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Reminders

* Homework 2: Learning to Search for RNNs
— Out: Sun, Sep 18

* Homework 3: General Graph CRF Module
— Out: Thu, Sep 29
— Due: Mon, Oct 10 at 11:59pm
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MRF AND CRF LEARNING
(LOG-LINEAR PARAMETERIZATION)



Options for MLE of MRFs

* Setting I: wc(fﬁc) — HC,wc
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

» Setting Il: Yo (o) = exp(0 - f(xeo))
C. Generalized Iterative Scaling
D. Gradient-based Methods

» Setting lll: Yo (o) =
E. Gradient-based Methods



MRF and CRF Learning

Whiteboard
og-linear MRF model (i.e. with feature based

og-
0g-
og-

potentials)

inear MRF derivatives
inear MRF training with SGD
inear CRF model (i.e. with feature based

botentials)
og-linear CRF derivatives

og-linear CRF training with SGD



Recipe for Gradient-based Learning

. Write down the objective function

. Compute the partial derivatives of the
objective (i.e. gradient, and maybe Hessian)

. Feed objective function and derivatives into
black box

—

—

Optimization

. Retrieve optimal parameters from black
box



Optimization Algorithms

What is the black box?
e Newton’s method

* Hessian-free | Quasi-Newton methods
— Conjugate gradient
— L-BFGS

* Stochastic gradient methods

— Stochastic gradient descent (SGD)
— SGD with momentum

— Adam




Stochastic Gradient Descent (SGD)

Assume we have an objective that decomposes additively:

Let J(6) = Y-is, J@(6)

Algorithm 2 Stochastic Gradient Descent (SGD)

i: procedure SGD(D, 69)

x 0+ 09

2% while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0+ 0 —YVeJ(O)
return 6




Generative vs. Discriminative

Liang & Jordan (ICML
2008) compares HMM
and CRF with identical
features

Dataset 1: (Real)

— WSJ Penn Treebank
(38K train, 5.5K test)

— 45 part-of-speech tags
Dataset 2: (Artificial)

— Synthetic data
generated from HMM

learned on Dataset 1
(1K train, 1K test)

Evaluation Metric:
Accuracy

98%
967%
947%
92%
90%
88%
86%
84%

95.60%
93.50%

Dataset 1

89.80%
87.90%

Dataset 2

HMM
CRF



NEURAL PARAMETERIZATION
OF CONDITIONAL RANDOM FIELD



Options for MLE of MRFs

* Setting I: wc(fﬁc) — HC,wc
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

» Setting Il: Yo (o) = exp(0 - f(xeo))
C. Generalized Iterative Scaling
D. Gradient-based Methods

» Setting lll: Yo (o) =
E. Gradient-based Methods



Motivation:
Hybrid Models

Graphical models let you
encode domain
knowledge

Neural nets are really
good at fitting the data
discriminatively to make
good predictions

Could we define a neural net
that incorporates
domain knowledge?




Motivation:
Hybrid Models

Key idea: Use a NN to learn features for a GM,
then train the entire model by backprop
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A Recipe for
Neural Networks

1. Given training data:

{"L‘ia Y; ff\il

Face Face Not a face

2. Choose each of these:
— Decision function

A Examples: Linear regression,
y — fQ (LL‘Z) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
é(y, yz) E R Cross Entropy



MRF AND CRF LEARNING
(NEURAL PARAMETERIZATION)



Options for MLE of MRFs

* Setting I: wc(fﬁc) — HC,wc
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

» Setting Il: Yo (o) = exp(0 - f(xeo))
C. Generalized Iterative Scaling
D. Gradient-based Methods

» Setting lll: Yo (o) =
E. Gradient-based Methods



Whiteboard:
— CRF w/LSTM potentials

— Gradient of MRF/CRF log-likelihood with respect
to log potentials

— Gradient of MRF/CRF log-likelihood with respect
to potentials

— Backprop with MRF/CRF log-likelihood as a loss
function



Factor Derivatives

Log-probability:

logp(y) = | ) _10g%a(ya)

Derivatives:

0log p(y)
0log 1o (y?,

;= 1(ya

o 10g Z Hwa(ygﬁ)

y'eY «

=va) —p(ya)

Ologp(y) 1(ya=y,) —0(ys,)

0o (yh,)

Va(Yo)

(1)

(2)
(3)



HYBRIDS OF NEURAL NETWORKS
WITH GRAPHICAL MODELS



Outline of Examples

Hybrid NN + HMM

— Model: neural net for emissions

— Learning: backprop for end-to-end training

— Experiments: phoneme recognition (Bengio et al., 1992)

Hybrid RNN + HMM
— Model: neural net for emissions
— Experiments: phoneme recognition (Graves et al., 2013)

Hybrid CNN + CRF

— Model: neural net for factors

— Experiments: natural language tasks (Collobert &
Weston, 2011)

— Experiments: pose estimation
Tricks of the Trade



HYBRID:
NEURAL NETWORK + HMM



Markov Random Field (MRF) %

Joint distribution over tags Y; and words X;
The individual factors aren’t necessarily probabilities.

p(n,v,p,d,n,time,ﬂies,like,an,arrow) = %(4*8*5*3*)
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Hidden Markov Model

But sometimes we choose to make them probabilities.
Constrain each row of a factor to sum to one. Now Z = |.

n, v, p, d, n, time, flies, like, an, arrow — 3*¥8* 2% g* .
p
v nip d v n/p d
v|.1].4].2].3 v|.1].4.2].3
n .c .J1/.1/0 n .8/ .1/.1]|0
pl.2|.3/.2/.3] [p|-2].3/.2].3
d .2/.8 0|0 d .2/.8/0|0
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1q et o\8 \qg—ﬂ

Hybrid: NN + HMM e
Discrete HMM state: S; € {/p/, /t/,/k/,/b/,/d/,...,/q/}

Continuous HMM emission: Y; € RE

T
HMM: p(Y, S) = | [ P(OGISep(S:|S:-1)
t=1

Gaussian emission:
L

p(Yt|St =1) = b“ = Z ((Qw)n | ¥ |)1/2 eXP(—%(Yt — Hk:)zl;l(yt — Hk)T)

k




Hybrid: NN + HMM

Discrete HMM state: S; € {/p/, /t/,/k

Continuous HMM emission: Y; € R

T
HMM: p(Y, 8) = || (S| S¢-1)
t=1

() ()

—
—



Hybrid: NN + HMM




a;,; = p(S; = i|Si—1 = j)

ba=palse=0"""Hybrid: NN + HMM

Forward-backward algorithm: a “feed-forward”
algorithm for computing alpha-beta probabilities.
o = P(Y f and S; =1 | model) = b;, Z(lj,j(rﬂ_l
J
Biy = P(Y ,11\ Sy = 2 and model) = Z a;jbj 1415 141
j

vi: =P(S;=1i|Y ! and model) = a; ¢ 3 4

Log-likelihood: a “feed-forward”
objective function.

logp(S, Y) = QYEND,T

30



A Recipe for
Graphi

alc
Decision / Loss Function for

Hybrid NN + HMM

1. Given training data:

Forward-backward algorithm: a “feed-forward”
{w . N algorithm for computing alpha-beta probabilities.
(2 y’L 1— ]- o = P(Y Land Sy =i | model) = b; Zuﬁ(rj,,_l
J
Biv = P(Y 111\ Sy = 1 and model) = Z a;jbj 14135 141
2. Choose each 0¥ aes f‘
Vit =P(S;=1|Y { and model) = a; 4 3 4
— Decision f ion

Log-likelihood: a “feed-forward”

N , bjective function.
Yy — f 0 (mz) ’
logp(S, Y) — QEND,T nt)

— Loss functio

5(@7 yz) -~ e VE(fo(xi), y;)

.




Training ~ Backpropagation

Backpropagation l l
is just repeated

application of the Yy = and U = h(fL’)

chain rule from
Calculus 101.
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Training ~ Backpropagation

(F) Loss
What does this picture actually mean? J =35y —y D)

?

( (E) Output (sigmoid) )
1

Y= 1+exp(d)

?

[ (D) Output (linear)
b=>"0Bi%
( (C) Hidden (sigmoid)

_ 1
i = 1+exp(aj)’ \V/]

?

[ (B) Hidden (linear)
a; =g i, Vj
[ (A) Input ]

Given x;, Vi

Output

Hidden Layer

33




Training ~ Backpropagation %

Case 2:
Neural
Network




Hybrid: NN + HMM

Computing the Gradient: Vf(fg (a;z), yi)




Hybrid: NN + HMM

Computing the Gradient: Vf(fg (a;z), yi)




Hybrid: NN + HMM

Computing the Gradient: Vﬁ(fg (.CU,L), yi)




Hybrid: NN + HMM

Computing the Gradient: Vﬁ(fg (wz), yi)




Hybrid: NN + HMM

Computing the Gradient: Vﬁ(fg (.CU,L), yi)




Experimental Setup:

Task: Phoneme Recognition
(aka. speaker independent
recognition of plosive
sounds)

Eight output labels:
— Ipl, Itl, IKl, [b], [d], Ig], [dx/,

[all other phonemes/
— These are the HMM hidden

states
Metric: Accuracy
3 Models:
1. NNonly
2. NN+ HMM
(trained independently)
3. NN+ HMM

(jointly trained)

Accuracy

60

40 -

N
o

o

NN

NN + HMM NN + HMM
(joint)
Model




HYBRID:
RNN + HMM



S 52 53 Graves et al.
(2013) uses a
Deep
Bidirectional
LSTM

N\ N\ N\ Each hidden unit

AN AN PAEN ERENYIY

Deep =» More

Yq Y, Y3 than two layers

N\ N N\

<~ <~ <~

h, h, h;

—> — —

h, h, h;
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Hybrid: RNN + HMM <

The model, inference, and
learning can be analogous to

our NN + HMM hybrid

* Objective: log-likelihood

* Model: HMM/Gaussian <
emissions

* Inference: forward-
backward algorithm

* Learning: SGD with
gradient by
backpropagation

| S
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N

A DO«
4 o«C
Iee
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= >B
A >B
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Experimental Setup:

* Task: Phoneme Recognition

e Dataset: TIMIT

e Metric: Phoneme
Rate

Error

 Two classes of models:
1. Neural Net only
2. NN+ HMM hybrids

TRAINING METHOD TEST PER

CTC 21.57 £ 0.25
CTC (NOISE) 18.63 £0.16
TRANSDUCER 18.07 + 0.24

1. Neural Net only

NETWORK DEV PER
TEST PER
19.91 +0.22
DBRNN 21.92 +0.35
17.44 + 0.156
DBLSTM 19.34 + 0.15
DBLSTM 16.11 +£0.15
(NOISE) 17.99 + 0.13

2. NN + HMM hybrids



HYBRID:
CNN + CRF



Markov Random Field (MRF) %

Joint distribution over tags Y; and words X;

1
p(n,v,p,d,n,time,ﬂies,like,an,arrow) = 7(4*8*5*3*)
v nip d v n/p d
v| 1]/6[3/4] |[v|[1]/6/3]|4
ni (4201 |n 8|4]|2|0.1
p|1/3[1|3] [P|1]3]1 3
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Conditional Random Field (CRF%

Conditional distribution over tags Y; given words x..
The factors and Z are now specific to the sentence x.

1
p(n,v,p,d,n time,ﬂies,like,an,arrow) = 7 (4*8*5*3*...)

v nip d v n/p d
v| 1]/6[3/4] |[v|[1]/6/3]|4
n </4/2041 |n|8|4|2 01
pl1/3/1]3 pl1|/3[1]3
do18/0 0 do18 o0

(D




Hybrid: Neural Net + CRF

Qo B (<
o

e |n astandard CRF, each of the factor cells is a
parameter (e.g. transition or emission)

* Inthe hybrid model, these values are computed
by a neural network with its own parameters



Hybrid: Neural Net + CRF

Forward computation

()

() )}

()

n/.8 .10

o
<
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Hybrid: CNN + CRF

Input Sentence

Text The cat sat on the mat
Feature 1 v wi wl wk v
Featl.lreK a§ w{< wé( wﬁ §
v
Lookup Table v
*  For computer L 'W-)D D D U D D D D
vision, : "
Convolutional LTwx [ [ [ D [] D_ ] D
Neural Networks S T , y
are in 2-dimensions
 For natural
language, the CNN
is 1-dimensional
, } 9
Max Over Time '\“ g v
max(:) AN ATy
e v
Linear .-~ st v
M? xcf; ANA
n‘,-’m v
HardTanh v
-/ N~
9
Linear .= 7777 et v
M3 xé ANA

Figure from (Collobert & Weston, 2011)




0\0
0, 2
esto
N

(Co\\ohe\)t

Hybrid: CNN + CRF

“NN + SLL” ) )

* Model: Convolutional WU U U U °c U U
Neural Network N
(CNN) with linear- 0
chain CRF

« Training objective: ey A
maximize sentence- e bmed
level likelihood (SLL) T :

M2 %6 AN [T
730 SV — V

51
Figure from (Collobert & Weston, 2011)
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Hybrid: CNN + CRF

Input Sentence

“NN +WLL” lﬁi;,lm e )

* Model: Convolutional o ~E L U S E U U
Neural Network C”””WD ey
(CNN) with logistic
regression

* Training objective: 77 Sofmsh
maximize word-level ) — )
likelihood (WLL) TR — :

M2 xd AN~ ;

M xb AN i)

SR £

Figure from (Collobert & Weston, 2011)
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‘ Hybrid: CNN + CRF

Experimental Setup:

Tasks:

— Part-of-speech tagging (POS),

— Noun-phrase and Verb-phrase Chunking,

— Named-entity recognition (NER)

— Semantic Role Labeling (SRL)
Datasets [ Metrics: Standard setups from NLP
literature (higher PWA/F1 is better)

Models:

— Benchmark systems are typical - non-neural
network systems

— NN+WLL: hybrid CNN with logistic regression
— NN+SLL: hybrid CNN with linear-chain CRF

Approach POS | Chunking | NER | SRL

(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 | 77.92
NN+WLL 96.31 89.13 79.53 | 55.40
NN+SLL 96.37 90.33 81.47 | 70.99




Hybrid: CNN + MRF

Experimental Setup: 100

90}

* Task: pose estimation )
* Model: Deep CNN + MRF

60}
50}
40}
30}
20}
101

0

Detection rate

Part-Model
Part and Spatial-Model |
Joint Training

0 2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels)

54



Tricks of the Trade

Lots of them:
— Pre-training helps (but isn’t always necessary)
— Train with adaptive gradient variants of SGD (e.g. Adam)

— Use max-margin loss function (i.e. hinge loss) — though
only sub-differentiable it often gives better results

A few years back, they were considered “poorly
documented” and “requiring great expertise”

Now there are lots of good tutorials that describe
(very important) specific implementation details

Many of them also apply to training graphical
models!



MBR DECODING



Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he(x)

arg}fnin <1j'ympg(-|a3) [6(@7 y)]
Yy

argmin Y pe(y | )((g,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




MBR Decoders

Q: If loss(y, y*) additively decomposes in the same
way as log p(y|x), can we efficiently compute the
MBR decoder h(x) for that loss/model pair?

A: Yes.

How to do so is left as an exercise...



