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Reminders
• Homework 2: Learning to Search for RNNs
– Programming + Empirical Questions
• Due: Mon, Oct 24 at 9:00am

– Policy: 65 points or more on the autograder
gives 100% autograder credit

• Homework 3: General Graph CRF Module
– Out: Thu, Sep 29
– Due: Mon, Oct 10 at 11:59pm

• Practice Problems 1
• Exam 1: Fri, Oct 14, in-class
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EXAM 1 LOGISTICS

5



Exam 1
• Time / Location

– Time: In-Class Exam
Fri, Oct. 14 at 1:25pm – 2:45pm

– Location: The same room as lecture/recitation. 
Please arrive a few minutes early. 

– Please watch Piazza carefully for announcements.
• Logistics

– Covered material: Lecture 1 – Lecture 10
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper
• Drawing

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Topics for Exam 1
• Search-Based Structured 

Prediction
– Reductions to Binary 

Classification
– Learning to Search
– RNN-LMs
– seq2seq models

• Graphical Model 
Representation
– Directed GMs vs. 

Undirected GMs vs. 
Factor Graphs

– Bayesian Networks vs. 
Markov Random Fields vs. 
Conditional Random Fields

• Graphical Model Learning
– Fully observed Bayesian 

Network learning
– Fully observed MRF learning
– Fully observed CRF learning
– Parameterization of a GM
– Neural potential functions

• Exact Inference
– Three inference problems:

(1) marginals
(2) partition function
(3) most probably 
assignment

– Variable Elimination
– Belief Propagation (sum-

product and max-product)
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Sample Questions
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1. (1 point) Short Answer: Describe in words what the inputs to the encoder would be. 
Assume you are training with Teacher Forcing.

2. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. 
Assume you are training with Teacher Forcing.

3. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. 
Assume you are training with Teacher Forcing.

Suppose you are training a seq2seq model for supervised POS Tagging. 
• Let the inputs to the encoder be e1, e2, e3, … 
• Let the inputs to the decoder be d1, d2, d3, … 
• Let the outputs of the decoder be o1, o2, o3, … 

Learning to Search
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4. (1 point) Short Answer: Describe in words what the inputs to the encoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

5. (1 point) Short Answer: Describe in words what the inputs of the decoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

6. (1 point) Short Answer: Describe in words what the outputs of the decoder would be. 
Assume you are training with Scheduled Sampling. (If your answer is the same as for Teacher 
Forcing, simply write “same”.)

Suppose you are training a seq2seq model for supervised POS Tagging. 
• Let the inputs to the encoder be e1, e2, e3, … 
• Let the inputs to the decoder be d1, d2, d3, … 
• Let the outputs of the decoder be o1, o2, o3, … 

Learning to Search
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6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a,
b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).

1. (2 points) Short answer: Consider the factor graph in Figure 4. Using the given factor
names, write the partition function Z that ensures the joint probability distribution
p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.
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7 Inference in Graphical Models

Consider yet another factor graph consisting of two random variables Q 2 {red,green,blue},
R 2 {pencil, crayon}. Suppose we have the following factors:

Q  Q(q)

red 3
green 1
blue 2

Q R  Q,R(q, r)

red pencil 2
red crayon 2
green pencil 1
green crayon 3
blue pencil 4
blue crayon 1

1. (2 points) Short answer: Draw a table containing all values of the function s(q, r) =
 Q(q) Q,R(q, r). You may use the integer abbreviations: red=1, green=2, blue=3, pen-

cil=1, crayon=2.

2. (2 points) Numerical answer: What is the value of the partition function Z for the
joint distribution p(q, r)?

3. (2 points) Numerical answer: What is the value of the joint probability P (Q =
green,R = crayon)? You may leave your answer in the form of an unsimplified fraction—

no calculator necessary.

4. (2 points) Numerical answer: What is the value of the marginal probability P (Q =
green)? You may leave your answer in the form of an unsimplified fraction—no calcu-

lator necessary.
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5. (2 points) Short answer: Suppose you run the Variable Elimination algorithm to elim-
inate the variable Q, resulting in a new factor graph with just one factor m(r). Draw a
table containing the values of this new factor.

6. (2 points) Numerical answer: What is the value of the marginal probability P (R =
crayon)? You may leave your answer in the form of an unsimplified fraction—no calcu-

lator necessary.
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1. (1 point) Drawing: Suppose you are running the Variable Elimination algorithm. The first 
variable you eliminate is B. Draw the factor graph that results after you have eliminated 
variable B.
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6 Factor Graphs

Figure 4: A factor graph over three binary random variables A, B, C, i.e. sampled values a,
b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).

1. (2 points) Short answer: Consider the factor graph in Figure 4. Using the given factor
names, write the partition function Z that ensures the joint probability distribution
p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.
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2. (1 point) Numerical Answer: Suppose you are running the Belief Propagation algorithm? 
How many messages are required to send a message from fABC to C?   
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b, c from the random variables are in {0, 1}. Assume the factors are named  A(a),  A,B(a, b),
 A,B,C(a, b, c), and  C(c).
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where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.

fABC

fC
fAB

fA
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1. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above? 
Is yes, draw an example of such a Bayesian Network. If not, explain why not.
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fABC

fAB
fA fC
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p(a, b, c) sums-to-one.

2. (2 points) Short answer: Using the given factor names, write the joint probability
mass function p(a, b, c) defined by the factor graph shown in Figure 4. You may include

the term Z directly in your answer—no need to copy it from above.

3. (2 points) Drawing: Suppose we have a joint probability distribution that factorizes
as below:

p(w, x, y, z) /  X(x) X,Y (x, y) X,Y,Z(x, y, z) W,Z(w, z) Y,Z(y, z)

where / denotes proportional to. Draw the factor graph corresponding to this factoriza-
tion of the joint distribution.

fB

2. (1 point) Is there a Bayesian Network that would convert to the factor graph shown above? 
Is yes, draw an example of such a Bayesian Network. If not, explain why not.
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Q&A
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MCMC (BASIC METHODS)
Metropolis, Metropolis-Hastings, Gibbs Sampling
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Sampling from a Joint Distribution
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T H A C

We can use 
these samples 

to estimate 
many different 
probabilities!



A Few Problems for a Factor Graph
Suppose we already have the parameters of a Factor Graph…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …
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Can we 
use 

samples
?



MCMC

• Goal: Draw approximate, correlated samples 
from a target distribution p(x)

• MCMC: Performs a biased random walk to 
explore the distribution
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Simulations of MCMC
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Visualization of Metroplis-Hastings, Gibbs 
Sampling, and Hamiltonian MCMC:

https://chi-feng.github.io/mcmc-demo/

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

https://chi-feng.github.io/mcmc-demo/
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/


GIBBS SAMPLING
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Gibbs Sampling

Whiteboard
– Gibbs Sampling
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Sampling from a Discrete Distribution
• To sample from a  discrete distribution p(y) we only 

need a function proportional to it
e.g., g(·) s.t. p(y) ∝ g(y)

• Recipe:
– Define a bin cutoff by for each value y ∈ {1, …, V} 

– Sample u ~ Uniform(0, bV)
– Return value y if u lands in bin [by-1, by,]
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red green blue

g(red)=1 g(green)=1 g(blue)=3

b0=0 bred=1 bgreen=1+1=2 bblue=1+1+3=5

u ~ Uniform(0,5)



Example: Gibbs Sampling
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Example: 3-node Factor Graph



Example: Gibbs Sampling
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Example: 3-node Factor Graph



Gibbs Sampling
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x(t)
x(t+1)



Gibbs Sampling

38

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1 )

x(t)
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which samples are required. (b)
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sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

x(t)

x(t+3)

x(t+4)



Gibbs Sampling
Question:
How do we draw samples from a conditional distribution? 
y1, y2, …, yJ ∼ p(y1, y2, …, yJ | x1, x2, …, xJ )

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1)∼ p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ )

• y2
(t+1)∼ p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ )
• y3

(t+1)∼ p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ )
• …
• yJ

(t+1)∼ p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ )

Properties:
– This will eventually yield samples from 

p(y1, y2, …, yJ | x1, x2, …, xJ )
– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods
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Gibbs Sampling
Full 
conditionals 
only need to 
condition on 
the Markov 
Blanket

UGM
X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11
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• Must be “easy” to sample from 
conditionals

• Many conditionals are log-concave 
and are amenable to adaptive 
rejection sampling

DGM
X1

X4X3

X6 X7
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METROPOLIS-HASTINGS
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Metropolis-Hastings

Whiteboard
– Metropolis Algorithm
– Metropolis-Hastings Algorithm
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Random Walk Behavior of M-H
• For Metropolis-Hastings, a generic proposal 

distribution is:

• If ϵ is large, many rejections
• If ϵ is small, slow mixing
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�max

�min

⇢✏

p(x)

q(x|x(t))

Figure from Bishop (2006)

q(x|x(t)) = N (0, ✏2)



Random Walk Behavior of M-H
• For Rejection Sampling, the accepted samples 

are are independent
• But for Metropolis-Hastings, the samples are 
correlated

• Question: How long must we wait to get 
effectively independent samples?
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�max

�min

⇢✏

p(x)

q(x|x(t))

A: independent 
states in the M-H 
random walk are 
separated  by 
roughly
steps 

(�max/�min)
2

Figure from Bishop (2006)


