## 10-418/10-618 Machine Learning for Structured Data

Machine Learning Department
School of Computer Science
Carnegie Mellon University

## Complexity of Inference $+$ <br> Monte Carlo Methods

Matt Gormley Lecture 11
Oct. 5, 2022

## COMPUTATIONAL COMPLEXITY OF INFERENCE

## Proving Computational Complexity

## Question:

In order to prove that a decision problem is NPHard, we must...
A. ... reduce our decision problem to a known NP-Hard problem.
B. ... reduce a known NP-Hard problem to our decision problem.

## Answer:

## Complexity Classes

- An algorithm runs in polynomial time if its runtime is a polynomial function of the input size (e.g. O( $\mathrm{n}^{\mathrm{k}}$ ) for some fixed constant k )
- The class $\mathbf{P}$ consists of all problems that can be solved in polynomial time
- A problem for which the answer is binary (e.g. yes/no) is called a decision problem
- The class NP contains all decision problems where 'yes' answers can be verified (proved) in polynomial time
- A problem is NP-Hard if given an O(1) oracle to solve it, every problem in NP can be solved in polynomial time (e.g. by reduction)
- A problem is NP-Complete if it belongs to both the classes NP and NP-Hard



## Complexity Classes

- There are no known polytime algorithms
for solving \#P-Complete problems. If we

There are no known polytime algorithms
for solving \#P-Complete problems. If we found one it would imply that $P=N P$.

- A problem for which the answer is a nonnegative integer is called a counting problem
- The class \#P contains the counting problems that align to decision problems in NP
- really this is the class of problems that count the number of accepting paths in a Turing machine that is nondeterministic and runs in polynomial time
- A problem is \#P-Hard if given an $\mathrm{O}(1)$ oracle to solve it, every problem in \#P can be solved in polynomial time (e.g. by reduction)
- A problem is \#P-Complete if it belongs to both the classes \#P and \#P-Hard


## Examples of \#P-Hard problems

- \#SAT, i.e. how many satisfying solutions for a given SAT problem?
- How many solutions for a given DNF formula?
- How many solutions for a 2 -SAT problem?
- How many perfect matchings for a bipartite graph?
- How many graph colorings (with $k$ colors) for a given graph G ?


## $R$

## 5. Inference

Three Tasks:

1. Marginal Inference (\#\#P-Hard)

Compute marginals of variables and cliques

$$
p\left(x_{i}\right)=\sum_{\boldsymbol{x}^{\prime}: x_{i}^{\prime}=x_{i}} p\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{\theta}\right) \quad p\left(\boldsymbol{x}_{C}\right)=\sum_{\boldsymbol{x}^{\prime}: \boldsymbol{x}_{C}^{\prime}=\boldsymbol{x}_{C}} p\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{\theta}\right)
$$

2. Partition Function (\#P-Hard)

Compute the normalization constant

$$
Z(\boldsymbol{\theta})=\sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})
$$

## 3-SAT

## Background:

- Formulas
- Def: a literal is a binary variable or its negation, e.g. $x_{1}$ is a positive literal and $\neg \mathrm{x}_{1}$ is a negative literal, where $\mathrm{X}_{1} \in\{0,1\}$
- Def: a clause is a disjunction of literals, e.g. $\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right)$
- Def: a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, e.g.
$\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{4} \vee \neg x_{6}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{5}\right)$
- The 3-SAT Problem
- Given: a CNF formula where each clause has at most 3 literals
- Goal: report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true


## Computational Complexity of MAP Inference

- Claim: MAP inference is NP-Hard
- Proof Sketch:

Overview: we reduce 3-SAT (known to be NP-Hard) to the MAP Inference problem

1. Construct a factor graph as follows:
a. add a variable $x_{i}$ to the factor graph for each variable in 3 -SAT
b. add a variable $c_{1}$ to the factor graph for each clause in 3-SAT
c. add a factor $\Psi\left(c_{1}, x_{i}, x_{j}, x_{k}\right)$ for each clause $c_{l}\left(x_{i}, x_{j}, x_{k}\right)$
d. let the factor $\Psi\left(c_{1}, x_{i}, x_{j}, x_{k}\right)=1$ if $c_{l}\left(x_{i}, x_{i}, x_{k}\right)=\operatorname{true}$ and $\psi\left(x_{i}, x_{j}\right.$, $x_{k}$ ) $=0$ otherwise
2. Run MAP inference to obtain the most probable assignment
3. Return true if all the clause variables are true; and false otherwise

## \#-SAT

## Background:

- The 3-SAT Problem
- Given: a CNF formula where each clause has at most 3 literals
- Goal: report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true
- The \#-SAT Problem
- Given: a CNF formula where each clause has at most 3 literals
- Goal: report the number of satisfying assignments of the formula


## Computational Complexity of Marginal Inference

- Claim: Marginal inference is \#P-Hard
- Proof Sketch:

Overview: we reduce \#-SAT (known to be \#P-Hard) to the marginal inference problem

1. Construct a factor graph as follows: a. ...left as an exercise...
2. Run marginal inference
3. Return the number of satisfying assigments by... a. ...left as an exercise...

## APPROXIMATE MARGINAL INFERENCE

## 1．Data

$$
\mathcal{D}=\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{N}
$$



## 5．Inference

1．Marginal Inference

$$
p\left(\boldsymbol{x}_{C}\right)=\sum_{\boldsymbol{x}^{\prime}: \boldsymbol{x}_{C}^{\prime}=\boldsymbol{x}_{C}} p\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{\theta}\right)
$$

2．Partition Function

3．MAP Inference

$$
Z(\boldsymbol{\theta})=\sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_{C}\left(\boldsymbol{x}_{C}\right)
$$

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})
$$

## 2．Model

$$
\begin{aligned}
& p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_{C}\left(\boldsymbol{x}_{C}\right) \\
& \begin{array}{ll}
\text { O-OーO-OーO } \\
0 & 0 \\
0 & 0
\end{array}
\end{aligned}
$$

## 3．Objective

$$
\ell(\theta ; \mathcal{D})=\sum_{n=1}^{N} \log p\left(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta}\right)
$$

## 4．Learning

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ell(\boldsymbol{\theta} ; \mathcal{D})
$$



## A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

1. How do we compute the probability of a specific assignment to the variables?
$\mathrm{P}(\mathrm{T}=\mathrm{t}, \mathrm{H}=\mathrm{h}, \mathrm{A}=\mathrm{a}, \mathrm{C}=\mathrm{c})$
2. How do we draw a sample from the joint distribution?
t,h,a, c ~ P(T, H, A, C)
3. How do we compute marginal probabilities?

$$
P(A)=\ldots
$$

4. How do we draw samples from a conditional distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A} \mid \mathrm{C}=\mathrm{c})$
5. How do we compute conditional marginal probabilities? $P(H \mid C=c)=\ldots$

Can we
use
samples

## Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: $p(x)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(x_{\alpha}\right)$


## Marginals by Sampling on Factor Graph

The marginal $p\left(X_{i}=x_{i}\right)$ gives the probability that variable $\mathrm{X}_{i}$ takes value $\mathrm{x}_{\mathrm{i}}$ in a random sample


## Marginals by Sampling on Factor Graph



## MONTE CARLO METHODS

## Monte Carlo Methods

## Whiteboard

- Problem 1: Generating samples from a distribution
- Problem 2: Estimating expectations
- Why is sampling from $p(x)$ hard?
- Example: estimating plankton concentration in a lake
- Algorithm: Uniform Sampling
- Example: estimating partition function of high dimensional function


## Properties of Monte Carlo

Estimator: $\int f(x) P(x) \mathrm{d} x \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right), \quad x^{(s)} \sim P(x)$

Estimator is unbiased:

$$
\mathbb{E}_{P\left(\left\{x^{(s)}\right\}\right)}[\hat{f}]=\frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)}[f(x)]=\mathbb{E}_{P(x)}[f(x)]
$$

Variance shrinks $\propto 1 / S:$

$$
\operatorname{var}_{P\left(\left\{x^{(s)}\right\}\right)}[\hat{f}]=\frac{1}{S^{2}} \sum_{s=1}^{S} \operatorname{var}_{P(x)}[f(x)]=\operatorname{var}_{P(x)}[f(x)] / S
$$

"Error bars" shrink like $\sqrt{S}$

## A dumb approximation of $\pi$



$$
\begin{aligned}
& P(x, y)=\left\{\begin{array}{ll}
1 & 0<x<1 \\
0 & \text { otherwise }
\end{array} \text { and } 0<y<1\right. \\
& \pi=4 \iint \mathbb{I}\left(\left(x^{2}+y^{2}\right)<1\right) P(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

octave:1> S=12; a=rand (S,2); 4*mean(sum(a.*a,2)<1) ans $=3.3333$
octave:2> S=1e7; a=rand (S,2); 4*mean(sum(a.*a,2)<1) ans $=3.1418$

## Aside: don't always sample!

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

- Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives $\pi$ to 6 dp's in 108 evaluations, machine precision in 2598. (NB Matlab's quadl fails at zero tolerance)

## Sampling from distributions

Draw points uniformly under the curve:


Probability mass to left of point $\sim$ Uniform $[0,1]$

## Sampling from distributions

How to convert samples from a Uniform $[0,1]$ generator:


$$
h(y)=\int_{-\infty}^{y} p\left(y^{\prime}\right) \mathrm{d} y^{\prime}
$$

Draw mass to left of point: $u \sim$ Uniform $[0,1]$

Sample, $y(u)=h^{-1}(u)$

## Rejection Sampling

Whiteboard:

- Example: Rejection Sampling with a rectangular proposal


## Rejection sampling

Sampling underneath a $\tilde{P}(x) \propto P(x)$ curve is also valid


## Importance sampling

Computing $\tilde{P}(x)$ and $\tilde{Q}(x)$, then throwing $x$ away seems wasteful Instead rewrite the integral as an expectation under $Q$ :

$$
\begin{aligned}
\int f(x) P(x) \mathrm{d} x & =\int f(x) \frac{P(x)}{Q(x)} Q(x) \mathrm{d} x, \quad(Q(x)>0 \text { if } P(x)>0) \\
& \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right) \frac{P\left(x^{(s)}\right)}{Q\left(x^{(s)}\right)}, \quad x^{(s)} \sim Q(x)
\end{aligned}
$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.

## Importance sampling (2)

Previous slide assumed we could evaluate $P(x)=\tilde{P}(x) / \mathcal{Z}_{P}$

$$
\begin{aligned}
\int f(x) P(x) \mathrm{d} x & \approx \frac{\mathcal{Z}_{Q}}{\mathcal{Z}_{P}} \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right) \underbrace{\frac{\tilde{P}\left(x^{(s)}\right)}{\tilde{Q}\left(x^{(s)}\right)}}_{\tilde{r}^{(s)}}, \quad x^{(s)} \sim Q(x) \\
& \approx \frac{1}{S} \sum_{s=1}^{S} f\left(x^{(s)}\right) \frac{\tilde{r}^{(s)}}{\frac{1}{S} \sum_{s^{\prime}} \tilde{r}^{\left(s^{\prime}\right)}} \equiv \sum_{s=1}^{S} f\left(x^{(s)}\right) w^{(s)}
\end{aligned}
$$

This estimator is consistent but biased

Exercise: Prove that $\mathcal{Z}_{P} / \mathcal{Z}_{Q} \approx \frac{1}{S} \sum_{s} \tilde{r}^{(s)}$

## Sunn sonarar far

- Sums and integrals, often expectations, occur frequently in statistics
- Monte Carlo approximates expectations with a sample average
- Rejection sampling draws samples from complex distributions
- Importance sampling applies Monte Carlo to 'any' sum/integral


## Pitfalls of Monte Carlo

Rejection \& importance sampling scale badly with dimensionality
Example:

$$
P(x)=\mathcal{N}(0, \mathbb{I}), \quad Q(x)=\mathcal{N}\left(0, \sigma^{2} \mathbb{I}\right)
$$

Rejection sampling:
Requires $\sigma \geq 1$. Fraction of proposals accepted $=\sigma^{-D}$

Importance sampling:
Variance of importance weights $=\left(\frac{\sigma^{2}}{2-1 / \sigma^{2}}\right)^{D / 2}-1$
Infinite / undefined variance if $\sigma \leq 1 / \sqrt{2}$

