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Reminders

Homework 2: Learning to Search for RNNs

Homework 3: General Graph CRF Module
— Out: Thu, Sep 29

— Due: Mon, Oct 10 at 11:59pm

Practice Problems 1

Exam 1: Fri, Oct 14, in-class




EXAM 1 LOGISTICS



Exam 1

* Time [Location
— Time: In-Class Exam
Fri, Oct. 14 at 1:25pm - 2:45pm
— Location: The same room as lecture/recitation.
Please arrive a few minutes early.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 - Lecture 10
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
* Drawing
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Topics for Exam 1

* Search-Based Structured * Graphical Model Learning
Prediction — Fully observed-Bayesian
— Reductions to Binary Networklearning
Classification — Fully observed MRF learning
— Learning to Search — Fully observed CRF learning
— RNN-LMs — Parameterization of a GM
— seq2seq models — Neural potential functions
* Graphical Model * Exact Inference
Representation — Three inference problems:
— Directed GMs vs. (1) marginals .
Undirected GMs vs. §23 partition function
Factor Graphs 3) most probably
— Bayesian Networks vs. assignment
Markov Random Fields vs. — Variable Elimination
Conditional Random Fields — Belief Propagation (sum-

product and max-product)



SAMPLE QUESTIONS



Sample Questions

Learning to Search

Suppose you are training a seq2seq model for supervised POS Tagging.
* Let the inputs to the encoder be e, e, €3, ...

* Let the inputs to the decoder be dy, dy, d3, ...

* Let the outputs of the decoder be 04, 05, 03, ...

1. (1 point) Short Answer: Describe in words what the inputs to the encoder would be.
Assume you are training with Teacher Forcing.

2. (1 point) Short Answer: Describe in words what the inputs of the decoder would be.
Assume you are training with Teacher Forcing.

3. (1 point) Short Answer: Describe in words what the outputs of the decoder would be.
Assume you are training with Teacher Forcing.



Sample Questions

Learning to Search

Suppose you are training a seq2seq model for supervised POS Tagging.
* Let the inputs to the encoder be e, e, €3, ...

* Let the inputs to the decoder be dy, dy, d3, ...

* Let the outputs of the decoder be 04, 05, 03, ...

4. (1 point) Short Answer: Describe in words what the inputs to the encoder would be.
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher
Forcing, simply write “same”.)

5. (1 point) Short Answer: Describe in words what the inputs of the decoder would be.
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher
Forcing, simply write “same”.)

6. (1 point) Short Answer: Describe in words what the outputs of the decoder would be.
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher
Forcing, simply write “same”.)
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Question:

Sample Questions
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Sample Questions

Figure 4: A factor graph over three binary random variables A, B, C', i.e. sampled values a,
b, ¢ from the random variables are in {0, 1}. Assume the factors are named ¥ 4(a), 14 5(a, b),

¢A,B7C(a7 b7 C), and ¢C(C>'

1. (1 point) Drawing: Suppose you are running the Variable Elimination algorithm. The first
variable you eliminate is B. Draw the factor graph that results after you have eliminated
variable B.



Sample Questions

Figure 4: A factor graph over three binary random variables A, B, C', i.e. sampled values a,
b, ¢ from the random variables are in {0, 1}. Assume the factors are named ¥ 4(a), 14 5(a, b),

¢A,B7C(a7 b7 C), and ¢C(C>'

2. (1 point) Numerical Answer: Suppose you are running the Belief Propagation algorithm?
How many messages are required to send a message from fagc to C?



Question:

Sample Questions  anwer

1. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above?
Is yes, draw an example of such a Bayesian Network. If not, explain why not.

2. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above?
Is yes, draw an example of such a Bayesian Network. If not, explain why not.






MCMC (BASIC METHODS)



Sampling from a Joint Distribution

A ol T A Bthwu"( ﬂLI,> C="%
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We can use
these samples

to estimate
many different
probabilities!
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A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



MCMC

* Goal: Draw approximate, correlated samples
from a target distribution p(x)

e MCMC: Performs a biased random walk to
explore the distribution



TOMIE DEPAOLA

amie O’Rourke
and the Big Potato

AN IRISH FOLKTALE

A WHITEBIRD BOOK
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Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:


https://chi-feng.github.io/mcmc-demo/
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

GIBBS SAMPLING



Gibbs Sampling

Whiteboard
— Gibbs Sampling



Sampling from a Discrete Distribution

* To sample from a discrete distribution p(y) we only

need a function proportional to it

e.g., g(+) s-t. p(y) < g(y)

* Recipe:
— Define a b|n cutoff b, for each valuey € {1, ..., V}

Zg Vye{l,...,V}  by=0

— Sample U~ Unlform(o by)

— Returnvaluey if ulandsin bin [b,, b,,]

g(red)=1 g(green)=1 g(blue)=3

red green blue

by=0 Dreq=1 Dgreen=1+1=2 bpje=1+1+3=5

u ~ Uniform(o,5)
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Example: 3-node Factor Graph
Example: Gibbs Sampling
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Example: Gibbs Sampling

Example: 3-node Factor Graph

import numpy as np
import random

def sample@l(gd, gl):
u = random.uniform(@, go + gl)
if u < ge:
return @
else:
return 1

def gibbs_sampling():
# Define factor graph
psi_ab = np.array([[1, 2], [1,
psi_ac np.array([[2, 2], [2,
psi_bc np.array([[1, 1], [2,

(RS =)
S et
e ek et
N’ S N

Initialize variable values
random.choice([©,1])
random.choice([©,1])

#
a
b
¢ = random.choice([@,1])

counts = np.array([[©, @], [e, e], [@, @]])
# Gibbs sampling
for i in range(10):
a = sample@l(psi_ab[0,b] psi_ac[@,c],
psi_ab[1,b] psi_ac[1,c])

*
b = sample@l(psi_ab[a,@] * psi_bc[@o,c],

)

psi_ab[a,1] * psi_bc[1,c])
sample@l(psi_ac[a,@] * psi_bc[b,0],
psi_ac[a,1] * psi_bc[b,1])
print(a, b, c)
counts[@, a] += 1
counts[1, b] += 1
counts[2, c] += 1

C

print('p(a = 8) ~= %£.2f" % (counts[©,0] / (counts[8,@] + counts[e,1])))

print('p(b = 8) ~= ' % (counts[1,@] / (counts[1,8] + counts[1,1])))

print('p(c = @) ~= % ' % (counts[2,0] / (counts[2,8] + counts[2,1])))
if __name__ == '__main

gibbs_sampling()



Gibbs Sampling




Gibbs Sampling

L (t+1)




Gibbs Sampling




Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
Yoo Yo eeen Yo~ p(yn Yo eees Yy | Ky Xy eeey X )

Approximate) Solution:
— Initialize y,(©), y,(), ..., y (®) to arbitrary values
— Fort=1,2,...:
© YD~y | Y29, e, v, X X, )
© Y~y |y, v,y X X, e X))
¢ yB(t+1) ~ p(y3 I Y1(t+1); yz(t+1)7 y4(t)7 ooy YJ(t)r ASTRSTRYTER )

‘ yJ(tH) ~ p(yJ | y1(t+1)r yz(t+1)) sy yJ—1(t+1)7 X1y Xy ooy X} )

Properties:
— This will eventually yield samples from
p(yv Yoreeer Yy I Kiy Xy eeey X} )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods
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Gibbs Sampling

Full
conditionals
only need to
condition on
the Markov
Blanket

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




METROPOLIS-HASTINGS



Metropolis-Hastings

Whiteboard

— Metropolis Algorithm
— Metropolis-Hastings Algorithm



Figure from Bishop (2006)

Random Walk Behavior of M-H

For Metropolis-Hastings, a generic proposal
distribution is: q(fl?|$(t)) ZN(O,GQ)

If € is large, many rejections
If € is small, slow mixing
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Figure from Bishop (2006)

Random Walk Behavior of M-H

* For Rejection Sampling, the accepted samples
are are independent

* But for Metropolis-Hastings, the samples are
correlated

* Question: How long must we wait to get
effectively independent samples?




Whiteboard

* Gibbs Sampling as M-H



Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

47



Whiteboard

Markov chains

Transition probabilities
Invariant distribution
Equilibrium distribution
Sufficient conditions for MCMC
Markov chain as a WFSM



Detailed Balance

Sz’ < z)p(z) = S(z + 2")p(z”)
Detailed balance means that, for each pair of
states x and x’,

arriving at x then x’ and arriving at x’ then x
are equiprobable.
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Practical Issues

* Question: Is it better to move along one dimension
or many?

* Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time

— Q: Given a sequence of 1D proposals, compare rate of
movement for one-at-a-time vs. concatenation.

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?



Blocked Gibbs Sampling

Goal:
Draw samples from a distribution y., yv,, ..., ¥, ~ p(Y,, Vs -+, V)

Algorithm:
— Initializey,, y,, ..., y, to arbitrary values
— Fort=1,2,...:
for b in B:
Yo~ P(Yb | Y- )
Why use blocks?

— As in Gibbs Sampler, this will eventually yield samples from
p(Yv Yo eee YJ)

— Might improve mixing time (i.e. “eventually” will be a bit
sooner)



Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps

53



Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
54



Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
~in”) since the chain might not yet have mixed

*—0—0—0—0—0—0—0—0

.—).—)‘—)H « Answer: Often a balance is

best:

._)‘_)H._)‘ — Compared to one long chain:

More independent samples
— Compared to many small

.—)‘—)‘ chains: Less samples
discarded for burn-in

.—)‘—). — We can still parallelize

. . . - . — Allows us to assess mixing
by comparing chains




MCMC (AUXILIARY VARIABLE
METHODS)



Slide from lan Murray

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:

/f(a:) dx_/f ) dz dv

1
~ EZf(zc(S>), xr,v~ P(x,v)
s=1

We might want to do this if

e P(x|v) and P(v|z) are simple

e P(x,v) is otherwise easier to navigate
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Slice Sampling

e Motivation:

— Want samples from p(x) and don’t know the
normalizer Z

— Choosing a proposal at the correct scale is difficult

* Properties:

— Similar to Gibbs Sampling: one-dimensional
transitions in the state space

— Similar to Rejection Sampling: (asymptotically) draws
samples from the region under the curve

p(z) N\

— An MCMC method with an a_daptive proposal




Slide from lan Murray

Slice sampling idea

Sample point uniformly under curve P(z) < P(z)

This is just an
auxiliary-variable
Gibbs Sampler!

p(u|z) = Uniform[0, P(z)]

y

1 P(z)>u

0 otherwise

= “Uniform on the slice”

p(z|u) o {
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Figure adapted from MacKay Ch. 29

Slice Sampling
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Algorithm

Slice Sampling
Goal: sample (z,u) given (u', ().

Part 1: Stepping Out

Sample interval (z;, x,) enclosing z").

Expand until endpoints are ”outside” region under curve.

Part 2: Sample x (Shrinking)

Draw z from within the interval (z;, x,.), then accept or shrink.

63



Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z1,2,) = (29 —r,2® 4w —7)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = 2; — w}
while(p(z,) > uw){z, =z, + w}
Part 2: Sample x (Shrinking)

Draw z from within the interval (z;, x,.), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u', ().
u ~ Uniform(0, p(z™®)
Part 1: Stepping Out
Sample interval (z;, x,) enclosing z").
r ~ Uniform(u, w)
(z1,2,) = (29 —r,2® 4w —7)
Expand until endpoints are ”outside” region under curve.
while(p(z;) > u){z; = 2; — w}
while(p(z,) > uw){z, =z, + w}
Part 2: Sample x (Shrinking)
while(true) {
Draw z from within the interval (z;, x,.), then accept or shrink.
x ~ Uniform(z;, z,)
if(p(z) > u){break}
else if(z > W) {z, = z}
else{x; = =}

}

2D = g (D) —
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Slice Sampling

Multivariate Distributions

— Resample each variable x; one-at-a-time (just like
Gibbs Sampling)

— Does not require sampling from
p(xi|{T;}ji)
— Only need to evaluate a quantity proportional to
the conditional

p(wil{z;}jzi) o< p(wil{T; } i)




Hamiltonian Monte Carlo

* Suppose we have a distribution of the form:
p(x) = expi—E(x)}/Z

where & & RN

* We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information V  F/(x)

* If we can evaluate it, the gradient tells us
where to look for high-probability regions!



Background: Hamiltonian Dynamics

Applications:
— Following the motion of atoms in a fluid through
time
— Integrating the motion of a solar system over time

— Considering the evolution of a galaxy (i.e. the
motion of its stars)

— “molecular dynamics”
— “N-body simulations”

Properties:

— Total energy of the system H(x,p) stays constant
~ Dynamics are reversible - _
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Background: Hamiltonian Dynamics

let £ RY bea position

P E RN be a momentum

Potential energy:  F()
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = FE(x)+ K(p)

© Hamitonianfunction

Given a starting position x” and a starting momentum p” we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.
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Background: Hamiltonian Dynamics

Parameters to tune:
1. Stepsize, e
2. Number of iterations, L

Leapfrog Algorithm:
for 7in 1...L:

€
P—=D— §va}E(w)
r =X+ €P

€
P—=D— §vwE(a?)



Figure from Neal (2011)

Background: Hamiltonian Dynamics

(a) Euler’s method, stepsize 0.3 (b) Modified Euler’s method, stepsize 0.3

Momentum (p)
=
|
Momentum (p)

Position (g) Position (g)

(c) Leapfrog method, stepsize 0.3 (d) Leapfrog method, stepsize 1.2

Momentum (p)
=
|
Momentum (p)
=
|

Position (g) Position (q)
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Figure from Neal (2011)

Hamiltonian Monte Carlo

Preliminaries
Goal: plx) =exp{—F(x)}/Z  where T C RN

=3 p(@.p) = exp{~E(=}/Z [
= > p(e,p) = exp{—K(z}/Zx [CAUSSIONNIN
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Whiteboard

* Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)



Figure from Neal (2011)

Hamiltonian Monte Carlo

Position coordinates
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Figure from Neal (2011)

M-H vs. HMC

Random-walk Metropolis

Hamiltonian Monte Carlo




Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement
— Good theoretical guarantees as ¢t — o0
* Cons
— Lots of tunable parameters [ design choices

— Can be quite slow to converge
— Difficult to tell whether it's working



