10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Markov Chains

$+$
Bayesian Inference for Parameter Estimation

Reminders

- Homework 2: Learning to Search for RNNs
- Programming + Empirical Questions
- Due: Mon, Oct 24 at 9:00am
- Policy: 65 points or more on the autograder gives 100% autograder credit
- Homework 3: General Graph CRF Module - Out: Thu, Sep 29
- Due: Mon, Oct 10 at 11:59pm
- Practice Problems 1
- Exam 1: Fri, Oct 14, in-class

METROPOLIS-HASTINGS

Metropolis-Hastings

Whiteboard

- Metropolis Algorithm
- Metropolis-Hastings Algorithm

Random Walk Behavior of $\mathrm{M}-\mathrm{H}$

- For Metropolis-Hastings, a generic proposal distribution is:

$$
q\left(x \mid x^{(t)}\right)=\mathcal{N}\left(0, \epsilon^{2}\right)
$$

- If ϵ is large, many rejections
- If ϵ is small, slow mixing

Random Walk Behavior of $\mathrm{M}-\mathrm{H}$

- For Rejection Sampling, the accepted samples are are independent
- But for Metropolis-Hastings, the samples are correlated
- Question: How long must we wait to get effectively independent samples?

A: independent states in the $\mathrm{M}-\mathrm{H}$ random walk are separated by roughly $\left(\sigma_{\max } / \sigma_{\min }\right)^{2}$ steps

Gibbs Sampling as M-H

- Gibbs Sampling is a special case of Metropolis-Hastings

$$
\begin{aligned}
& \text { Let } q\left(\vec{x} \mid \vec{x}^{(t)}\right) \triangleq\left\{\begin{array}{l}
x_{i} \sim p\left(x_{i} \mid \vec{x}_{7 i}^{(t)}\right) \text { when iv } U_{1} f(1, \ldots, T) \\
x_{7 i}=x_{7 i}^{(t)}
\end{array}\right. \\
& A\left(\vec{x} \leftarrow \vec{x}^{(t)}\right)=\min \left(1, \frac{\tilde{p}(\vec{x})}{\tilde{p}\left(\vec{x}^{(t)}\right.} \frac{q\left(\vec{x}^{(t)} \mid \vec{x}\right)}{\xi\left(\vec{x} \mid \vec{x}^{(t)}\right)}\right) \\
& =\min \left(1, \frac{p(\vec{x})}{p\left(\vec{x}^{(t)}\right)} \frac{p\left(x_{i}^{(t)} \mid \vec{x}_{r i}\right)}{p\left(x_{i} \mid \vec{x}_{i i}{ }^{(t)}\right)}\right) \quad p(a, b)=p(a \mid b) p(b)
\end{aligned}
$$

$$
\begin{aligned}
& =\min (1,1)
\end{aligned}
$$

MCMC PRACTICAL ISSUES

Practical Issues

- Question: Is it better to move along one dimension or many?
- Answer: For Metropolis-Hasings, it is sometimes better to sample one dimension at a time
- Q: Given a sequence of 1D proposals, compare rate of movement for one-at-a-time vs. concatenation.
- Answer: For Gibbs Sampling, sometimes better to sample a block of variables at a time
- Q: When is it tractable to sample a block of variables?

Blocked Gibbs Sampling

Goal:

Draw samples from a distribution $y_{1}, y_{2}, \ldots, y_{ر} \sim p\left(y_{1}, y_{2}, \ldots, y_{ر}\right)$

Algorithm:

- Initialize y_{1}, y_{2}, \ldots, y, to arbitrary values
- Fort $=1,2, \ldots$:

$$
\text { e.g. } b=\{7,10,1\}
$$

for b in $\mathrm{B}: \quad$ where $\mathrm{b} \subseteq\{1, \ldots, \mathrm{~J}\}$

$$
y_{b} \sim p\left(y_{b} \mid y_{\mathrm{fb}}\right)
$$

$$
y_{6}=\left\{y_{7}, y_{10}, y_{1}\right\}
$$

- Example: $\mathrm{B}=$ set of factors in a factor graph

Why use blocks?

- As in Gibbs Sampler, this will eventually yield samples from $p\left(y_{1}, y_{2}, \ldots, y_{j}\right)$
- Might improve mixing time (i.e. "eventually" will be a bit sooner)

Practical Issues

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
- Compare statistics of multiple independent chains
- Ex: Compare log-likelihoods

Practical Issues

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
- Compare statistics of multiple independent chains
- Ex: Compare log-likelihoods

Chain 1

Chain 2

Practical Issues

- Question: Is one long Markov chain better than many short ones?
- Note: typical to discard initial samples (aka. "burnin") since the chain might not yet have mixed

- Answer: Often a balance is best:
- Compared to one long chain: More independent samples

- Compared to many small chains: Less samples discarded for burn-in
- We can still parallelize
- Allows us to assess mixing by comparing chains

MCMC Summary

- Pros
- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \rightarrow \infty$
- Cons
- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

Markov Chains

we're focused
on first order only

- a Markov chain is a random process
\hookrightarrow gives a series of random variables

$$
\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(t)}, \mathbf{x}^{(t+1)}
$$

- first order Markov chain:

$$
p\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}, \ldots, \mathbf{x}^{(1)}\right)=p\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)
$$

- second order Markov chain:

$$
p\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}, \ldots, \mathbf{x}^{(1)}\right)=p\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}, \mathbf{x}^{(t-2)}\right)
$$

- transition probabilities:

$$
R_{t}\left(\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)}\right) \triangleq p\left(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)}\right)
$$

- homogeneous Markov chain: $R_{t} \triangleq R$, i.e. the transition probabilities are the same for all t

Markov Chains

Whiteboard

- Invariant distribution
- Equilibrium distribution
- Sufficient conditions for MCMC
- Markov chain as a WFSM

Detailed Balance

$$
S\left(x^{\prime} \leftarrow x\right) p(x)=S\left(x \leftarrow x^{\prime}\right) p\left(x^{\prime}\right)
$$

Detailed balance means that, for each pair of states x and x ', arriving at x then x^{\prime} and arriving at x^{\prime} then x
 are equiprobable.

MCMC Summary

- Pros
- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \rightarrow \infty$
- Cons
- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

Slice Sampling, Hamiltonian Monte Carlo
MCMC (AUXILIARY VARIABLE METHODS)

Auxiliary variables

The point of MCMC is to marginalize out variables, but one can introduce more variables:

$$
\begin{aligned}
\int f(x) P(x) \mathrm{d} x & =\int f(x) P(x, v) \mathrm{d} x \mathrm{~d} v \\
& \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right), \quad x, v \sim P(x, v)
\end{aligned}
$$

We might want to do this if

- $P(x \mid v)$ and $P(v \mid x)$ are simple
- $P(x, v)$ is otherwise easier to navigate

Slice Sampling

- Motivation:
- Want samples from $p(x)$ and don't know the normalizer Z
- Choosing a proposal at the correct scale is difficult
- Properties:
- Similar to Gibbs Sampling: one-dimensional transitions in the state space
- Similar to Rejection Sampling: (asymptotically) draws samples from the region under the curve

$$
\tilde{p}(x)
$$

- An MCMC method with an adaptive proposal

Slice sampling idea

Sample point uniformly under curve $\tilde{P}(x) \propto P(x)$

This is just an auxiliary-variable Gibbs Sampler!

Problem: Sampling from the conditional $p(x \mid u)$ might be infeasible.

$$
p(u \mid x)=\operatorname{Uniform}[0, \tilde{P}(x)]
$$

$$
p(x \mid u) \propto\left\{\begin{array}{ll}
1 & \tilde{P}(x) \geq u \\
0 & \text { otherwise }
\end{array}=\right.\text { "Uniform on the slice" }
$$

Slice Sampling

Slice Sampling

Slice Sampling

Slice Sampling

Goal: sample (x, u) given $\left(u^{(t)}, x^{(t)}\right)$.
Part 1: Stepping Out
Sample interval $\left(x_{l}, x_{r}\right)$ enclosing $x^{(t)}$.

Expand until endpoints are "outside" region under curve.

Part 2: Sample x (Shrinking)

Draw x from within the interval $\left(x_{l}, x_{r}\right)$, then accept or shrink.

Slice Sampling

Goal: sample (x, u) given $\left(u^{(t)}, x^{(t)}\right)$.
$u \sim \operatorname{Uniform}\left(0, p\left(x^{(t)}\right)\right.$
Part 1: Stepping Out
Sample interval (x_{l}, x_{r}) enclosing $x^{(t)}$.
$r \sim \operatorname{Uniform}(u, w)$
$\left(x_{l}, x_{r}\right)=\left(x^{(t)}-r, x^{(t)}+w-r\right)$
Expand until endpoints are "outside" region under curve.
while $\left(\tilde{p}\left(x_{l}\right)>u\right)\left\{x_{l}=x_{l}-w\right\}$
while $\left(\tilde{p}\left(x_{r}\right)>u\right)\left\{x_{r}=x_{r}+w\right\}$
Part 2: Sample x (Shrinking)

Draw x from within the interval $\left(x_{l}, x_{r}\right)$, then accept or shrink.

Slice Sampling

```
Goal: sample \((x, u)\) given \(\left(u^{(t)}, x^{(t)}\right)\)
\(u \sim \operatorname{Uniform}\left(0, p\left(x^{(t)}\right)\right.\)
Part 1: Stepping Out
    Sample interval ( \(x_{l}, x_{r}\) ) enclosing \(x^{(t)}\).
        \(r \sim \operatorname{Uniform}(u, w)\)
        \(\left(x_{l}, x_{r}\right)=\left(x^{(t)}-r, x^{(t)}+w-r\right)\)
    Expand until endpoints are "outside" region under curve.
        while \(\left(\tilde{p}\left(x_{l}\right)>u\right)\left\{x_{l}=x_{l}-w\right\}\)
        while \(\left(\tilde{p}\left(x_{r}\right)>u\right)\left\{x_{r}=x_{r}+w\right\}\)
Part 2: Sample \(x\) (Shrinking)
while(true) \{
    Draw \(x\) from within the interval \(\left(x_{l}, x_{r}\right)\), then accept or shrink.
        \(x \sim \operatorname{Uniform}\left(x_{l}, x_{r}\right)\)
        if \((\tilde{p}(x)>u)\{\) break \(\}\)
        else \(\operatorname{if}\left(x>x^{(t)}\right)\left\{x_{r}=x\right\}\)
        else \(\left\{x_{l}=x\right\}\)
\}
\(x^{(t+1)}=x, u^{(t+1)}=u\)
```


Slice Sampling

Multivariate Distributions

- Resample each variable x_{i} one-at-a-time (just like Gibbs Sampling)
- Does not require sampling from

$$
p\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right)
$$

- Only need to evaluate a quantity proportional to the conditional

$$
p\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right) \propto \tilde{p}\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right)
$$

Hamiltonian Monte Cariv ${ }^{2 / t r a s / m}$

- Suppose we have a distribution of the form:

$$
\begin{gathered}
p(\boldsymbol{x})=\exp \{-E(\boldsymbol{x})\} / Z \\
\text { where } \boldsymbol{x} \in \mathcal{R}^{N}
\end{gathered}
$$

- We could use random-walk M-H to draw samples, but it seems a shame to discard gradient information $\nabla_{\boldsymbol{x}} E(\boldsymbol{x})$
- If we can evaluate it, the gradient tells us where to look for high-probability regions!

Background: Hamiltonian Dynt

Applications:

- Following the motion of atoms in a fluid through time
- Integrating the motion of a solar system over time
- Considering the evolution of a galaxy (i.e. the motion of its stars)
- "molecular dynamics"
- "N-body simulations"

Properties:

- Total energy of the system $\mathrm{H}(\mathrm{x}, \mathrm{p})$ stays constant
- Dynamics are reversible \qquad Important for detailed balance

Background: Hamiltonian Dyrutros

Let $\quad \boldsymbol{x} \in \mathcal{R}^{N}$ be a position
$\boldsymbol{p} \in \mathcal{R}^{N}$ be a momentum
Potential energy: $\quad E(\boldsymbol{x})$
Kinetic energy: $\quad K(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{p} / 2$
Total energy: $\quad H(\boldsymbol{x}, \boldsymbol{p})=E(\boldsymbol{x})+K(\boldsymbol{p})$

Given a starting position $x^{(l)}$ and a starting momentum $p^{(l)}$ we can simulate the Hamiltonian dynamics of the system via:

1. Euler's method
2. Leapfrog method
3. etc.

Background: Hamiltonian Dyrutrea

Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

$$
\text { for } \begin{aligned}
& \tau \text { in } 1 \ldots L: \\
& \qquad \boldsymbol{p}=\boldsymbol{p}-\frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x}) \\
& \boldsymbol{x}=\boldsymbol{x}+\epsilon \boldsymbol{p} \\
& \boldsymbol{p}=\boldsymbol{p}-\frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})
\end{aligned}
$$

Background: Hamiltonian Dylurtras/c/ess

Hamiltonian Monte Cant

Preliminaries

Goal:

$$
p(\boldsymbol{x})=\exp \{-E(\boldsymbol{x})\} / Z \quad \text { where } \quad \boldsymbol{x} \in \mathcal{R}^{2}
$$

Define: $\quad K(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{p} / 2$

$$
\begin{aligned}
& H(\boldsymbol{x}, \boldsymbol{p})=E(\boldsymbol{x})+K(\boldsymbol{p}) \\
& \begin{aligned}
p(\boldsymbol{x}, \boldsymbol{p}) & =\exp \{-H(\boldsymbol{x}, \boldsymbol{p})\} / Z_{H} \\
& =\exp \left\{-E(\boldsymbol{x}\} \exp \{-K(\boldsymbol{p})\} / Z_{H}\right.
\end{aligned}
\end{aligned}
$$

Note:

Since $p(x, p)$ is separable...

$$
\begin{aligned}
& \Rightarrow \sum_{\boldsymbol{p}} p(\boldsymbol{x}, \boldsymbol{p})=\exp \{-E(\boldsymbol{x}\} / Z \quad \text { Target dis } \\
& \Rightarrow \sum_{\boldsymbol{x}} p(\boldsymbol{x}, \boldsymbol{p})=\exp \left\{-K(\boldsymbol{x}\} / Z_{K} \quad\right. \text { Gaussian }
\end{aligned}
$$

Whiteboard

- Hamiltonian Monte Carlo algorithm (aka. Hybrid Monte Carlo)

Hamiltonian Monte Cantertras/ress

M-H vs. HMC

SUPERVISED TRAINING WITH GIBBS SAMPLING

Motivation: Graphical Models

- Most recent advancements in NLP come from better text input representation from modern neural architectures
- Graphical models provide expressive modeling of the output label space

Figure from Devlin et al. (2018)

Background: Linear-chain CRF

- Prior state-of-the-art approaches for sequence labeling have adopted linear-chain CRFs
- Model bi-gram dependencies of adjacent labels
- Exact inference can be done in polynomial time with forwardbackward and Viterbi
- We are interested in more complex and expressive CRFs
- Exact inference may no longer be affordable

Neural linear-chain CRF seen in e.g. Lample
et al., 2016; Yang et al., 2016

Skip-chain CRFs for NER

- Different occurrences of the same token often have the same label
- Skip-chains: long-range factors connecting recurring tokens

Inference for Neural CRFs

- A neural CRF defines a conditional distribution:

$$
p(y \mid x ; \Theta)=\frac{\exp (s(x, y ; \Theta))}{\sum_{y^{\prime} \in \mathcal{Y}(x)} \exp \left(s\left(x, y^{\prime} ; \Theta\right)\right)}
$$

- Training time inference: compute the partition function
- Inference time: find the output with the highest probability

$$
\hat{y}=\underset{y \in \mathcal{Y}(x)}{\arg \max } s(x, y ; \Theta)
$$

Inference for Neural CRFs

- Approximate inference: Gibbs sampling with annealing
- Gibbs sampling decoding is a local search algorithm for the maxima

Computational Efficiency

- Decompose the scoring function for computational efficiency
- Neural net component:
- Expensive to compute, but only depends on the input

$$
z=f\left(x ; \theta_{N}\right)
$$

- Computes only once before taking any samples

$$
s(x, y ; \Theta)=s\left(x, y, z ; \theta_{G}\right)
$$

Computational Efficiency

- Decompose the scoring function for computational efficiency
- Graphical model component:
- Depends on both input and output, but cheap to compute $z=f\left(x ; \theta_{N}\right)$
- Local computation to take each sample
$s(x, y ; \Theta)=s\left(x, y, z ; \theta_{G}\right)$

Training for Gibbs Sampling

- Vanilla MLE only enforces a high score on the ground truth output
- Extreme worst case: uniform low scores for all incorrect outputs
- An ideal scoring function should be able to differentiate between incorrect outputs, to guide the local search

Neural SampleRank (NSR)

- Training objective: for each pair of outputs, the one with higher quality (i.e. closer to ground truth) also gets higher score

Neural SampleRank (NSR)

- The loss is accumulated across a sequence of samples during training
- A full inference is not needed
- Compared to SampleRank (Wick et al., 2011), the loss can be easily used to train neural net scoring factors

Results: NER (CoNLL-02/03)

- Models with contextualized embeddings

Model	Learning	English F1	German F1	Dutch F1
ELMo (Peters et al., 2018)	MLE	92.22	---	----
BERT (Devlin et al., 2018)	MLE	92.80	----	----
Flair (Akbik er al., 2019)	MLE	93.18	88.27	90.44
Our baseline Flair	MLE	92.58	88.30	90.63
+ skip-chain CRF	NSR	92.56	87.97	91.44^{*}
				German
	\# token	204,567	207,484	Dutch
	\# document	946	553	202,931
	\# skip-chain	29,309	31,683	287

Results: NER (CoNLL-02/03)

- Models without contextualized embeddings

Model	Learning	English F1
BiLSTM-CRF (Lample et al., 2016)	MLE	90.94
BiGRU-CRF (Yang et al., 2016)	MLE	91.20
Our baseline BiLSTM-CRF	MLE	91.01
+ skip-chain CRF	NSR	91.68*
Model	Learning	German F1
BiLSTM-CRF (Lample et al., 2016)	MLE	78.76
BiLSTM (Riedl and Padó, 2018)	MLE	82.99
Our baseline BiLSTM-CRF	MLE	83.55
+ skip-chain CRF	NSR	$\mathbf{8 4 . 5 0 *}$

Results: Qualitative Analysis

SUPERVISED LEARNING FOR BAYES NETS

Recipe for Gradient-based Learning

1. Write down the objective function
2. Compute the partial derivatives of the objective (i.e. gradient, and maybe Hessian)
3. Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

SUPERVISED LEARNING FOR BAYES NETS (BY "COUNTING")

Recipe for Closed-form MLE

1. Assume data was generated i.i.d. from some model (i.e. write the generative story)

$$
x^{(i)} \sim p(x \mid \theta)
$$

2. Write log-likelihood

$$
\ell(\boldsymbol{\theta})=\log p\left(x^{(1)} \mid \boldsymbol{\theta}\right)+\ldots+\log p\left(x^{(N)} \mid \boldsymbol{\theta}\right)
$$

3. Compute partial derivatives (i.e. gradient)

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{1}=\ldots \\
& \partial \ell(\theta) / \partial \theta_{2}=\ldots \\
& \ldots \ell(\theta) / \partial \theta_{M}=\ldots
\end{aligned}
$$

4. Set derivatives to zero and solve for $\boldsymbol{\theta}$

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{m}=o \text { for all } m \in\{1, \ldots, M\} \\
& \boldsymbol{\theta}^{\text {MLE }}=\text { solution to system of } M \text { equations and } M \text { variables }
\end{aligned}
$$

5. Compute the second derivative and check that $\ell(\theta)$ is concave down at $\boldsymbol{\theta}^{\text {MLE }}$

Machine Learning

Inference finds \{best structure, marginals, partition function $\}$ for a new observation
(Inference is usually called as a subroutine in learning)

Our model defines a score for each structure

It also tells us what to optimize

Machine Learning

Model

Objective

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

How do we learn these conditional and marginal distributions for a Bayes Net?

Learning Fully Observed BNs

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data

Learning Fully Observed BNs

How do we learn these
 distributions for a Bayes Net?

$$
\begin{aligned}
& \boldsymbol{\theta}^{*}= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \\
&=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p\left(X_{5} \mid X_{3}, \theta_{5}\right)+\log p\left(X_{4} \mid X_{2}, X_{3}, \theta_{4}\right) \\
& \quad+\log p\left(X_{3} \mid \theta_{3}\right)+\log p\left(X_{2} \mid X_{1}, \theta_{2}\right) \\
& \quad+\log p\left(X_{1} \mid \theta_{1}\right) \\
& \\
& \theta_{1}^{*}=\underset{\theta_{1}}{\operatorname{argmax}} \log p\left(X_{1} \mid \theta_{1}\right) \\
& \theta_{2}^{*}=\underset{\theta_{2}}{\operatorname{argmax}} \log p\left(X_{2} \mid X_{1}, \theta_{2}\right) \\
& \theta_{3}^{*}=\underset{\theta_{2}}{\operatorname{argmax}} \log p\left(X_{3} \mid \theta_{3}\right) \\
& \theta_{4}^{*}=\underset{\theta_{3}}{\operatorname{argmax}} \log p\left(X_{4} \mid X_{2}, X_{3}, \theta_{4}\right) \\
& \theta_{5}^{*}=\underset{\theta_{4}}{\operatorname{argmax}} \log p\left(X_{5} \mid X_{3}, \theta_{5}\right)
\end{aligned}
$$

Example: Tornado Alarms

1. Imagine that you work at the 911 call center in Dallas
2. You receive six calls informing you that the Emergency Weather Sirens are going off
3. What do you conclude?

Learning Fully Observed BNs
Ex: Tornado Alarms

Datary i

i| T | H | A | C |
| :--- | :--- | :--- | :--- |
| 1 | | | |
| 3 | | | |
| 3 | 0 | 0 | 2 |
| 0 | 0 | 0 | 6 |
| 0 | 0 | 0 | 4 |
| 1 | 0 | 0 | 3 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 10 |
| 1 | 0 | 1 | 7 |
| 0 | 1 | 0 | 2 |
| 0 | 1 | 1 | 12 |
| 0 | 1 | 0 | 5 |
| 1 | 1 | 1 | 10 |
| 1 | 0 | 0 | 2 |

12

What we the MCEs?

$$
\begin{aligned}
& \hat{n}=1 / 3 \\
& \hat{\tau} \cdot 1 / 2 \\
& \hat{\alpha} \text {. }=\begin{array}{c|c|c|}
H=0 & H-1 \\
T=1 & 0 & 1 / 3 \\
\hline 2 / 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

MLE's in Closed Form

$$
\begin{aligned}
& \ell(\eta, q, \alpha)=\lg \prod_{i=1}^{12} p\left(t^{(i)}, h^{(i)}, a^{(i)}, c^{(i)} \mid n, r \alpha\right) \\
& =\sum_{i=1}^{i=1} \log p\left(t^{(i)} \tau \tau\right)+\log p\left(h^{(i)}\left(h^{(i)} \mid t^{(i)}, h^{(i)}, \alpha\right)+\log p\left(\varepsilon^{(i)} /(a)\right)\right. \\
& +\log p\left(a^{(i)} t^{(i)}, h^{(0)}, \alpha\right)+\log p\left(c^{(i)} \alpha_{a}\right) \\
& \hat{\eta}, \hat{\tau}, \hat{\alpha}=\operatorname{agmax} l(\nu, \tau, \alpha) \\
& \hat{\eta}=\operatorname{arman}_{n} \sum_{i=1}^{12} \log p\left(h^{(i)} / \eta\right)=\#(T=1) / N \\
& \hat{\tau}=\operatorname{argmax} \times \sum_{i=1}^{n} \log p\left(t^{(i)} \mid \tau\right)=\#(H=1) / N \\
& \hat{\alpha}=\operatorname{Vin}_{\alpha}^{\operatorname{man}} \times \sum_{i=1}^{\sum_{i=1}} \lg p\left(a^{(i)} / t^{(i)}, 厶^{(i)} \alpha\right) \\
& \hat{\alpha}_{t, h}=\frac{\#(A=1, T=t, H=h)}{\#(T=t, A=h)}
\end{aligned}
$$

BAYESIAN INFERENCE FOR NAÏVE BAYES

Beta-Bernoulli Model

- Beta Distribution
$\phi \in[0,1]$

$$
f(\phi \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Beta-Bernoulli Model

- Generative Process
$\phi \sim \operatorname{Beta}(\alpha, \beta)$
[draw distribution over words]
For each word $n \in\{1, \ldots, N\}$
$x_{n} \sim \operatorname{Bernoulli}(\phi)$
[draw word]
- Example corpus (heads/tails)

H	T	T	H	H	T	T	H	H	H
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Dirichlet-Multinomial Model

- Dirichlet Distribution

$$
f(\phi \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Dirichlet-Multinomial Model

- Dirichlet Distribution
$\vec{D} \in[0,1]^{k} \quad$ s.t. $\quad 1=\sum_{k=1}^{k} \phi_{k}$

$$
p(\vec{\phi} \underline{\boldsymbol{\alpha}})=\frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} \phi_{k}^{\alpha_{k}-1} \text { where } \underline{B(\alpha)}=\frac{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}
$$

Dirichlet-Multinomial Model

- Generative Process

```
\phi~\operatorname{Dir}(\beta)
[draw distribution over words]
For each word n\in{1,\ldots,N}
    xn~\operatorname{Mult}(1,\phi) [draw word]
```

- Example corpus

the	he	is	the	and	the	she	she	is	is
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Dirichlet-Multinomial Model

The Dirichlet is conjugate to the Multinomial

- The posterior of ϕ is $p(\phi \mid X)=\frac{p(X \mid \phi) p(\phi)}{P(X)}$

```
\phi~\operatorname{Dir}(\boldsymbol{\beta})
For each word n\in{1,\ldots,N}
```

[draw distribution over words]
$x_{n} \sim \operatorname{Mult}(1, \phi)$

- Define the count vector \boldsymbol{n} such that n_{t} denotes the number of times word t appeared
- Then the posterior is also a Dirichlet distribution:
$p(\phi \mid X) \sim \operatorname{Dir}(\boldsymbol{\beta}+\boldsymbol{n})$

Dirichlet-Multinomial Mixture Model

- Generative Process

- Example corpus

the	he	is
X_{11}	X_{12}	X_{13}

Document 1

the	and	the
X_{21}	X_{22}	x_{23}

Document 2

Document 3

Figure from Wallach, JHU 2011, slides

Dirichlet-Multinomial Mixture Model

- Generative Process

For each topic $k \in\{1, \ldots, K\}$:
$\phi_{k} \sim \operatorname{Dir}(\boldsymbol{\beta})$
$\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
[draw distribution over words]
[draw distribution over topics]
For each document $m \in\{1, \ldots, M\}$
$z_{m} \sim \operatorname{Mult}(1, \boldsymbol{\theta})$
[draw topic assignment]
For each word $n \in\left\{1, \ldots, N_{m}\right\}$
$x_{m n} \sim \operatorname{Mult}\left(1, \phi_{z_{m}}\right) \quad[$ draw word $]$

- Example corpus

Document 1

Document 2

Document 3

Bayesian Inference for Naïve Bayes

Whiteboard:

- Naïve Bayes is not Bayesian
- What if we observed both words and topics?
- Dirichlet-Multinomial in the fully observed setting is just Naïve Bayes
- Three ways of estimating parameters:

1. MLE for Naïve Bayes
2. MAP estimation for Naïve Bayes
3. Bayesian parameter estimation for Naïve Bayes
