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Reminders

• Homework 2: Learning to Search for RNNs
– Out: Sun, Sep 18
– Written (except for Empirical Questions)
• Due: Thu, Sep 29 at 11:59pm

– Programming + Empirical Questions
• Due: Mon, Oct 24 at 9:00am

• Homework 3: General Graph CRF Module
– Out: Thu, Sep 29
– Due: Mon, Oct 10 at 11:59pm
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Reminders

• Homework 2: Learning to Search for RNNs
– Out: Sun, Sep 18
– Written (except for Empirical Questions)
• Due: Thu, Sep 29 at 11:59pm

– Programming + Empirical Questions
• Due: Mon, Oct 24 at 9:00am

– New autograder disaster…
• Homework 3: General Graph CRF Module
– Out: Thu, Sep 29
– Due: Mon, Oct 10 at 11:59pm
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MRF AND CRF LEARNING 
(LOG-LINEAR PARAMETERIZATION)
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Options for MLE of MRFs
• Setting I:

A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

• Setting III:
E. Gradient-based Methods
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 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

 C(xC) = exp(✓ · f(xC))
…

…



MRF and CRF Learning

Whiteboard
– log-linear MRF model (i.e. with feature based 

potentials)
– log-linear MRF derivatives
– log-linear MRF training with SGD
– log-linear CRF model (i.e. with feature based 

potentials)
– log-linear CRF derivatives
– log-linear CRF training with SGD
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Recipe for Gradient-based Learning

1. Write down the objective function
2. Compute the partial derivatives of the 

objective (i.e. gradient, and maybe Hessian)
3. Feed objective function and derivatives into 

black box

4. Retrieve optimal parameters from black 
box
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Optimization



Optimization Algorithms

What is the black box?
• Newton’s method
• Hessian-free / Quasi-Newton methods
– Conjugate gradient
– L-BFGS

• Stochastic gradient methods
– Stochastic gradient descent (SGD)
– SGD with momentum
– Adam
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Stochastic Gradient Descent (SGD)
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Assume we have an objective that decomposes additively:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Generative vs. Discriminative
Liang & Jordan (ICML 
2008) compares HMM
and CRF with identical 
features
• Dataset 1: (Real)

– WSJ Penn Treebank 
(38K train, 5.5K test)

– 45 part-of-speech tags
• Dataset 2: (Artificial)

– Synthetic data 
generated from HMM 
learned on Dataset 1 
(1K train, 1K test)

• Evaluation Metric: 
Accuracy
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NEURAL PARAMETERIZATION 
OF CONDITIONAL RANDOM FIELD
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Options for MLE of MRFs
• Setting I:

A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

• Setting III:
E. Gradient-based Methods
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 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

 C(xC) = exp(✓ · f(xC))
…

…



Motivation: 
Hybrid Models

Graphical models let you 
encode domain 
knowledge

Neural nets are really 
good at fitting the data 
discriminatively to make 
good predictions
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Could we define a neural net 
that incorporates 

domain knowledge?

…

…

…



Motivation: 
Hybrid Models

Key idea: Use a NN to learn features for a GM, 
then train the entire model by backprop
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Chart parser: 



A Recipe for 
Neural Networks

1. Given training data:
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2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



MRF AND CRF LEARNING 
(NEURAL PARAMETERIZATION)
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Options for MLE of MRFs
• Setting I:

A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

• Setting II:
C. Generalized Iterative Scaling
D. Gradient-based Methods

• Setting III:
E. Gradient-based Methods
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 C(xC) = ✓C,xC

 C(xC) = exp(✓ · f(xC))

 C(xC) = exp(✓ · f(xC))
…

…



Whiteboard:
– CRF w/LSTM potentials
– Gradient of MRF/CRF log-likelihood with respect 

to log potentials
– Gradient of MRF/CRF log-likelihood with respect 

to potentials
– Backprop with MRF/CRF log-likelihood as a loss 

function

19



Factor Derivatives
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HYBRIDS OF NEURAL NETWORKS 
WITH GRAPHICAL MODELS

22



Outline of Examples
• Hybrid NN + HMM 
– Model: neural net for emissions
– Learning: backprop for end-to-end training
– Experiments: phoneme recognition (Bengio et al., 1992)

• Hybrid RNN + HMM
– Model: neural net for emissions
– Experiments: phoneme recognition (Graves et al., 2013)

• Hybrid CNN + CRF
– Model: neural net for factors
– Experiments: natural language tasks (Collobert & 

Weston, 2011)
– Experiments:  pose estimation

• Tricks of the Trade
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HYBRID: 
NEURAL NETWORK + HMM
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Markov Random Field (MRF)
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

ti
m
e

fl
ie
s

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fl
ie
s

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

Joint distribution over tags Yi and words Xi
The individual factors aren’t necessarily probabilities.

Recall…



time flies like an arrow

n v p d n<START>

Hidden Markov Model
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But sometimes we choose to make them probabilities.  
Constrain each row of a factor to sum to one.  Now Z = 1.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m
e

fl
ie
s

lik
e

…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m
e

fl
ie
s

lik
e

…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)

Recall…



Gaussian emission:

p(Yt|St = i) =

Hybrid: NN + HMM
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Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p(u, a) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…

(Bengio et al., 1992)



(Bengio et al., 1992)

Gaussian emission:

p(Yt|St = i) =

Hybrid: NN + HMM
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Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p(u, a) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…

Lots of oddities to this picture:
• Clashing visual notations 

(graphical model vs. neural 
net)

• HMM generates data top-
down, NN generates 
bottom-up and they meet in 
the middle.

• The “observations” of the 
HMM are not actually 
observed (i.e. x’s appear in 
NN only)

So what are we missing?



Hybrid: NN + HMM
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Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

…

…

…

…

…

…

…



ai,j = p(St = i|St�1 = j)

bi,t = p(Yt|St = i) Hybrid: NN + HMM
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…

…

…

…

…

…

…

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Forward-backward algorithm: a “feed-forward” 
algorithm for computing alpha-beta probabilities. 

Log-likelihood: a “feed-forward” 
objective function.

HQ; p(a, u) = �END,T



A Recipe for 
Graphical Models

1. Given training data:
3. Define goal:

31

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Log-likelihood: a “feed-forward” 
objective function.

HQ; p(a, u) = �END,T

Decision / Loss Function for 
Hybrid NN + HMM

Forward-backward algorithm: a “feed-forward” 
algorithm for computing alpha-beta probabilities. 

How do we compute 
the gradient?



Backpropagation

32

Training

Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)
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Chain Rule:

Recall…
Graphical Model and 

Log-likelihood
Neural 

Network

How to compute these partial derivatives?



Backpropagation
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Training
2.2. NEURAL NETWORKS AND BACKPROPAGATION

(F) Loss
J = 1

2(y � y(d))2

(E) Output (sigmoid)
y = 1

1+exp(b)

(D) Output (linear)
b =

PD
j=0 �jzj

(C) Hidden (sigmoid)
zj =

1
1+exp(aj)

, 8j

(B) Hidden (linear)
aj =

PM
i=0 ↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =
h✓(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) = 1

1+exp(a)
element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping

12

…

…

Output

Input

Hidden Layer

What does this picture actually mean?

Recall…



Backpropagation
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Training

Case 2:
Neural 
Network

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤ log q + (1 � y⇤) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)2

a =
DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤ log q + (1 � y⇤) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤)

q � 1

q =
1

1 + exp(�b)

dJ

db
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dJ

dy

dy

db
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dy

db
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exp(b)

(exp(b) + 1)2
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dJ
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=
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dzj
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dJ
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dzj
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dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)2

aj =
MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji

and dJ
d�j

, but also the partial derivatives with respect to each
intermediate quantity dJ

daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi

.
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Recall…



Hybrid: NN + HMM
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… …

…

…

…

…

…

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Computing the Gradient:

HQ; p(a, u) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).
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Hybrid: NN + HMM
Experimental Setup:
• Task: Phoneme Recognition 

(aka. speaker independent 
recognition of plosive 
sounds)

• Eight output labels: 
– /p/, /t/, /k/, /b/, /d/, /g/, /dx/, 

/all other phonemes/
– These are the HMM hidden 

states
• Metric: Accuracy
• 3 Models:

1. NN only
2. NN + HMM 

(trained independently)
3. NN + HMM 

(jointly trained)
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(Graves et al., 2013)

Hybrid: RNN + HMM
• Graves et al. 

(2013) uses a 
Deep 
Bidirectional 
LSTM

• Each hidden unit 
is an LSTM

• Deep è More 
than two layers

42

Y1 Y2 Y3 Y4

S1 S2 S3 S4

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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The model, inference, and 
learning can be analogous to 
our NN + HMM hybrid
• Objective: log-likelihood
• Model: HMM/Gaussian 

emissions
• Inference: forward-

backward algorithm
• Learning: SGD with 

gradient by 
backpropagation

(Graves et al., 2013)
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Experimental Setup:
• Task: Phoneme Recognition
• Dataset: TIMIT
• Metric: Phoneme Error 

Rate
• Two classes of models:

1. Neural Net only
2. NN + HMM hybrids

vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh
units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were
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Conditional Random Field (CRF)
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time flies like an arrow

• In a standard CRF, each of the factor cells is a 
parameter (e.g. transition or emission)

• In the hybrid model, these values are computed 
by a neural network with its own parameters



Hybrid: Neural Net + CRF
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Forward computation



Hybrid: CNN + CRF

• For computer 
vision, 
Convolutional 
Neural Networks 
are in 2-dimensions

• For natural 
language, the CNN 
is 1-dimensional
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(Collobert & Weston, 2011)
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Figure 2: Sentence approach network.

at row i and column j in the matrix. We also denote hAidwin
i the vector obtained by

concatenating the dwin column vectors around the ith column vector of matrix A 2 Rd1⇥d2 :
h
hAidwin

i

iT

=
⇣
[A]1, i�dwin/2

. . . [A]d1, i�dwin/2
, . . . , [A]1, i+dwin/2

. . . [A]d1, i+dwin/2

⌘
.

As a special case, hAi1i represents the ith column of matrix A. For a vector v, we denote
[v]i the scalar at index i in the vector. Finally, a sequence of element {x1, x2, . . . , xT } is
written [x]T1 . The ith element of the sequence is [x]i.
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Figure from (Collobert & Weston, 2011)



Hybrid: CNN + CRF
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“NN + SLL”
• Model: Convolutional 

Neural Network 
(CNN) with linear-
chain CRF

• Training objective: 
maximize sentence-
level likelihood (SLL)



Hybrid: CNN + CRF
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“NN + WLL”
• Model: Convolutional 

Neural Network 
(CNN) with logistic 
regression

• Training objective: 
maximize word-level 
likelihood (WLL)



Hybrid: CNN + CRF

53

Experimental Setup:
• Tasks: 

– Part-of-speech tagging (POS), 
– Noun-phrase and Verb-phrase Chunking, 
– Named-entity recognition (NER)
– Semantic Role Labeling (SRL)

• Datasets / Metrics: Standard setups from NLP 
literature (higher PWA/F1 is better)

• Models:
– Benchmark systems are typical – non-neural 

network systems
– NN+WLL: hybrid CNN with logistic regression
– NN+SLL: hybrid CNN with linear-chain CRF

(Collobert & Weston, 2011)

ar
Xi
v

Natural Language Processing (almost) from Scratch

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a
vanilla neural network (NN) approach, on POS, chunking, NER and SRL tasks. We report
results with both the word-level log-likelihood (WLL) and the sentence-level log-likelihood
(SLL). Generalization performance is reported in per-word accuracy rate (PWA) for POS
and F1 score for other tasks. The NN results are behind the benchmark results, in Section 4
we show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS dwin = 5 d0 = 50 d1 = 5 n1
hu = 300 � = 0.01

CHUNK ” ” ” ” ”

NER ” ” ” ” ”

SRL ” ” ”
n1
hu = 300

n2
hu = 500

”

Table 5: Hyper-parameters of our networks. We report for each task the window size
(or convolution size), word feature dimension, capital feature dimension, number of hidden
units and learning rate.

compute derivatives with respect to its inputs and with respect to its trainable parameters,
as proposed by Bottou and Gallinari (1991). This allows us to easily build variants of our
networks. For details about gradient computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCun
et al., 1998). Which ones to choose is often confusing. We employed only two of them: the
initialization and update of the parameters of each network layer were done according to
the “fan-in” of the layer, that is the number of inputs used to compute each output of this
layer (Plaut and Hinton, 1987). The fan-in for the lookup table (1), the lth linear layer (4)
and the convolution layer (6) are respectively 1, nl�1

hu and dwin⇥nl�1
hu . The initial parameters

of the network were drawn from a centered uniform distribution, with a variance equal to
the inverse of the square-root of the fan-in. The learning rate in (17) was divided by the
fan-in, but stays fixed during the training.

3.4 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the window architecture described
in Section 3.2.1. The SRL task was trained using the sentence approach (Section 3.2.2).
Results are reported in Table 4, in per-word accuracy (PWA) for POS, and F1 score for all

17



Hybrid: CNN + MRF
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Experimental Setup:
• Task: pose estimation
• Model: Deep CNN + MRF

(Thompson et al., 2014)

The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).
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The FLIC-full dataset contains 20928 training images, however many of these training set
images contain samples from the 1016 test set scenes and so would allow unfair over-
training on the FLIC test set. Therefore, we propose a new dataset - called FLIC-plus
(http://cims.nyu.edu/⇠tompson/flic plus.htm) - which is a 17380 image subset from the FLIC-plus
dataset. To create this dataset, we produced unique scene labels for both the FLIC test set and FLIC-
plus training sets using Amazon Mechanical Turk. We then removed all images from the FLIC-plus
training set that shared a scene with the test set. Since 253 of the sample images from the original
3987 FLIC training set came from the same scene as a test set sample (and were therefore removed
by the above procedure), we added these images back so that the FLIC-plus training set is a superset
of the original FLIC training set. Using this procedure we can guarantee that the additional samples
in FLIC-plus are sufficiently independent to the FLIC test set samples.

For evaluation of the test-set performance we use the measure suggested by Sapp et. al. [27]. For a
given normalized pixel radius (normalized by the torso height of each sample) we count the number
of images in the test-set for which the distance of the predicted UV joint location to the ground-truth
location falls within the given radius.

Fig 7a and 7b show our model’s performance on the the FLIC test-set for the elbow and wrist joints
respectively and trained using both the FLIC and FLIC-plus training sets. Performance on the LSP
dataset is shown in Fig 7c and 8a. For LSP evaluation we use person-centric (or non-observer-
centric) coordinates for fair comparison with prior work [30, 8]. Our model outperforms existing
state-of-the-art techniques on both of these challenging datasets with a considerable margin.

(a) FLIC: Elbow (b) FLIC: Wrist (c) LSP: Wrist and Elbow

Figure 7: Model Performance

Fig 8b illustrates the performance improvement from our simple Spatial-Model. As expected the
Spatial-Model has little impact on accuracy for low radii threshold, however, for large radii it in-
creases performance by 8 to 12%. Unified training of both models (after independent pre-training)
adds an additional 4-5% detection rate for large radii thresholds.

(a) LSP: Ankle and Knee
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(b) FLIC: Wrist
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Figure 8: (a) Model Performance (b) With and Without Spatial-Model (c) Part-Detector Performance
Vs Number of Resolution Banks (FLIC subset)
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Tricks of the Trade
• Lots of them:
– Pre-training helps (but isn’t always necessary)
– Train with adaptive gradient variants of SGD (e.g. Adam)
– Use max-margin loss function (i.e. hinge loss) – though 

only sub-differentiable it often gives better results
– …

• A few years back, they were considered “poorly 
documented” and “requiring great expertise”

• Now there are lots of good tutorials that describe 
(very important) specific implementation details

• Many of them also apply to training graphical 
models!
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MBR DECODING
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

60

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the MAP inference problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the MAP inference probl

Minimum Bayes Risk Decoding

Consider some example loss functions:
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`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



MBR Decoders
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Q: If loss(y, y*) additively decomposes in the same 
way as log p(y|x), can we efficiently compute the 
MBR decoder h(x) for that loss/model pair?

A: Yes.

How to do so is left as an exercise…


