10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Exam 1 Review

$+$

MCMC

Matt Gormley
Lecture 12
Oct. 10, 2022

Reminders

- Homework 2: Learning to Search for RNNs
- Programming + Empirical Questions
- Due: Mon, Oct 24 at 9:00am
- Policy: 65 points or more on the autograder gives 100% autograder credit
- Homework 3: General Graph CRF Module - Out: Thu, Sep 29
- Due: Mon, Oct 10 at 11:59pm
- Practice Problems 1
- Exam 1: Fri, Oct 14, in-class

EXAM 1 LOGISTICS

Exam 1

- Time / Location
- Time: In-Class Exam

Fri, Oct. 14 at 1:25pm - 2:45pm

- Location: The same room as lecture/recitation. Please arrive a few minutes early.
- Please watch Piazza carefully for announcements.
- Logistics
- Covered material: Lecture 1 - Lecture 10
- Format of questions:
- Multiple choice
- True / False (with justification)
- Derivations
- Short answers
- Interpreting figures
- Implementing algorithms on paper
- Drawing
- No electronic devices
- You are allowed to bring one $81 / 2 \times 11$ sheet of notes (front and back)

Topics for Exam 1

- Search-Based Structured Prediction
- Reductions to Binary Classification
- Learning to Search
- RNN-LMs
- seq2seq models
- Graphical Model Representation
- Directed GMs vs. Undirected GMs vs. Factor Graphs
- Bayesian Networks vs. Markov Random Fields vs. Conditional Random Fields
- Graphical Model Learning
- Fully observed Bayesian Network learning
- Fully observed MRF learning
- Fully observed CRF learning
- Parameterization of a GM
- Neural potential functions
- Exact Inference
- Three inference problems:
(1) marginals
(2) partition function
(3) most probably
assignment
- Variable Elimination
- Belief Propagation (sumproduct and max-product)

SAMPLE QUESTIONS

Sample Questions

Learning to Search

Suppose you are training a seq2seq model for supervised POS Tagging.

- Let the inputs to the encoder be $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots$
- Let the inputs to the decoder be $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \ldots$
- Let the outputs of the decoder be $\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3}, \ldots$

1. (1 point) Short Answer: Describe in words what the inputs to the encoder would be. Assume you are training with Teacher Forcing.
2. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. Assume you are training with Teacher Forcing.
3. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. Assume you are training with Teacher Forcing.

Sample Questions

Learning to Search

Suppose you are training a seq2seq model for supervised POS Tagging.

- Let the inputs to the encoder be $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots$
- Let the inputs to the decoder be $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \ldots$
- Let the outputs of the decoder be $\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3}, \ldots$

4. (1 point) Short Answer: Describe in words what the inputs to the encoder would be.

Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher Forcing, simply write "same".)
5. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher Forcing, simply write "same".)
6. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher Forcing, simply write "same".)

Sample Questions

6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a, b, c from the random variables are in $\{0,1\}$. Assume the factors are named $\psi_{A}(a), \psi_{A, B}(a, b)$, $\psi_{A, B, C}(a, b, c)$, and $\psi_{C}(c)$.

1. (2 points) Short answer: Consider the factor graph in Figure 4. Using the given factor names, write the partition function Z that ensures the joint probability distribution $p(a, b, c)$ sums-to-one.

Sample Questions

6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a, b, c from the random variables are in $\{0,1\}$. Assume the factors are named $\psi_{A}(a), \psi_{A, B}(a, b)$, $\psi_{A, B, C}(a, b, c)$, and $\psi_{C}(c)$.
2. (2 points) Short answer: Using the given factor names, write the joint probability mass function $p(a, b, c)$ defined by the factor graph shown in Figure 4. You may include the term Z directly in your answer - no need to copy it from above.

Sample Questions

6 Factor Graphs

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes as below:

$$
p(w, x, y, z) \propto \psi_{X}(x) \psi_{X, Y}(x, y) \psi_{X, Y, Z}(x, y, z) \psi_{W, Z}(w, z) \psi_{Y, Z}(y, z)
$$

where \propto denotes proportional to. Draw the factor graph corresponding to this factorization of the joint distribution.

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

1. (2 points) Short answer: Draw a table containing all values of the function $s(q, r)=$ $\psi_{Q}(q) \psi_{Q, R}(q, r)$. You may use the integer abbreviations: $r e d=1$, green $=2$, blue $=3$, pencil=1, crayon=2.

Question:

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

2. (2 points) Numerical answer: What is the value of the partition function Z for the joint distribution $p(q, r)$?

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

3. (2 points) Numerical answer: What is the value of the joint probability $P(Q=$ green, $R=$ crayon)? You may leave your answer in the form of an unsimplified fractionno calculator necessary.

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

4. (2 points) Numerical answer: What is the value of the marginal probability $P(Q=$ green)? You may leave your answer in the form of an unsimplified fraction-no calculator necessary.

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

5. (2 points) Short answer: Suppose you run the Variable Elimination algorithm to eliminate the variable Q, resulting in a new factor graph with just one factor $m(r)$. Draw a table containing the values of this new factor.

Sample Questions

7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables $Q \in\{$ red,green, blue $\}$, $R \in\{$ pencil, crayon $\}$. Suppose we have the following factors:

Q	$\psi_{Q}(q)$
red	3
green	1
blue	2

Q	R	$\psi_{Q, R}(q, r)$
red	pencil	2
red	crayon	2
green	pencil	1
green	crayon	3
blue	pencil	4
blue	crayon	1

6. (2 points) Numerical answer: What is the value of the marginal probability $P(R=$ crayon)? You may leave your answer in the form of an unsimplified fraction-no calculator necessary.

Sample Questions

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a, b, c from the random variables are in $\{0,1\}$. Assume the factors are named $\psi_{A}(a), \psi_{A, B}(a, b)$, $\psi_{A, B, C}(a, b, c)$, and $\psi_{C}(c)$.

1. (1 point) Drawing: Suppose you are running the Variable Elimination algorithm. The first variable you eliminate is B. Draw the factor graph that results after you have eliminated variable B.

Sample Questions

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a, b, c from the random variables are in $\{0,1\}$. Assume the factors are named $\psi_{A}(a), \psi_{A, B}(a, b)$, $\psi_{A, B, C}(a, b, c)$, and $\psi_{C}(c)$.
2. (1 point) Numerical Answer: Suppose you are running the Belief Propagation algorithm? How many messages are required to send a message from $f_{A B C}$ to C ?

Sample Questions

Question:

Answer:

1. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above? Is yes, draw an example of such a Bayesian Network. If not, explain why not.

2. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above?

Is yes, draw an example of such a Bayesian Network. If not, explain why not.
$Q \& A$

Metropolis, Metropolis-Hastings, Gibbs Sampling MCMC (BASIC METHODS)

Sampling from a Joint Distribution

Ex: Tornad.

T~Bemall: ($\tau) \quad \tau=1 / 2$
$H \sim \operatorname{Banowll}(\eta) \quad \eta=1 / 3$

$C \sim U_{\text {aif }} f\left(\{1, \ldots, 63)+A * U_{\text {uif }} f(\{1, \ldots, 6\})\right.$
cintego

A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
$P(T=t, H=h, A=a, C=c)$
2. How do we draw a sample from the joint distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a}, \mathrm{c} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A}, \mathrm{C})$
3. How do we compute marginal probabilities? $P(A)=\ldots$
4. How do we draw samples from a conditional distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A} \mid \mathrm{C}=\mathrm{c})$
5. How do we compute conditional marginal probabilities? $P(H \mid C=c)=\ldots$

Can we
use
samples
?

MCMC

- Goal: Draw approximate, correlated samples from a target distribution $p(x)$
- MCMC: Performs a biased random walk to explore the distribution

Simulations of MCMC

> Visualization of Metroplis-Hastings, Gibbs Sampling, and Hamiltonian MCMC:

https://chi-feng.github.io/mcmc-demo/
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

GIBBS SAMPLING

Gibbs Sampling

Whiteboard

- Gibbs Sampling

Sampling from a Discrete Distribution

- To sample from a discrete distribution $p(y)$ we only need a function proportional to it e.g., $g(\cdot)$ s.t. $p(y) \propto g(y)$
- Recipe:
- Define a bin cutoff b_{y} for each value $\mathrm{y} \in\{1, \ldots, \mathrm{~V}\}$

$$
b_{y}=\sum_{t=1}^{y} g(t), \forall y \in\{1, \ldots, V\} \quad b_{0}=0
$$

- Sample $\left.\begin{array}{c}i=1 \\ \sim\end{array}\right)$ Uniform $\left(0, b_{v}\right)$
- Return value y if u lands in bin $\left[b_{y-1}, b_{y}\right.$, $]$

$g($ red $)=1$	$g($ green $)=1$	$g($ blue $)=3$	
red	green	blue	
$b_{0}=0 \quad b_{\text {red }}=1 \quad b_{\text {green }}=1+1=2$	$b_{b l u e}=1+1+3=5$		

Example: 3-node Factor Graph
Example: Gibbs Sampling

$A, B, C \in\{+,-\}$

a	b	$\psi_{A B}(a, b)$	$a c$	$\psi_{A C}$
+	+	1	+	+
+	-	2		2
-	+	1	-	2
-	1	-	2	

$b c$	$\Psi_{B C}$
++	1
+-	1
-+	2
--	1

full conditionals:
(1) $p(a \mid b, c) \propto \psi(a, b) \psi(a, c)$
(2) $p(b \mid a, c) \propto \psi(a, b) \psi(b, c) \geq g(b)=$

(3) | $p(c \mid a, b)$ | $\propto \Psi(a, c) \Psi(b, c)$ |
| ---: | :--- |
| | fixed while sampliy |

(3) $\begin{aligned} p(c \mid a, b) & \propto \Psi(a, c) \Psi(b, c) \\ \& & \text { fixed while sampliy }\end{aligned}$

Also: Initialize a, b, c randomly $\in\{t,-\}$
for $i=1,2,3, \ldots$ for $i=1,2,3, \ldots$

$$
\begin{aligned}
& a \sim p(a \mid b, c) \\
& b \sim p(b|c| c) \\
& c \sim p(c \mid a, b)
\end{aligned}
$$

might change
at each iterators.
(1) $p(a \mid b, c) \underset{\sim}{(} \Psi(a, b) \psi(a, c) \rightarrow+$
\# titres: 205^{8}

$$
\begin{aligned}
& p(a \mid b, c)=\frac{p(a, b, c)}{p(b, c)} \propto p(a, b, c) \\
& p(a, b, c) \triangleq \frac{1}{z} \psi(a, b) \psi(a, c) \psi(b, c)
\end{aligned}
$$

Example: Gibbs Sampling

Example: 3-node Factor Graph

```
import numpy as np
import random
def sample01(g0, g1):
    u}=\mathrm{ random.uniform(0,g0 +g1)
    if u < g0:
        return 0
    else:
        return 1
def gibbs_sampling():
    # Define factor graph
    psi_ab = np.array([[1, 2], [1, 1]])
    psi_ac = np.array([[2, 2], [2, 1]])
    psi_bc = np.array([[1, 1], [2, 1]])
    # Initialize variable values
    a = random.choice([0,1])
    b = random.choice([0,1])
    c = random.choice([0,1])
    counts = np.array([[0, 0], [0, 0], [0, 0]])
    # Gibbs sampling
    for i in range(10):
        a = sample01(psi_ab[0,b] * psi_ac[0,c],
        psi_ab[1,b] * psi_ac[1,c])
        b = sample01(psi_ab[a,0] * psi_bc[0,c],
            psi_ab[a,1] * psi_bc[1,c])
            c = sample01(psi_ac[a,0] * psi_bc[b,0],
                        psi_ac[a,1] * psi_bc[b,1])
            print(a, b, c)
            counts[0, a] += 1
            counts[1, b] += 1
            counts[2, c] += 1
    print('p(a = 0) ~=%.2f'% (counts[0,0] / (counts[0,0] + counts[0,1])))
    print('p(b = 0) ~=%.2f'% (counts[1,0] / (counts[1,0] + counts[1,1])))
    print('p(c = 0) ~= %.2f' % (counts[2,0] / (counts[2,0] + counts[2,1])))
if __name___ == '__main__':
    gibbs_sampling()
```


Gibbs Sampling

Gibbs Sampling

Gibbs Sampling

Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
$y_{1}, y_{2}, \ldots, y_{\jmath} \sim p\left(y_{1}, y_{2}, \ldots, y_{\jmath} \mid x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
(Approximate) Solution:

- Initialize $\mathrm{y}_{1}{ }^{(0)}, \mathrm{y}_{2}{ }^{(0)}, \ldots, \mathrm{y}^{(0)}$ to arbitrary values
- For $\mathrm{t}=1,2, \ldots$:
- $y_{1}^{(t+1)} \sim p\left(y_{1} \mid y_{2}^{(t)}, \ldots, y_{\jmath}^{(t)}, x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
- $y_{2}{ }^{(t+1)} \sim p\left(y_{2} \mid y_{1}^{(t+1)}, y_{3}^{(t)}, \ldots, y_{\jmath}{ }^{(t)}, x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
- $y_{3}^{(t+1)} \sim p\left(y_{3} \mid y_{1}^{(t+1)}, y_{2}^{(t+1)}, y_{4}^{(t)}, \ldots, y_{j}{ }^{(t)}, x_{1}, x_{2}, \ldots, x_{j}\right)$
- $y_{j}{ }^{(t+1)} \sim p\left(y_{j} \mid y_{1}{ }^{(t+1)}, y_{2}{ }^{(t+1)}, \ldots, y_{-1}{ }^{(t+1)}, x_{1}, x_{2}, \ldots, x_{\jmath}\right)$

Properties:

- This will eventually yield samples from
$p\left(y_{1}, y_{2}, \ldots, y_{\jmath} \mid x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
- But it might take a long time -- just like other Markov Chain Monte Carlo methods

Gibbs Sampling

Full

conditionals only need to condition on the Markov Blanket

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

METROPOLIS-HASTINGS

Metropolis-Hastings

Whiteboard

- Metropolis Algorithm
- Metropolis-Hastings Algorithm

Random Walk Behavior of $\mathrm{M}-\mathrm{H}$

- For Metropolis-Hastings, a generic proposal distribution is:

$$
q\left(x \mid x^{(t)}\right)=\mathcal{N}\left(0, \epsilon^{2}\right)
$$

- If ϵ is large, many rejections
- If ϵ is small, slow mixing

Random Walk Behavior of $\mathrm{M}-\mathrm{H}$

- For Rejection Sampling, the accepted samples are are independent
- But for Metropolis-Hastings, the samples are correlated
- Question: How long must we wait to get effectively independent samples?

A: independent states in the $\mathrm{M}-\mathrm{H}$ random walk are separated by roughly $\left(\sigma_{\max } / \sigma_{\min }\right)^{2}$ steps

Whiteboard

- Gibbs Sampling as M-H

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

Whiteboard

- Markov chains
- Transition probabilities
- Invariant distribution
- Equilibrium distribution
- Sufficient conditions for MCMC
- Markov chain as a WFSM

Detailed Balance

$$
S\left(x^{\prime} \leftarrow x\right) p(x)=S\left(x \leftarrow x^{\prime}\right) p\left(x^{\prime}\right)
$$

Detailed balance means that, for each pair of states x and x ', arriving at x then x^{\prime} and arriving at x^{\prime} then x
 are equiprobable.

Practical Issues

- Question: Is it better to move along one dimension or many?
- Answer: For Metropolis-Hasings, it is sometimes better to sample one dimension at a time
- Q: Given a sequence of 1D proposals, compare rate of movement for one-at-a-time vs. concatenation.
- Answer: For Gibbs Sampling, sometimes better to sample a block of variables at a time
- Q: When is it tractable to sample a block of variables?

Blocked Gibbs Sampling

Goal:

Draw samples from a distribution $y_{1}, y_{2}, \ldots, y_{ر} \sim p\left(y_{1}, y_{2}, \ldots, y_{ر}\right)$
Algorithm:

- Initialize y_{1}, y_{2}, \ldots, y, to arbitrary values
- Fort $=1,2, \ldots$:
for b in $\mathrm{B}: \quad$ where $\mathrm{b} \subseteq\{1, \ldots, J\}$

$$
y_{b} \sim p\left(y_{b} \mid y_{-b}\right)
$$

- Example: $\mathrm{B}=$ set of factors in a factor graph

Why use blocks?

- As in Gibbs Sampler, this will eventually yield samples from $p\left(y_{1}, y_{2}, \ldots, y_{j}\right)$
- Might improve mixing time (i.e. "eventually" will be a bit sooner)

Practical Issues

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
- Compare statistics of multiple independent chains
- Ex: Compare log-likelihoods

Chain 1

Chain 2

Practical Issues

- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
- Compare statistics of multiple independent chains
- Ex: Compare log-likelihoods

Chain 1

Chain 2

Practical Issues

- Question: Is one long Markov chain better than many short ones?
- Note: typical to discard initial samples (aka. "burnin") since the chain might not yet have mixed

- Answer: Often a balance is best:
- Compared to one long chain: More independent samples
- Compared to many small chains: Less samples discarded for burn-in
- We can still parallelize
- Allows us to assess mixing by comparing chains

Slice Sampling, Hamiltonian Monte Carlo

MCMC (AUXILIARY VARIABLE METHODS)

Auxiliary variables

The point of MCMC is to marginalize out variables, but one can introduce more variables:

$$
\begin{aligned}
\int f(x) P(x) \mathrm{d} x & =\int f(x) P(x, v) \mathrm{d} x \mathrm{~d} v \\
& \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right), \quad x, v \sim P(x, v)
\end{aligned}
$$

We might want to do this if

- $P(x \mid v)$ and $P(v \mid x)$ are simple
- $P(x, v)$ is otherwise easier to navigate

Slice Sampling

- Motivation:
- Want samples from $p(x)$ and don't know the normalizer Z
- Choosing a proposal at the correct scale is difficult
- Properties:
- Similar to Gibbs Sampling: one-dimensional transitions in the state space
- Similar to Rejection Sampling: (asymptotically) draws samples from the region under the curve

$$
\tilde{p}(x)
$$

- An MCMC method with an adaptive proposal

Slice sampling idea

Sample point uniformly under curve $\tilde{P}(x) \propto P(x)$

This is just an auxiliary-variable Gibbs Sampler!

Problem: Sampling from the conditional $p(x \mid u)$ might be infeasible.

$$
\begin{aligned}
& p(u \mid x)=\text { Uniform }[0, \tilde{P}(x)] \\
& p(x \mid u) \propto\left\{\begin{array}{ll}
1 & \tilde{P}(x) \geq u \\
0 & \text { otherwise }
\end{array}=\right.\text { "Uniform on the slice" }
\end{aligned}
$$

Slice Sampling

Slice Sampling

Slice Sampling

Slice Sampling

Goal: sample (x, u) given $\left(u^{(t)}, x^{(t)}\right)$.
Part 1: Stepping Out
Sample interval $\left(x_{l}, x_{r}\right)$ enclosing $x^{(t)}$.
Expand until endpoints are "outside" region under curve.
Part 2: Sample x (Shrinking)

Draw x from within the interval $\left(x_{l}, x_{r}\right)$, then accept or shrink.

Slice Sampling

```
Goal: sample \((x, u)\) given \(\left(u^{(t)}, x^{(t)}\right)\).
\(u \sim \operatorname{Uniform}\left(0, p\left(x^{(t)}\right)\right.\)
Part 1: Stepping Out
    Sample interval ( \(x_{l}, x_{r}\) ) enclosing \(x^{(t)}\).
        \(r \sim \operatorname{Uniform}(u, w)\)
        \(\left(x_{l}, x_{r}\right)=\left(x^{(t)}-r, x^{(t)}+w-r\right)\)
    Expand until endpoints are "outside" region under curve.
        while \(\left(\tilde{p}\left(x_{l}\right)>u\right)\left\{x_{l}=x_{l}-w\right\}\)
        while \(\left(\tilde{p}\left(x_{r}\right)>u\right)\left\{x_{r}=x_{r}+w\right\}\)
Part 2: Sample \(x\) (Shrinking)
```

Draw x from within the interval $\left(x_{l}, x_{r}\right)$, then accept or shrink.

Slice Sampling

```
Goal: sample \((x, u)\) given \(\left(u^{(t)}, x^{(t)}\right)\).
\(u \sim \operatorname{Uniform}\left(0, p\left(x^{(t)}\right)\right.\)
Part 1: Stepping Out
    Sample interval ( \(x_{l}, x_{r}\) ) enclosing \(x^{(t)}\).
        \(r \sim \operatorname{Uniform}(u, w)\)
        \(\left(x_{l}, x_{r}\right)=\left(x^{(t)}-r, x^{(t)}+w-r\right)\)
    Expand until endpoints are "outside" region under curve.
        while \(\left(\tilde{p}\left(x_{l}\right)>u\right)\left\{x_{l}=x_{l}-w\right\}\)
        while \(\left(\tilde{p}\left(x_{r}\right)>u\right)\left\{x_{r}=x_{r}+w\right\}\)
Part 2: Sample \(x\) (Shrinking)
while(true) \{
    Draw \(x\) from within the interval \(\left(x_{l}, x_{r}\right)\), then accept or shrink.
        \(x \sim \operatorname{Uniform}\left(x_{l}, x_{r}\right)\)
        if \((\tilde{p}(x)>u)\{\) break \(\}\)
        else \(\operatorname{if}\left(x>x^{(t)}\right)\left\{x_{r}=x\right\}\)
        else \(\left\{x_{l}=x\right\}\)
\}
\(x^{(t+1)}=x, u^{(t+1)}=u\)
```


Slice Sampling

Multivariate Distributions

- Resample each variable x_{i} one-at-a-time (just like Gibbs Sampling)
- Does not require sampling from

$$
p\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right)
$$

- Only need to evaluate a quantity proportional to the conditional

$$
p\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right) \propto \tilde{p}\left(x_{i} \mid\left\{x_{j}\right\}_{j \neq i}\right)
$$

Hamiltonian Monte Carlo

- Suppose we have a distribution of the form:

$$
\begin{gathered}
p(\boldsymbol{x})=\exp \{-E(\boldsymbol{x})\} / Z \\
\text { where } \boldsymbol{x} \in \mathcal{R}^{N}
\end{gathered}
$$

- We could use random-walk M-H to draw samples, but it seems a shame to discard gradient information $\nabla_{\boldsymbol{x}} E(\boldsymbol{x})$
- If we can evaluate it, the gradient tells us where to look for high-probability regions!

Background: Hamiltonian Dynamics

Applications:

- Following the motion of atoms in a fluid through time
- Integrating the motion of a solar system over time
- Considering the evolution of a galaxy (i.e. the motion of its stars)
- "molecular dynamics"
- "N-body simulations"

Properties:

- Total energy of the system $\mathrm{H}(\mathrm{x}, \mathrm{p})$ stays constant
- Dynamics are reversible \qquad Important for detailed balance

Background: Hamiltonian Dynamics

Let $\boldsymbol{x} \in \mathcal{R}^{N}$ be a position
$\boldsymbol{p} \in \mathcal{R}^{N}$ be a momentum
Potential energy: $\quad E(\boldsymbol{x})$
Kinetic energy: $\quad K(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{p} / 2$
Total energy:

$$
H(\boldsymbol{x}, \boldsymbol{p})=E(\boldsymbol{x})+K(\boldsymbol{p})
$$

Given a starting position $x^{(l)}$ and a starting momentum $p^{(l)}$ we can simulate the Hamiltonian dynamics of the system via:

1. Euler's method
2. Leapfrog method
3. etc.

Background: Hamiltonian Dynamics

Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

$$
\begin{aligned}
& \text { for } \begin{aligned}
& \tau \text { in } 1 \ldots L: \\
& \qquad \begin{aligned}
\boldsymbol{p} & =\boldsymbol{p}-\frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x}) \\
\boldsymbol{x} & =\boldsymbol{x}+\epsilon \boldsymbol{p} \\
\boldsymbol{p} & =\boldsymbol{p}-\frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

Background: Hamiltonian Dynamics

Hamiltonian Monte Carlo

Preliminaries

Goal:

$$
p(\boldsymbol{x})=\exp \{-E(\boldsymbol{x})\} / Z \quad \text { where } \quad \boldsymbol{x} \in \mathcal{R}^{N}
$$

Define:

$$
\begin{aligned}
& K(\boldsymbol{p})=\boldsymbol{p}^{T} \boldsymbol{p} / 2 \\
& H(\boldsymbol{x}, \boldsymbol{p})=E(\boldsymbol{x})+K(\boldsymbol{p}) \\
& \begin{aligned}
& p(\boldsymbol{x}, \boldsymbol{p})=\exp \{-H(\boldsymbol{x}, \boldsymbol{p})\} / Z_{H} \\
& \quad=\exp \left\{-E(\boldsymbol{x}\} \exp \{-K(\boldsymbol{p})\} / Z_{H}\right.
\end{aligned}
\end{aligned}
$$

Note:
Since $p(x, p)$ is separable...

$$
\begin{aligned}
& \Rightarrow \sum_{\boldsymbol{p}} p(\boldsymbol{x}, \boldsymbol{p})=\exp \{-E(\boldsymbol{x}\} / Z \quad \text { Target dist. } \\
& \Rightarrow \sum_{\boldsymbol{x}} p(\boldsymbol{x}, \boldsymbol{p})=\exp \left\{-K(\boldsymbol{x}\} / Z_{K} \quad\right. \text { Gaussian }
\end{aligned}
$$

Whiteboard

- Hamiltonian Monte Carlo algorithm (aka. Hybrid Monte Carlo)

Hamiltonian Monte Carlo

M-H vs. HMC

MCMC Summary

- Pros
- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \rightarrow \infty$
- Cons
- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

