10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science | mm——— |
Carnegie Mellon University MACHINE LEARNING

EEEEEEEEEE

Markov Chains
+
Bayesian Inference for
Parameter Estimation

Matt Gormley
Lecture 13
Oct. 12, 2022

Reminders

Homework 2: Learning to Search for RNNs

Homework 3: General Graph CRF Module
— Out: Thu, Sep 29

— Due: Mon, Oct 10 at 11:59pm

Practice Problems 1

Exam 1: Fri, Oct 14, in-class

METROPOLIS-HASTINGS

Metropolis-Hastings

Whiteboard

— Metropolis Algorithm
— Metropolis-Hastings Algorithm

Figure from Bishop (2006)

Random Walk Behavior of M-H

For Metropolis-Hastings, a generic proposal
distribution is: q(fl?|$(t)) ZN(O,GQ)

If € is large, many rejections
If € is small, slow mixing

Figure from Bishop (2006)

Random Walk Behavior of M-H

* For Rejection Sampling, the accepted samples
are are independent

* But for Metropolis-Hastings, the samples are
correlated

* Question: How long must we wait to get
effectively independent samples?

Gibbs Sampling as M-H

* Gibbs Sampling is a special case of Metropolis—Hastings

10

MCMC PRACTICAL ISSUES

Practical Issues

* Question: Is it better to move along one dimension
or many?

* Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time

— Q: Given a sequence of 1D proposals, compare rate of
movement for one-at-a-time vs. concatenation.

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?

Blocked Gibbs Sampling

Goal:
Draw samples from a distribution y., yv,, ..., ¥, ~ p(Y,, Vs -+, V)

Algorithm:
— Initialize Yo Yo eeer Yy to arbitrary values
— Fort=1,2,...: es. | = L7, 0,5
for b in B: v
Yo ~ P(Yo | Y-b) Ve~ Y= Mo,Y,
Why use blocks?

— As in Gibbs Sampler, this will eventually yield samples from
p(Yv Yo eee YJ)

— Might improve mixing time (i.e. “eventually” will be a bit
sooner)

Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

$
\oojﬁ'm ﬁ:in1 \ Chain 2

Ar/\ A
© ©
(@) @)
o o
£ £
KJ] KJ]
— —
o0 o0
o o
— —
>

of MCMC steps # of MCMC steps

Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

of MCMC steps # of MCMC steps
15

Practical Issues

Question: Is one long Markov chain better than many
short ones?

. Note. typical to discard initial samples (aka. “burn-
n”’) since the chain might not yet have mixed

i—»b’_m—m—m—m—m—n—m

*—)H‘—)H e Answer: Often a balance is
best:

, 9‘_)._>’_>‘ — Compared to one long chain:

- More independent samples

(\ / — Compared to many small
'—)H. chains: Less samples
discarded for burn-in
'—)‘—)‘ — We can still parallelize
— Allows us to assess mixing
, ; ‘ E . by comparing chains
. . j' ‘ 16

Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement
— Good theoretical guarantees as ¢t — o0
* Cons
— Lots of tunable parameters [design choices

— Can be quite slow to converge
— Difficult to tell whether it's working

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

18

we’re focused
on first order
only

Markov Chains

a Markov chain is a random process
— gives a series of random variables

CHRNC)

: e ,x(t), x (1)

first order Markov chain: /

PO, x M) = p(xO]x-D)

second order Markov chain:

p(x(t) Ix(t_l), . ,x(l)) — p(x(t) |x(t_1),x(t—2))

transition probabilities:

Ry(xHD) x(0)) £ p(x(8) |5 (t=1))

homogeneous Markov chain: R, = R, i.e. the
transition probabilities are the same for all ¢

Markov Chains

Whiteboard
— Invariant distribution
— Equilibrium distribution
— Sufficient conditions for MCMC
— Markov chain as a WFSM

Detailed Balance

Sz’ < z)p(z) = S(z + 2")p(z”)
Detailed balance means that, for each pair of
states x and x’,

arriving at x then x’ and arriving at x’ then x
are equiprobable.

Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement
— Good theoretical guarantees as ¢t — o0
* Cons
— Lots of tunable parameters [design choices

— Can be quite slow to converge
— Difficult to tell whether it's working

MCMC (AUXILIARY VARIABLE
METHODS)

e from lan Murray

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:

/f(:v) dx_/f) dz dv

1
~ EZf(x(s>), xr,v~ P(x,v)
s=1

We might want to do this if

e P(x|v) and P(v|z) are simple

e P(x,v) is otherwise easier to navigate

25

Slice Sampling

e Motivation:

— Want samples from p(x) and don’t know the
normalizer Z

— Choosing a proposal at the correct scale is difficult

* Properties:

— Similar to Gibbs Sampling: one-dimensional
transitions in the state space

— Similar to Rejection Sampling: (asymptotically) draws
samples from the region under the curve

p(z) N\

— An MCMC method with an a_daptive proposal

e from lan Murray

This is just an
auxiliary-variable
Gibbs Sampler!

~

p(ulz) = Uniform[0, P(x)]

1 P(zx)>
p(x|u) () - * — “Uniform on the slice”
0 otherwise

27

&d from MacKay Ch. 29

Slice Sampling

&d from MacKay Ch. 29

Slice Sampling

&d from MacKay Ch. 29

Slice Sampling

Algorithm

Slice Sampling
Goal: sample (z,u) given (u', ().

Part 1: Stepping Out

Sample interval (z;, x,) enclosing z").
Expand until endpoints are ”outside” region under curve.

Part 2: Sample = (Shrinking)

Draw z from within the interval (z;, x,.), then accept or shrink.

Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z,) = (9 —r2® w0 — 1)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = 2; — w}
while(p(z,) > uw){z, =z, + w}
Part 2: Sample = (Shrinking)

Draw z from within the interval (z;, x,.), then accept or shrink.

Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z™®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z,) = (9 —r2® w0 — 1)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = 2; — w}
while(p(z,) > uw){z, =z, + w}
Part 2: Sample = (Shrinking)
while(true) {
Draw z from within the interval (z;, x,.), then accept or shrink.
x ~ Uniform(z;, z,)
if(p(z) > u){break}
else if(z > W) {z, = z}
else{x; = =}

}

2D = g (D) —

Slice Sampling

Multivariate Distributions

— Resample each variable x; one-at-a-time (just like

Gibbs Sampling)

— Does not require sampling from

p(%‘
— Only need to eva
the conditional

{m)}ji)

uate a quantity proportional to

p(wil{z;}jzi) o< p(wil{T; } i)

Hamiltonian Monte Ca

* Suppose we have a distribution of the form:
p(x) = expi—E(x)}/Z

where & & RN

* We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information V F/(x)

* If we can evaluate it, the gradient tells us
where to look for high-probability regions!

Background: Hamiltonian D

Applications:
— Following the motion of atoms in a fluid through
time
— Integrating the motion of a solar system over time

— Considering the evolution of a galaxy (i.e. the
motion of its stars)

— “molecular dynamics”
— “N-body simulations”

Properties:

— Total energy of the system H(x,p) stays constant
_ Dynamics are reversile - _

36

Background: Hamiltonian D

let £ RY bea position

P E RN be a momentum

Potential energy: F()
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = FE(x)+ K(p)

© Hamitonianfunction

Given a starting position x” and a starting momentum p” we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method

3. etc.
37

Background: Hamiltonian D

Parameters to tune:
1. Stepsize, e
2. Number of iterations, L

Leapfrog Algorithm:
for 7in 1...L:

€
P—=D— §va}E(w)
r =X+ €P

€
P—=D— §vwE(a?)

om Neal (2011)

Background: Hamiltonian D

(a) Euler’s method, stepsize 0.3 (b) Modified Euler’s method, stepsize 0.3
24 2
1 1
g =)
= 5
e 0+ = 04
() [}
£ g
S o
= =
14 14
_2 24
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
Position (g) Position (g)
(c) Leapfrog method, stepsize 0.3 (d) Leapfrog method, stepsize 1.2
2 2
1 1
= =
S g
3 5
= 0+ 2 04
[} ()
£ g
= S
= =
14 14
_2 24
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

Position (g) Position (q)

om Neal (2011)

Hamiltonian Monte Ca

Prelimindries
Goal: p(x) =exp{—F(x)}/Z

=3 p(@.p) = exp{~E(=}/Z [
= > p(e,p) = exp{—K(z}/Zx [CAUSSIONNIN

40

Whiteboard

* Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)

Position coordinates Momentum coordinates

AN
AN,
\\\

Hamiltonian Monte Ca

2.6

2.5

2.4

2.3

2.2

om Neal (2011)

Value of Hamiltonian

M-H vs. HMC

Random-walk Metropolis

om Neal (2011)

Hamiltonian Monte Carlo

SUPERVISED TRAINING WITH
GIBBS SAMPLING

Motivation: Graphical Models

* Most recent advancements in NLP

come from better text input
representation from modern neural
architectures

* Graphical models provide expressive
modeling of the output label space

Figure from Devlin et al. (2018)

Background: Linear-chain CRF

Prior state-of-the-art approaches
for sequence labeling have
adopted linear-chain CRFs

— Model bi-gram dependencies of
adjacent labels

— Exact inference can be donein
polynomial time with forward-
backward and Viterbi

We are interested in more
complex and expressive CRFs

— Exactinference may no longer be
affordable

(X X (X X 000
A A A
(0000 QX (ece00)
Hong Kong Open

Neural linear-chain CRF seenin e.g. Lample
etal., 2016; Yang et al., 2016

46

Skip-chain CRFs for NER

 Different occurrences of the same token often have the same label
* Skip-chains: long-range factors connecting recurring tokens

>
>

(eeee) (e0ee] (se09) (eeee] (ee09

Hong Kong Open ooe the Open

47

Inference for Neural CRFs

A neural CRF defines a conditional distribution:

exp(s(z,y; 0))
=, cvelexe(s(z,v'50))

p(y|z; ©) =

* Training time inference: compute the partition
function

* Inference time: find the output with the highest

probability
g = (z,y;©)
yeY(x)

48

Inference for Neural CRFs

dermmnte cnmaliy
J & ®0

* Approximate inference: Gibbs sampling with annealing

* Gibbs sampling decoding is a local search algorithm for the maxima

p(ylz;©,T) x exp (%s(:c,y; @))
A

49

Computational Efficiency

* Decompose the scoring function for computational efficiency

* Neural net component:
* Expensive to compute, but only depends on the input z = f(x;0n)
« Computes only once before taking any samples s(z,y;0) = s(z,y, 2;0G)

50

Computational Efficiency

* Decompose the scoring function for computational efficiency

* Graphical model component:
* Depends on both input and output, but cheap to compute z = f(z;0n)
* Local computation to take each sample s(z,y;0) = s(z,y, z; 0

51

Training for Gibbs Sampling

* Vanilla MLE only enforces a high score on the ground truth
output

— Extreme worst case: uniform low scores for all incorrect outputs

* Anideal scoring function should be able to differentiate
between incorrect outputs, to guide the local search

p(y|z;©) A ; p(ylz; ©) A

|

|

|
A

\J

1

|

* Yy
Y

Neural SampleRank (NSR)

* Training objective: for each pair of outputs, the one with higher
quality (i.e. closer to ground truth) also gets higher score

L(yi, y5) = [Dw (i, y5) — (s(y™,2;0) — s(y ™, 2;0))]+

+ = Metric (e.g. l
) negative hamming y" = arg maxw(y)

Yy~ = arg min w(y)
y€{yi,y;}

53

Neural SampleRank (NSR)

* Theloss is accumulated across a sequence of samples during training
* Afullinference is not needed

* Compared to SampleRank (Wick et al., 2011), the loss can be easily used to
train neural net scoring factors

p(y|x;@)A | g(yz,yj) = [Aw(y'wyj) — (8(y+,$; 9) - S(y_ax;e))]-l-

L =010y +ey",y")

!

L\ +0(y', ") +H(*, y")
LN +0(y*, 4+, y7)
I K_ +. ..

!

!

54

Results: NER (CoNLL-02/03)

* Models with contextualized embeddings

m—mmm

ELMo (Peters et al., 2018) 92.22

BERT (Devlin et al., 2018) MLE 92.80

Flair (Akbik er al., 2019) MLE 93.18 88.27 90.44

Our baseline Flair MLE 92.58 88.30 90.63

+ skip-chain CRF NSR 92.56) 87.97) 91.44*

| Engsh | German | Dutch

token 204,567 207,484 202,931
document 946 553 287

skip-chain 29,309 31,683 44,309

55

Results: NER (CoNLL-02/03)

* Models without contextualized embeddings

odel T g T gl

BiLSTM-CRF (Lample et al., 2016) MLE 90.94
BiGRU-CRF (Yang et al., 2016) MLE 91.20
Our baseline BiLSTM-CRF MLE 91.01
+ skip-chain CRF NSR 91.68* é

Model | lening | GermanFi____

BiLSTM-CRF (Lample et al., 2016) MLE 78.76
BiLSTM (Riedl and Padd, 2018) MLE 82.99
Our baseline BiLSTM-CRF MLE 83.55
+ skip-chain CRF NSR 84.50* l

Results: Qualitative Analysis

..Nasser Hussain and Peter fuch gave them
a firm grip on their match..

| -16 -3.5 -36 -08 -05 /1.3 0.0 29 1.6

O L K&
RN R
A% > e Y N

&

& &
N

> O
@
\}Q

| -5.1 42 09 -0.7 -63/-48 -15 -58 74

Cp 69 é; Qé} \é&

S 5e OQQ&O
@’%ﬁ\@f@x §

R
\p

..that into a 37-run Advantage but
off-spinner Such hafl scuttled their..

0O-

I-PER -

I-ORG -

I-MISC 4

I-LOC -

B-PER -

B-ORG -

B-MISC -

B-LOC -

0.3

-2.7

-7.4

-2.0

0.7

-3.5

-4.2

-4.6

-2.3

-0.9

-1.7

-3.2

-2.2

-4.1

-0.6

-0.3

1.9

-1.7

-1.2 4.7

-0.5 0.6

-2.2 10.0 34

-1.7

-3.0

-1.5

-4.1

-2.4

-3.5

-4.9

3.1

1.3

0.8

1.9

2.3

-0.7

4.1

-0.6

-3.4

-1.7

-2.6

-2.6

-0.5

0.5

-1.6

-0.6

-1.6

-3.7

-0.7

-1.7

-2.8

-3.9

1.9

-1.3

2.4

-0.8

-5.3

-2.0

-2.3

-2.5

-0.5

-0.1

-0.4

1.2

-0.5

-0.8

-0.8

-2.6

-1.8

0.1

0.1

-6.0

-0.5

-6.1

-9.0

-4.7

-4.0

-7.1

-3.4

57

SUPERVISED LEARNING FOR
BAYES NETS

Recipe for Gradient-based Learning

Write down the objective
function

Compute the partial
derivatives of the
objective (i.e. gradient,
and maybe Hessian)

Feed objective function

and derivatives into black
box

—)

—

Optimization

Retrieve optimal
parameters from black
box

2

* The same approach

* We just compute the

 Thisis how we
trained MRFs and
CRFs

also applies to
Bayesian Networks

gradient of the Bayes
Net’s log-likelihood
of the data

But sometimes &D(JM
there’s an even eaS|er
way...

SUPERVISED LEARNING FOR
BAYES NETS (BY “COUNTING”)

Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE

Machine Learning

Machine Learning

r~

il
l g \\\\f;ll’ -

l"‘l’h ZANRARY

Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)

x) () p(X3)p(Xa2| X1)p(X7)

Learning Fully Observed BNs
@ p(X17X27X37X47X5) —

p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(Xa| X1)p(X7)

66

Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(X2| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?

67

Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five
(small / simple) independent
networks from the same data

(Xla X27 X37 X47 X5)
X5’X3 (X4| X2, X3)

QXS p(Xa|X1)p(X3

Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argmax log p(X1 , XQ, Xg, X4, X5)
0

= arggnaxlogp(X5]X3, 05) + log p(X4| X2, X3,04)

@ + log p(X3|03) + log p(Xo| X1, 02)
@ @ + log p(X1104)

67 = argmaxlog p(X1|01)

01
@ @ 65 = argmax log p(X5 | X1, 05)

02

05 = argmax log p(X3|03)
03

0, = argmaxlog p(X4[Xo, X3, 04)
04

9; — argmax lng(X5 Xg, (95)

05 69

Example: Tornado Alarms

1. Imagine that
you work at the
911 call center

— | in Dallas
- 2. You receive six
. | calls informing
you that the
Emergency
Weather Sirens
are going off
3. What do you

conclude?

70

Learning Fully Observed BNs

EX ! Torwedo ALPv-.s

eko
el
= Torwdo {oclos H/u 1,.““”‘ (Qy?
/QD T Bamodli (% s purme bt
A\‘""‘ A~ Bewodlli (& yr / (
C % UniSorm(0, -, 63) + A% D Sorna(21,--,63)
I ?L»“-C‘““ 1 =Y
6B} R inkger
Dbt | T H A ¢ ,
l;‘ o o O Z / MLGZ_ in Clond fer
2| o o o 6o T n Y@
AENERARPun A) T 4547 Elyen)
o o 1 | 2 logp(£18) * by o(4¥).0)
: Z II ; o T |.=I+I9 ‘;’(Q(L)/ tl:; 10“3 K{f '9 F((c;%9
Z I 0 2 LE,% = agnex /((VL,’\:/&)
6
|
1

L ax & fog ok) = HTON
”8’ = «9{%«‘){ é.\ 2?) F(‘tb)[dt') = #(H:\j /A}
X

L ® Ly)

A
M{fl'"z di(A- ' ng{/ H=L.L
A (T"f/ ”“‘)

BAYESIAN INFERENCE FOR NAIVE
BAYES

Beta-Bernoulli Model

* Beta Distribution yeto, iy

1
f(gla, B) = 1 - x)P
’ B(a,)
4 T T T T T T T T T
3 — a=0.1,6=0.9
) [1 — a=0.5,8=0.5
%“ 2 | 1 — a=10,8=1.0
= | | — a=508=5.0
, — a=10.0,8=5.0
ST\
0] /1 L 1 L 1 S~ N
0 0.2 0.4 0.6 0.8 1

¢

Beta-Bernoulli Model

e Generative Process @\’\

¢ ~ Beta(a, 3) [draw distribution over words]
For each wordn € {1,..., N}
x,, ~ Bernoulli(¢) [draw word]

» Example corpus (heads/tails)

H_ T T _H [H [T T _H _|H H
X, X X3 Xy Xs X Xy Xg Xg Xy

Dirichlet-Multinomial Model
e Dirichlet Distribution

1

0 0.2 0.4 1

F(@la, B) = (1 —)P
’ B(a,)
4 I T I T I ! I T
3 — a=0.1,6=0.9
= 1 — a=0508=05
g 2 1 — a=10,8=1.0
~ | — a=508=5.0
| — a=10.0,8=5.0
e
0] /1 L 1 L 1 SN~ N
0.6 0.8
¢

Dirichlet-Multinomial Model

e Dirichlet Distribution
5’56 {o,\}K'

Dirichlet-Multinomial Model

e Generative Process

¢ ~ Dir(3) [draw distribution
For each wordn € {1,..., N}
T, ~ Mult(1, ¢)

over words|

[draw word]

* Example corpus

the |he |is |the |and |the |she |she |is lis _

Dirichlet-Multinomial Model

The Dirichlet is conjugate
to the Multinomial

e The posterior of ¢ is p(¢|X) =

p(X|®)p(9)

¢ ~ Dir(3)

For each wordn € {1,..., N}
x, ~ Mult(1, ¢)

[draw distribution over words]

[draw word]

e Define the count vector n such that n; denotes the number of

times word ¢ appeared

e Then the posterior is also a Dirichlet distribution:

p(¢|X) ~ Dir(8 + n)

F(BIS‘((?}“ ?fi‘a) ?@5
=)0 8) | (@)
oty

]

’d M G)=k>
T [

4 N O_
=~ (_l\ ﬁ}k-w é_ﬂ("(=)

b= Tk

=7 ?@51?,@ ~ P\);r:LLQA(TB*?‘B

Wt V= g x =)

Dirichlet-Multinomial Mixture Model

e Generative Process

\
topics —p
> “mixture”

wcamens = @ @ @ @O O

* Example corpus

EINEE EIESEE ESESEEEE
X1 X12 Xi3 X1 X3 X33 X31 X35 X33 X34

Document 1 Document 2 Document 3

Figure from Wallach, JHU 2011, slides

Dirichlet-Multinomial Mixture Model

e Generative Process

For each topic k € {1,..., K }:
¢, ~ Dir(3) [draw distribution over words
0 ~ Dir(«) [draw distribution over topics]
For each document m € {1,..., M}
Zm ~ Mult(1, 0) [draw topic assignment)
For each word n € {1,..., N,,,}
Tmn ~ Mult(1, @,) [draw word)]

* Example corpus
the he |is [N the land |the [N she she is lis _
X1 Xi2 X13 X3 X3 X23 X31 X32 X33 X34

Document 1 Document 2 Document 3

Bayesian Inference for Naive Bayes

Whiteboard:

— Naive Bayes is not Bayesian
— What if we observed both words and topics?

— Dirichlet-Multinomial in the fully observed
setting is just Naive Bayes
— Three ways of estimating parameters:
1. MLE for Naive Bayes

2. MAP estimation for Naive Bayes
3. Bayesian parameter estimation for Naive Bayes

