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Reminders
• Homework 2: Learning to Search for RNNs
– Programming + Empirical Questions
• Due: Mon, Oct 24 at 9:00am

– Policy: 65 points or more on the autograder
gives 100% autograder credit

• Homework 3: General Graph CRF Module
– Out: Thu, Sep 29
– Due: Mon, Oct 10 at 11:59pm

• Practice Problems 1
• Exam 1: Fri, Oct 14, in-class
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EXAM 1 LOGISTICS
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Exam 1
• Time / Location

– Time: In-Class Exam
Fri, Oct. 14 at 1:25pm – 2:45pm

– Location: The same room as lecture/recitation. 
Please arrive a few minutes early. 

– Please watch Piazza carefully for announcements.
• Logistics

– Covered material: Lecture 1 – Lecture 10
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper
• Drawing

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Topics for Exam 1
• Search-Based Structured 

Prediction
– Reductions to Binary 

Classification
– Learning to Search
– RNN-LMs
– seq2seq models

• Graphical Model 
Representation
– Directed GMs vs. 

Undirected GMs vs. 
Factor Graphs

– Bayesian Networks vs. 
Markov Random Fields vs. 
Conditional Random Fields

• Graphical Model Learning
– Fully observed Bayesian 

Network learning
– Fully observed MRF learning
– Fully observed CRF learning
– Parameterization of a GM
– Neural potential functions

• Exact Inference
– Three inference problems:

(1) marginals
(2) partition function
(3) most probably 
assignment

– Variable Elimination
– Belief Propagation (sum-

product and max-product)
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Sample Questions
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1. (1 point) Short Answer: Describe in words what the inputs to the encoder would be. 
Assume you are training with Teacher Forcing.

2. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. 
Assume you are training with Teacher Forcing.

3. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. 
Assume you are training with Teacher Forcing.

Suppose you are training a seq2seq model for supervised POS Tagging. 
• Let the inputs to the encoder be e1, e2, e3, … 
• Let the inputs to the decoder be d1, d2, d3, … 
• Let the outputs of the decoder be o1, o2, o3, … 

Learning to Search
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4. (1 point) Short Answer: Describe in words what the inputs to the encoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

5. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

6. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

Suppose you are training a seq2seq model for supervised POS Tagging. 
• Let the inputs to the encoder be e1, e2, e3, … 
• Let the inputs to the decoder be d1, d2, d3, … 
• Let the outputs of the decoder be o1, o2, o3, … 

Learning to Search
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6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a,
b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).

1. (2 points) Short answer: Consider the factor graph in Figure 4. Using the given factor
names, write the partition function Z that ensures the joint probability distribution
p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.
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7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables Q 2 {red,green,blue},
R 2 {pencil, crayon}. Suppose we have the following factors:

Q  Q(q)

red 3
green 1
blue 2

Q R  Q,R(q, r)

red pencil 2
red crayon 2
green pencil 1
green crayon 3
blue pencil 4
blue crayon 1

1. (2 points) Short answer: Draw a table containing all values of the function s(q, r) =
 Q(q) Q,R(q, r). You may use the integer abbreviations: red=1, green=2, blue=3, pen-

cil=1, crayon=2.

2. (2 points) Numerical answer: What is the value of the partition function Z for the
joint distribution p(q, r)?

3. (2 points) Numerical answer: What is the value of the joint probability P (Q =
green,R = crayon)? You may leave your answer in the form of an unsimplified fraction—

no calculator necessary.

4. (2 points) Numerical answer: What is the value of the marginal probability P (Q =
green)? You may leave your answer in the form of an unsimplified fraction—no calcu-

lator necessary.
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5. (2 points) Short answer: Suppose you run the Variable Elimination algorithm to elim-
inate the variable Q, resulting in a new factor graph with just one factor m(r). Draw a
table containing the values of this new factor.

6. (2 points) Numerical answer: What is the value of the marginal probability P (R =
crayon)? You may leave your answer in the form of an unsimplified fraction—no calcu-

lator necessary.
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1. (1 point) Drawing: Suppose you are running the Variable Elimination algorithm. The first 
variable you eliminate is B. Draw the factor graph that results after you have eliminated 
variable B.
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6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a,
b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).

1. (2 points) Short answer: Consider the factor graph in Figure 4. Using the given factor
names, write the partition function Z that ensures the joint probability distribution
p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.
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2. (1 point) Numerical Answer: Suppose you are running the Belief Propagation algorithm? 
How many messages are required to send a message from fABC to C?   

10-607 Math for ML Final Exam - Page 10 of 14 12/13/2018

6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a,
b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).
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names, write the partition function Z that ensures the joint probability distribution
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as below:
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where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.

fABC

fC
fAB

fA
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1. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above? 
Is yes, draw an example of such a Bayesian Network. If not, explain why not.
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fABC

fAB
fA fC
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p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.

fB

2. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above? 
Is yes, draw an example of such a Bayesian Network. If not, explain why not.
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MCMC (BASIC METHODS)
Metropolis, Metropolis-Hastings, Gibbs Sampling
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Sampling from a Joint Distribution
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T H A C

We can use 
these samples 

to estimate 
many different 
probabilities!



A Few Problems for a Factor Graph
Suppose we already have the parameters of a Factor Graph…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

27

Can we 
use 

samples
?



MCMC

• Goal: Draw approximate, correlated samples 
from a target distribution p(x)

• MCMC: Performs a biased random walk to 
explore the distribution

28
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Simulations of MCMC

31

Visualization of Metroplis-Hastings, Gibbs 
Sampling, and Hamiltonian MCMC:

https://chi-feng.github.io/mcmc-demo/

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

https://chi-feng.github.io/mcmc-demo/
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/


GIBBS SAMPLING
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Gibbs Sampling

Whiteboard
– Gibbs Sampling
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Sampling from a Discrete Distribution
• To sample from a  discrete distribution p(y) we only 

need a function proportional to it
e.g., g(·) s.t. p(y) ∝ g(y)

• Recipe:
– Define a bin cutoff by for each value y ∈ {1, …, V} 

– Sample u ~ Uniform(0, bV)
– Return value y if u lands in bin [by-1, by,]

34

red green blue

g(red)=1 g(green)=1 g(blue)=3

b0=0 bred=1 bgreen=1+1=2 bblue=1+1+3=5

u ~ Uniform(0,5)



Example: Gibbs Sampling
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Example: 3-node Factor Graph



Example: Gibbs Sampling
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Example: 3-node Factor Graph



Gibbs Sampling

37

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1
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x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x(t)
x(t+1)



Gibbs Sampling
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1 )

x(t)
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

x(t)

x(t+3)

x(t+4)



Gibbs Sampling
Question:
How do we draw samples from a conditional distribution? 
y1, y2, …, yJ ∼ p(y1, y2, …, yJ | x1, x2, …, xJ )

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1)∼ p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ )

• y2
(t+1)∼ p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ )
• y3

(t+1)∼ p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ )
• …
• yJ

(t+1)∼ p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ )

Properties:
– This will eventually yield samples from 

p(y1, y2, …, yJ | x1, x2, …, xJ )
– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods

40



Gibbs Sampling
Full 
conditionals 
only need to 
condition on 
the Markov 
Blanket

UGM
X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11
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• Must be “easy” to sample from 
conditionals

• Many conditionals are log-concave 
and are amenable to adaptive 
rejection sampling

DGM
X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



METROPOLIS-HASTINGS

42



Metropolis-Hastings

Whiteboard
– Metropolis Algorithm
– Metropolis-Hastings Algorithm
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Random Walk Behavior of M-H
• For Metropolis-Hastings, a generic proposal 

distribution is:

• If ϵ is large, many rejections
• If ϵ is small, slow mixing

44

�max

�min

⇢✏

p(x)

q(x|x(t))

Figure from Bishop (2006)

q(x|x(t)) = N (0, ✏2)



Random Walk Behavior of M-H
• For Rejection Sampling, the accepted samples 

are are independent
• But for Metropolis-Hastings, the samples are 

correlated
• Question: How long must we wait to get 

effectively independent samples?

45

�max

�min

⇢✏

p(x)

q(x|x(t))

A: independent 
states in the M-H 
random walk are 
separated  by 
roughly
steps 

(�max/�min)
2

Figure from Bishop (2006)



Whiteboard

• Gibbs Sampling as M-H

46



MARKOV CHAINS
Definitions and Theoretical Justification for MCMC

47



Whiteboard

• Markov chains
• Transition probabilities
• Invariant distribution
• Equilibrium distribution
• Sufficient conditions for MCMC
• Markov chain as a WFSM

48



Detailed Balance

Detailed balance means that, for each pair of 
states x and x’,

arriving at x then x’ and arriving at x’ then x
are equiprobable.

49

x

x'

x

x'

S(x0  x)p(x) = S(x x0)p(x0)



Practical Issues
• Question: Is it better to move along one dimension 

or many?

• Answer: For Metropolis-Hasings, it is sometimes 
better to sample one dimension at a time
– Q: Given a sequence of 1D proposals, compare rate of 

movement for one-at-a-time vs. concatenation.

• Answer: For Gibbs Sampling, sometimes better to 
sample a block of variables at a time
– Q: When is it tractable to sample a block of variables?
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Blocked Gibbs Sampling
Goal:
Draw samples from a distribution y1, y2, …, yJ ∼ p(y1, y2, …, yJ)

Algorithm:
– Initialize y1, y2, …, yJ to arbitrary values
– For t = 1, 2, …:

for b in B: where b ⊆ {1, …, J}
yb ∼ p(yb | y¬b )

– Example: B = set of factors in a factor graph

Why use blocks?
– As in Gibbs Sampler, this will eventually yield samples from 

p(y1, y2, …, yJ)
– Might improve mixing time (i.e. “eventually” will be a bit 

sooner)
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Practical Issues
• Question: How do we assess convergence of 

the Markov chain?
• Answer: It’s not easy!
– Compare statistics of multiple independent chains
– Ex: Compare log-likelihoods

53
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Practical Issues
• Question: How do we assess convergence of 

the Markov chain?
• Answer: It’s not easy!
– Compare statistics of multiple independent chains
– Ex: Compare log-likelihoods
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Practical Issues
• Question: Is one long Markov chain better than many 

short ones?
• Note: typical to discard initial samples (aka. “burn-

in”) since the chain might not yet have mixed

55

• Answer: Often a balance is 
best:
– Compared to one long chain: 

More independent samples 
– Compared to many small 

chains: Less samples 
discarded for burn-in 

– We can still parallelize
– Allows us to assess mixing 

by comparing chains



MCMC (AUXILIARY VARIABLE 
METHODS)

Slice Sampling, Hamiltonian Monte Carlo

56
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Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Slide from Ian Murray



Slice Sampling
• Motivation:
– Want samples from p(x) and don’t know the 

normalizer Z
– Choosing a proposal at the correct scale is difficult

• Properties:
– Similar to Gibbs Sampling: one-dimensional 

transitions in the state space
– Similar to Rejection Sampling: (asymptotically) draws 

samples from the region under the curve

– An MCMC method with an adaptive proposal
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p̃(x)
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Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u

0 otherwise
= “Uniform on the slice”

Slide from Ian Murray

This is just an 
auxiliary-variable 
Gibbs Sampler!

Problem: Sampling 
from the conditional 

p(x | u) might be 
infeasible.



Slice Sampling
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3a,3b,3c 3d,3e
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5,6,7

Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29
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Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29
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panel is labelled by the steps of
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it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29
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Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u
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Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u
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Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u

A
lg
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ith

m
:



Slice Sampling

Multivariate Distributions
– Resample each variable xi one-at-a-time (just like 

Gibbs Sampling)
– Does not require sampling from 

– Only need to evaluate a quantity proportional to 
the conditional

66

p(xi|{xj}j 6=i)

p(xi|{xj}j 6=i) / p̃(xi|{xj}j 6=i)



Hamiltonian Monte Carlo

• Suppose we have a distribution of the form:

• We could use random-walk M-H to draw 
samples, but it seems a shame to discard 
gradient information

• If we can evaluate it, the gradient tells us 
where to look for high-probability regions!
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p(x) = exp{�E(x)}/Z

rxE(x)

x 2 RN

p 2 RN

where



Background: Hamiltonian Dynamics
Applications:
– Following the motion of atoms in a fluid through 

time
– Integrating the motion of a solar system over time
– Considering the evolution of a galaxy (i.e. the 

motion of its stars)
– “molecular dynamics”
– “N-body simulations”

Properties:
– Total energy of the system H(x,p) stays constant
– Dynamics are reversible

68

Important for 
detailed balance



Background: Hamiltonian Dynamics
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Let x 2 RN

p 2 RN

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

be a position

be a momentum

Potential energy:

Kinetic energy:

Total energy:

Hamiltonian function

Given a starting position x(1) and a starting momentum p(1) we 
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.



Background: Hamiltonian Dynamics
Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

70

for ⌧ in 1 . . . L:

p = p� ✏

2
rxE(x)

x = x+ ✏p

p = p� ✏

2
rxE(x)



Background: Hamiltonian Dynamics
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at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Figure from Neal (2011) 



Since p(x,p) is 
separable…

Hamiltonian Monte Carlo
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Figure from Neal (2011) 

p(x) = exp{�E(x)}/Z x 2 RN

p 2 RN

where

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

Goal:

Define:

Note:

p(x,p) = exp{�H(x,p)}/ZH

= exp{�E(x} exp{�K(p)}/ZH

)
X

p

p(x,p) = exp{�E(x}/Z

)
X

x

p(x,p) = exp{�K(x}/ZK

Target dist.

Gaussian

Preliminaries



Whiteboard

• Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)
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Hamiltonian Monte Carlo
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Position coordinates
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50, −1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.

Figure from Neal (2011) 



M-H vs. HMC
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Random−walk Metropolis
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Hamiltonian Monte Carlo
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.
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Hamiltonian Monte Carlo
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FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.

Figure from Neal (2011) 



MCMC Summary

• Pros
– Very general purpose
– Often easy to implement
– Good theoretical guarantees as 

• Cons
– Lots of tunable parameters / design choices
– Can be quite slow to converge
– Difficult to tell whether it's working
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Slide adapted from Daphe Koller
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