10-418/10-618 Machine Learning for Structured Data
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Complexity of Inference
+

Monte Carlo Methods

Matt Gormley
Lecture 11
Oct. 5, 2022

COMPUTATIONAL COMPLEXITY
OF INFERENCE

Proving Computational Complexity

Question: Answer:

In order to prove that a
decision problem is NP-
Hard, we must...

A. ...reduce our
decision problem to
a known NP-Hard
problem.

B. ...reduce a known
NP-Hard problem to
our decision
problem.

Complexity Classes

* Analgorithm runs in polynomial time if its runtime is a polynomial function of
the input size (e.g. O(nX) for some fixed constant k)

* The class P consists of all problems that can be solved in polynomial time

* A problem for which the answer is
binary (e.g. yes/no) is called a
decision problem

 Theclass NP contains all decision
problems where ‘yes’ answers can el il
be verified (proved) in polynomial
time ——

* A problemis NP-Hard if given an A’-Completx / \
O(1) oracle to solve it, every f \ , I
problem in NP can be solved in | NP l NP-Complete l

polynomial time (e.g. by reduction) \ - / .
 Aproblem is NP-Complete if it \P—/

belongs to both the classes NP and
NP-Hard P = NP P = NP

Figure from https://en.wikipedia.org/wiki/NP-completeness

Complexity Classes

A problem for which the answer is a
nonnegative integer is called a counting
problem

The class #P contains the counting
problems that align to decision problems
in NP
— really this is the class of problems that count
the number of accepting paths in a Turing

machine that is nondeterministic and runs in
polynomial time

A problem is #P-Hard if given an O(1)
oracle to solve it, every problem in #P can
be solved in polynomial time (e.g. by
reduction)

A problem is #P-Complete if it belongs to
both the classes #P and #P-Hard

There are no known polytime algorithms
for solving #P-Complete problems. If we
found one it would imply that P = NP.

Examples from https://en.wikipedia.org/wiki/%E2%99%AFP-complete

Examples of #P-Hard
problems

#SAT, i.e. how many
satisfying solutions for a
given SAT problem?

How many solutions for
a given DNF formula?

How many solutions for
a 2-SAT problem?

How many perfect
matchings for a
bipartite graph?

How many graph
colorings (with k colors)
for a given graph G?

(#P-Hard)

(NP-Hard)

3-SAT

Background:

* Formulas

— Def: a literal is a binary variable or its negation, e.g. x, is a
positive literal and -, is a negative literal, where x, € {0, 1}

— Def: a clause is a disjunction of literals, e.g. (-x, V X, V -x;)
— Def: a formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, e.g.
(%, VX, Vaxg) A (X, V X, VXg) A (X VaXg VX))
* The 3-SAT Problem
— Given: a CNF formula where each clause has at most 3 literals
— Goal: report the satisfiability of the formula, i.e. whether

there is a satisfying assignment to the variables that makes
the entire formula true

Computational Complexity of

MAP Inference

e Claim: MAP inference is NP-Hard

* Proof Sketch:
Overview: we reduce 3-SAT (known to be NP-Hard) to
the MAP Inference problem

1. Construct a factor graph as follows:

add a variable x; to the factor graph for each variable in 3-SAT

add a variable ¢ to the factor graph for each clause in 3-SAT

add a factor W(c, x; x;, x,) for each clause ¢,(x;, x;, X,)

let the factor W(c, x;, x;, Xi) = 1if ¢/(x;, X;, X,) = true and W(x;, x;,

X) = 0 otherwise

2. Run MAP inference to obtain the most probable
assignment

3. Return true if all the clause variables are true; and false
otherwise

0N oW

#-SAT

Background:

 The 3-SAT Problem
— Given: a CNF formula where each clause has at most 3 literals

— Goal: report the satisfiability of the formula, i.e. whether there is a
satisfying assignment to the variables that makes the entire formula

true

* The #SAT Problem
— Given: a CNF formula where each clause has at most 3 literals
— Goal: report the number of satisfying assignments of the formula

Computational Complexity of
Marginal Inference

* Claim: Marginal inference is #P-Hard

* Proof Sketch:
Overview: we reduce #-SAT (known to be #P-Hard)

to the marginal inference problem
1. Construct a factor graph as follows:

a. ...leftasan exercise...

2. Run marginal inference

3. Return the number of satisfying assigments by...
a. ...leftasanexercise...

APPROXIMATE MARGINAL
INFERENCE

“‘A "A /\ _;§

A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use

t,h,a~P(T,H,A|C=¢)
samples
5. How do we compute conditional marginal probabilities? p

P(H|C=c)=... <:'

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over
taggings:) = [Jva(a)

Sample 1:
Sample 2:
Sample 3:
Sample 4:

Sample 5:

Sample 6:

0=

<START>

= |

=
HHQO0000®

=
N

OO0

=

-10000000

210000000
)

Marginals by Sampling on Factor Graph

The marginal p(X; = x,) gives the probability that variable X,
takes value x; in a random sample

Sample 1:
Sample 2:
Sample 3:
Sample 4:

Sample 5:

Sample 6:

0=

<START>

= |

=
HHQO0000®

=
N

OO0

=

-10000000

210000000
)

W

Marginals by Sampling on Factor Graph

Estimate the
marginals as:

"%

<START>

jﬂ%
Sample1: ' e
Sample 2: ‘ ‘ ‘ ‘ ‘
e @ @ © @ @
e @ @ © @ @
e @ @ @ @ @
Sample 6: ‘ ‘ @ ‘ ‘
- Al "

time flies like

MONTE CARLO METHODS

Monte Carlo Methods

Whiteboard

— Problem 1: Generating samples from a
distribution

— Problem 2: Estimating expectations

— Why is sampling from p(x) hard?

— Example: estimating plankton concentration in a
lake

— Algorithm: Uniform Sampling

— Example: estimating partition function of high
dimensional function

Slide from lan Murray

Properties of Monte Carlo

S
Estimator: /f(x)P(a;) dr ~ f = ! Zf(a;(s)), (%) ~ P(z)

Estimator is unbiased:

S
Epuon [f] = ¢ X Er@lf(@)] = Epglf(@)

Variance shrinks x 1/5:
S
A 1
VT b0y M = Y varp [f(@)] = varpe[f(@)] /9
s=1

“Error bars” shrink like v/S

Slide from lan Murray

A dumb approximation of

Plz.y) 1 O0<z<1 and O<y<l1
x,Y) =
Y 0 otherwise

T = 4//1[((:62—|—y2) < 1)P(z,y) dz dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418 23

Slide from lan Murray

Aside: don't always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast
octave:1> 4 *x quadl(@(x) sqrt(1-x.72), 0, 1, tolerance)

Gives 7 to 6 dp's in 108 evaluations, machine precision in 2598.
(NB Matlab's quadl fails at zero tolerance)

24

Slide from lan Murray

Sampling from distributions

Draw points uniformly under the curve:

2 23 1) @) x

Probability mass to left of point ~ Uniform|[0,1]

25

Slide from lan Murray

Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

Draw mass to left of point:
u ~ Uniform[0,1]

Sample, y(u) = h~(u)

0

Figure from PRML, Bishop (2006) Yy

Although we can't always compute and invert h(y) .

Rejection Sampling

Whiteboard:

— Example: Rejection Sampling with a rectangular
proposal

Slide from lan Murray

Rejection sampling

~

Sampling underneath a P(z)x P(x) curve is also valid

Draw underneath a simple
curve kQ(x) > P(x):
— Draw =z ~ Q(x)
— height u ~ Uniform|0, kQ(x)]

Discard the point if above P,
ie. if u> P(x)

29

Slide from lan Murray

Importance sampling

Computing P(z) and Q(z), then throwing = away seems wasteful
Instead rewrite the integral as an expectation under Q):

/ F(2)P(x) da

P(x) |
/ Fo) (x)Q(a;) de. (O(@) > 0if P(a) > 0)
s >)

1 S
MR SRR

Q

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution. .

Slide from lan Murray

Importance sampling (2)

291 ZS o PE™)
. =(s)
T

7(s) 5

S
% ; f(x(S))%ZS/ & =

This estimator is consistent but biased

Q

I
=
S
=

S
=

Exercise: Prove that Zp/Zg ~ £ > 7#®)

31

Slide from lan Murray

Summary so far

Sums and integrals, often expectations, occur frequently in statistics
Monte Carlo approximates expectations with a sample average
Rejection sampling draws samples from complex distributions

Importance sampling applies Monte Carlo to ‘any’ sum/integral

32

Slide from lan Murray

Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

Rejection sampling:

Requires 0 > 1. Fraction of proposals accepted = o~

Importance sampling:

2 \D/2
Variance of importance weights = (#ﬁc?) —1

Infinite / undefined variance if o < 1//2 .

