
Complexity of Inference
+

Monte Carlo Methods

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 11

Oct. 5, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University



COMPUTATIONAL COMPLEXITY 
OF INFERENCE

4



Proving Computational Complexity
Question:
In order to prove that a 
decision problem is NP-
Hard, we must…
A. …reduce our 

decision problem to 
a known NP-Hard 
problem.

B. …reduce a known 
NP-Hard problem to 
our decision 
problem.

5

Answer:



Complexity Classes

• A problem for which the answer is 
binary (e.g. yes/no) is called a 
decision problem

• The class NP contains all decision 
problems where ‘yes’ answers can 
be verified (proved) in polynomial 
time

• A problem is NP-Hard if given an 
O(1) oracle to solve it, every 
problem in NP can be solved in 
polynomial time (e.g. by reduction)

• A problem is NP-Complete if it 
belongs to both the classes NP and 
NP-Hard

6

• An algorithm runs in polynomial time if its runtime is a polynomial function of 
the input size (e.g. O(nk) for some fixed constant k)

• The class P consists of all problems that can be solved in polynomial time

Figure from https://en.wikipedia.org/wiki/NP-completeness

Recall…



Complexity Classes
• A problem for which the answer is a 

nonnegative integer is called a counting 
problem

• The class #P contains the counting 
problems that align to decision problems 
in NP
– really this is the class of problems that count 

the number of accepting paths in a Turing 
machine that is nondeterministic and runs in 
polynomial time

• A problem is #P-Hard if given an O(1) 
oracle to solve it, every problem in #P can 
be solved in polynomial time (e.g. by 
reduction)

• A problem is #P-Complete if it belongs to 
both the classes #P and #P-Hard

• There are no known polytime algorithms 
for solving #P-Complete problems. If we 
found one it would imply that P = NP.

Examples of #P-Hard 
problems
• #SAT, i.e. how many 

satisfying solutions for a 
given SAT problem?

• How many solutions for 
a given DNF formula?

• How many solutions for 
a 2-SAT problem?

• How many perfect 
matchings for a 
bipartite graph?

• How many graph 
colorings (with k colors) 
for a given graph G? 
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Examples from https://en.wikipedia.org/wiki/%E2%99%AFP-complete

Recall…
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p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

x̂ = argmax
x

p(x | ✓)

1. Marginal Inference (#P-Hard)
Compute marginals of variables and cliques

2. Partition Function (#P-Hard)
Compute the normalization constant

3. MAP Inference (NP-Hard)
Compute variable assignment with highest probability

p(xi) =
X

x0:x0
i=xi

p(x0 | ✓)

Three Tasks:

5. Inference
Recall…



3-SAT
Background: 
• Formulas

– Def: a literal is a binary variable or its negation, e.g. x1 is a 
positive literal and ¬x1 is a negative literal, where x1 ∈ {0, 1}

– Def: a clause is a disjunction of literals, e.g. (¬x1 ∨ x2 ∨ ¬x3)
– Def: a formula is in conjunctive normal form (CNF) if it is a 

conjunction of clauses, e.g. 
(¬x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x6) ∧ (x1 ∨ ¬x3 ∨ ¬x5)

• The 3-SAT Problem
– Given: a CNF formula where each clause has at most 3 literals
– Goal: report the satisfiability of the formula, i.e. whether 

there is a satisfying assignment to the variables that makes 
the entire formula true
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Computational Complexity of 
MAP Inference

• Claim: MAP inference is NP-Hard
• Proof Sketch:

Overview: we reduce 3-SAT (known to be NP-Hard) to 
the MAP Inference problem
1. Construct a factor graph as follows:

a. add a variable xi to the factor graph for each variable in 3-SAT
b. add a variable cl to the factor graph for each clause in 3-SAT
c. add a factor Ψ(cl, xi, xj, xk) for each clause cl(xi, xj, xk)
d. let the factor Ψ(cl, xi, xj, xk) = 1 if cl(xi, xj, xk) = true and Ψ(xi, xj, 

xk) = 0 otherwise
2. Run MAP inference to obtain the most probable 

assignment
3. Return true if all the clause variables are true; and false 

otherwise
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#-SAT
Background: 
• The 3-SAT Problem

– Given: a CNF formula where each clause has at most 3 literals
– Goal: report the satisfiability of the formula, i.e. whether there is a 

satisfying assignment to the variables that makes the entire formula 
true

• The #-SAT Problem
– Given: a CNF formula where each clause has at most 3 literals
– Goal: report the number of satisfying assignments of the formula
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Computational Complexity of 
Marginal Inference

• Claim: Marginal inference is #P-Hard
• Proof Sketch:

Overview: we reduce #-SAT (known to be #P-Hard) 
to the marginal inference problem
1. Construct a factor graph as follows:

a. …left as an exercise…

2. Run marginal inference 
3. Return the number of satisfying assigments by…

a. …left as an exercise…
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APPROXIMATE MARGINAL 
INFERENCE

14



15

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample 
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample 
4:

with youtime will see

n v p n nSample 
3:

flies withfly their wings

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

1. Marginal Inference 

2. Partition Function 

x̂ = argmax
x

p(x | ✓)
3. MAP Inference 



A Few Problems for a Factor Graph
Suppose we already have the parameters of a Factor Graph…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …
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Can we 
use 

samples
?



Marginals by Sampling on Factor Graph

17time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Suppose we took many samples from the distribution over 
taggings:



Marginals by Sampling on Factor Graph

18time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

The marginal p(Xi = xi) gives the probability that variable Xi
takes value xi in a random sample



Marginals by Sampling on Factor Graph

19time likeflies an arrow

X1 ψ2 X2 ψ4 X3 ψ6 X4 ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Estimate the 
marginals as: n 4/6

v 2/6
n 3/6
v 3/6

p 4/6
v 2/6 d 6/6 n 6/6



MONTE CARLO METHODS
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Monte Carlo Methods

Whiteboard
– Problem 1: Generating samples from a 

distribution
– Problem 2: Estimating expectations
– Why is sampling from p(x) hard?
– Example: estimating plankton concentration in a 

lake
– Algorithm: Uniform Sampling
– Example: estimating partition function of high 

dimensional function
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Properties of Monte Carlo

Estimator:

∫
f(x)P (x) dx ≈ f̂ ≡ 1

S

S∑

s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑

s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑

s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√

S

Slide from Ian Murray
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A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418

Slide from Ian Murray
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Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)

Other lecturers are covering alternatives for higher dimensions.
No approx. integration method always works. Sometimes Monte Carlo is the best.

Slide from Ian Murray
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Sampling from distributions

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]

Slide from Ian Murray
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Sampling from distributions
How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y′) dy′

Draw mass to left of point:
u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)

Slide from Ian Murray



Rejection Sampling

Whiteboard:
– Example: Rejection Sampling with a rectangular 

proposal
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Rejection sampling

Sampling underneath a P̃ (x)∝P (x) curve is also valid

koptQ̃(x)

P̃ (x)

kQ̃(x)

xx(1)

(xj , uj)

(xi, ui)

Draw underneath a simple
curve kQ̃(x) ≥ P̃ (x):

– Draw x ∼ Q(x)
– height u ∼ Uniform[0, kQ̃(x)]

Discard the point if above P̃ ,
i.e. if u > P̃ (x)

Slide from Ian Murray
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Importance sampling

Computing P̃ (x) and Q̃(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1

S

S∑

s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.

Slide from Ian Murray
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Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P̃ (x)/ZP

∫
f(x)P (x) dx ≈ ZQ

ZP

1

S

S∑

s=1

f(x(s))
P̃ (x(s))

Q̃(x(s))︸ ︷︷ ︸
r̃(s)

, x(s) ∼ Q(x)

≈
!
!
!
!
!!1

S

S∑

s=1

f(x(s))
r̃(s)

"
"
""1

S

∑
s′ r̃

(s′)
≡

S∑

s=1

f(x(s))w(s)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s r̃(s)

Slide from Ian Murray
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Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from complex distributions

• Importance sampling applies Monte Carlo to ‘any’ sum/integral

Slide from Ian Murray



Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:
P (x) = N (0, I), Q(x) = N (0, σ2

I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Variance of importance weights =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√

2

Pitfalls of Monte Carlo
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Slide from Ian Murray


