The posterior of ϕ is $p(\phi|X) = \frac{p(X|\phi)p(\phi)}{P(X)}$
- Define the count vector \mathbf{n} such that n_t denotes the number of times word t appeared
- Then the posterior is also a Dirichlet distribution: $p(\phi|X) \sim \text{Dir}(\boldsymbol{\beta} + \boldsymbol{n})$

Dirichlet-Multinomial Mixture Model

Generative Process

Example corpus

the and the X_{21} X_{22} X_{23}

 she
 she
 is

 x₃₁
 x₃₂
 x₃₃
 x₃₄

Document 1

Document 2

Document 3

Dirichlet-Multinomial Mixture Model

Generative Process

```
For each topic k \in \{1, \dots, K\}:  \phi_k \sim \operatorname{Dir}(\boldsymbol{\beta}) \qquad [draw\ distribution\ over\ words]   \theta \sim \operatorname{Dir}(\boldsymbol{\alpha}) \qquad [draw\ distribution\ over\ topics]  For each document m \in \{1, \dots, M\}  z_m \sim \operatorname{Mult}(1, \boldsymbol{\theta}) \qquad [draw\ topic\ assignment]  For each word n \in \{1, \dots, N_m\}  x_{mn} \sim \operatorname{Mult}(1, \phi_{z_m}) \qquad [draw\ word]
```

Example corpus

the	he	is
X ₁₁	X ₁₂	X ₁₃

the	and	the
X ₂₁	X ₂₂	X ₂₃

she	she	is	is
X ₃₁	X ₃₂	X ₃₃	X ₃₄

Document 1

Document 2

Document 3

Bayesian Inference for Naïve Bayes

Whiteboard:

- Naïve Bayes is not Bayesian
- What if we observed both words and topics?
- Dirichlet-Multinomial in the fully observed setting is just Naïve Bayes
- Three ways of estimating parameters:
 - 1. MLE for Naïve Bayes
 - 2. MAP estimation for Naïve Bayes
 - 3. Bayesian parameter estimation for Naïve Bayes