

10-418/10-618 Machine Learning for Structured Data

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Neural Potentials + MBR Decoding

Matt Gormley Lecture 10 Oct. 3, 2022

Reminders

- Homework 2: Learning to Search for RNNs
 - Out: Sun, Sep 18
 - Written (except for Empirical Questions)
 - Due: Thu, Sep 29 at 11:59pm
 - Programming + Empirical Questions
 - Due: Mon, Oct 24 at 9:00am
- Homework 3: General Graph CRF Module
 - Out: Thu, Sep 29
 - Due: Mon, Oct 10 at 11:59pm

Reminders

- Homework 2: Learning to Search for RNNs
 - Out: Sun, Sep 18
 - Written (except for Empirical Questions)
 - Due: Thu, Sep 29 at 11:59pm
 - Programming + Empirical Questions
 - Due: Mon, Oct 24 at 9:00am
 - New autograder disaster...
- Homework 3: General Graph CRF Module
 - Out: Thu, Sep 29
 - Due: Mon, Oct 10 at 11:59pm

MRF AND CRF LEARNING (LOG-LINEAR PARAMETERIZATION)

Options for MLE of MRFs

- Setting I: $\psi_C({m x}_C) = heta_{C,{m x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(m{x}_C) = \exp(m{ heta} \cdot m{f}(m{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(oldsymbol{x}_C)=$
 - E. Gradient-based Methods

MRF and CRF Learning

Whiteboard

- log-linear MRF model (i.e. with feature based potentials)
- log-linear MRF derivatives
- log-linear MRF training with SGD
- log-linear CRF model (i.e. with feature based potentials)
- log-linear CRF derivatives
- log-linear CRF training with SGD

Recipe for Gradient-based Learning

- 1. Write down the objective function
- Compute the partial derivatives of the objective (i.e. gradient, and maybe Hessian)
- Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

Optimization Algorithms

What is the black box?

- Newton's method
- Hessian-free / Quasi-Newton methods
 - Conjugate gradient
 - L-BFGS
- Stochastic gradient methods
 - Stochastic gradient descent (SGD)
 - SGD with momentum
 - Adam

Stochastic Gradient Descent (SGD)

Assume we have an objective that decomposes additively:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: while not converged do
4: i \sim \text{Uniform}(\{1, 2, \dots, N\})
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: return \boldsymbol{\theta}
```


Generative vs. Discriminative

Liang & Jordan (ICML 2008) compares **HMM** and **CRF** with **identical features**

- Dataset 1: (Real)
 - WSJ Penn Treebank(38K train, 5.5K test)
 - 45 part-of-speech tags
- Dataset 2: (Artificial)
 - Synthetic data
 generated from HMM
 learned on Dataset 1
 (1K train, 1K test)
- Evaluation Metric: Accuracy

NEURAL PARAMETERIZATION OF CONDITIONAL RANDOM FIELD

Options for MLE of MRFs

- Setting I: $\psi_C({m x}_C) = heta_{C,{m x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(m{x}_C) = \exp(m{ heta} \cdot m{f}(m{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(oldsymbol{x}_C) = 0$
 - E. Gradient-based Methods

Motivation:

Hybrid Models

Graphical models let you encode domain knowledge

Neural nets are really good at fitting the data discriminatively to make good predictions

Could we define a neural net that incorporates domain knowledge?

Motivation:

Hybrid Models

Key idea: Use a NN to learn features for a GM, then train the entire model by backprop

A Recipe for Neural Networks

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

MRF AND CRF LEARNING (NEURAL PARAMETERIZATION)

Options for MLE of MRFs

- Setting I: $\psi_C({m x}_C) = heta_{C,{m x}_C}$
 - A. MLE by inspection (Decomposable Models)
 - B. Iterative Proportional Fitting (IPF)
- Setting II: $\psi_C(m{x}_C) = \exp(m{ heta} \cdot m{f}(m{x}_C))$
 - C. Generalized Iterative Scaling
 - D. Gradient-based Methods
- Setting III: $\psi_C(m{x}_C) = 0$
 - E. Gradient-based Methods

Whiteboard:

- CRF w/LSTM potentials
- Gradient of MRF/CRF log-likelihood with respect to log potentials
- Gradient of MRF/CRF log-likelihood with respect to potentials
- Backprop with MRF/CRF log-likelihood as a loss function

Factor Derivatives

Log-probability:

$$\log p(\mathbf{y}) = \left[\sum_{\alpha} \log \psi_{\alpha}(\mathbf{y}_{\alpha})\right] - \log \sum_{\mathbf{y}' \in \mathcal{Y}} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}'_{\alpha}) \tag{1}$$

Derivatives:

$$\frac{\partial \log p(\mathbf{y})}{\partial \log \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha})$$
(2)

$$\frac{\partial \log p(\mathbf{y})}{\partial \psi_{\alpha}(\mathbf{y}'_{\alpha})} = \frac{\mathbb{1}(\mathbf{y}_{\alpha} = \mathbf{y}'_{\alpha}) - p(\mathbf{y}'_{\alpha})}{\psi_{\alpha}(\mathbf{y}'_{\alpha})} \tag{3}$$

HYBRIDS OF NEURAL NETWORKS WITH GRAPHICAL MODELS

Outline of Examples

Hybrid NN + HMM

- Model: neural net for emissions
- Learning: backprop for end-to-end training
- Experiments: phoneme recognition (Bengio et al., 1992)

Hybrid RNN + HMM

- Model: neural net for emissions
- Experiments: phoneme recognition (Graves et al., 2013)

Hybrid CNN + CRF

- Model: neural net for factors
- Experiments: natural language tasks (Collobert & Weston, 2011)
- Experiments: pose estimation

Tricks of the Trade

HYBRID: NEURAL NETWORK + HMM

Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i . The individual factors aren't necessarily probabilities.

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Hidden Markov Model

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.

$$p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * ...)$$

	v	n	р	d
٧	.1	.4	.2	.3
n	.8	.1	.1	0
р	.2	.3	.2	. 3
d	.2	.8	0	0

	v	n	р	d
V	.1	.4	.2	.3
n	.8	.1	.1	0
р	.2	. 3	.2	-3
d	.2	.8	0	0

(Bengio et al., 1992)

Discrete HMM state: $S_t \in \{/p/, /t/, /k/, /b/, /d/, \dots, /g/\}$

Continuous HMM emission: $Y_t \in \mathcal{R}^K$

T

HMM:
$$p(\mathbf{Y}, \mathbf{S}) = \prod_{t=1}^{p(Y_t|S_t)} p(S_t|S_{t-1})$$

Gaussian emission:

$$p(Y_t|S_t = i) = b_{i,t} = \sum_{k} \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \exp(-\frac{1}{2}(Y_t - \mu_k)\Sigma_k^{-1}(Y_t - \mu_k)^T)$$

(Bengio et al., 1992)

Discrete HMM state: $S_t \in \{/p/, /t/, /k/, /b/, /d/, ..., /a/\}$

Continuous HMM emission: $Y_t \in \mathcal{R}^K$

HMM:
$$p(\mathbf{Y}, \mathbf{S}) = \prod_{t=1}^{n} p(Y_t|S_t) p(S_t|S_{t-1})$$

$$p(Y_t|S_t = i) = b_{i,t} = \sum_k \frac{Z_k}{((2\pi)^n |\Sigma_k|)^{1/2}} \epsilon$$

Lots of oddities to this picture:

- Clashing visual notations (graphical model vs. neural net)
- HMM generates data topdown, NN generates bottom-up and they meet in the middle.
- The "observations" of the HMM are not actually observed (i.e. x's appear in NN only)

So what are we missing?

$$a_{i,j} = p(S_t = i | S_{t-1} = j)$$

 $b_{i,t} = p(Y_t | S_t = i)$ Hybrid: NN + HMM

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

Log-likelihood: a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

A Recipe for

Graphical Models Decision / Loss Function for

Hybrid NN + HMM

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

2. Choose each of nesDecision for ation

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

Forward-backward algorithm: a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

Log-likelihood: a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$
 ht)

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{I}$$
 How do we compute $\eta_t
abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ the gradient?

Training

Backpropagation

Graphical Model and Log-likelihood

Neural Network

Backpropagation

is just repeated application of the **chain rule** from Calculus 101.

$$y = g(u)$$
 and $u = h(x)$.

How to compute these partial derivatives?

Chain Rule:
$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Training Backpropagation

What does this picture actually mean?

Training

Backpropagation

Case 2: Neural Network

Forward

$$J = y^* \log q + (1 - y^*) \log(1 - q)$$

$$q = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dq} = \frac{y^*}{q} + \frac{(1-y^*)}{q-1}$$
$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b)+1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db}\frac{db}{dz_j}, \, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

 $\alpha_{i,t} = \dots$ (forward prob)

 $\beta_{i,t} = \dots$ (backward prop)

 $\gamma_{i,t} = \dots$ (marginals)

 $a_{i,j} = \dots$ (transitions)

 $b_{i,t} = \dots$ (emissions)

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

$$\alpha_{i,t} = \dots$$
 (forward prob)

$$\beta_{i,t} = \dots$$
 (backward prop)

$$\gamma_{i,t} = \dots$$
 (marginals)

$$a_{i,j} = \dots$$
 (transitions)

$$b_{i,t} = \dots$$
 (emissions)

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END},T}$$
 $lpha_{i,t} = \ldots$ (forward prob)
 $eta_{i,t} = \ldots$ (backward prop)
 $\gamma_{i,t} = \ldots$ (marginals)
 $a_{i,j} = \ldots$ (transitions)
 $b_{i,t} = \ldots$ (emissions)
 $y_{tk} = \frac{1}{1 + \exp(-b)}$
 $b = \sum_{j=0}^D \beta_j z_j$
 $z_j = \frac{1}{1 + \exp(-a_j)}$
 $a_j = \sum_{i=0}^M lpha_{ji} x_i$

Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{i,t}} \frac{\partial \alpha_{i,t}}{\partial b_{i,t}} = \left(\sum_{j} \frac{\partial \alpha_{j,t+1}}{\partial \alpha_{i,t}} \frac{\partial L_{model}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji} \alpha_{j,t-1}\right)$$

$$= \left(\sum_{j} b_{j,t+1} a_{ji} \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji} \alpha_{j,t-1}\right) = \beta_{i,t} \frac{\alpha_{i,t}}{b_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation $J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END},T}$ $\alpha_{i,t} = \dots$ (forward prob) $\beta_{i,t} = \dots$ (backward prop) $\gamma_{i,t} = \dots$ (marginals) $a_{i,j} = \dots$ (transitions) $b_{i,t} = \dots$ (emissions) $y_{tk} = \frac{1}{1 + \exp(-b)}$ $b = \sum \beta_j z_j$ $z_j = \frac{1}{1 + \exp(-a_i)}$ $a_j = \sum \alpha_{ji} x_i$

Backward computation
$$\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

$$\frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$$

$$\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{k} \frac{Z_{k}}{((2\pi)^{n} | \Sigma_{k}|)^{1/2}} (\sum_{i} d_{k,ij}(\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2}(Y_{t} - \mu_{k})\Sigma_{k}^{-1}(Y_{t} - \mu_{k})^{T}})$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^{2}}$$

$$\frac{dJ}{d\beta_{j}} = \frac{dJ}{db} \frac{db}{d\beta_{j}}, \frac{db}{d\beta_{j}} = z_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{db} \frac{db}{dz_{j}}, \frac{db}{dz_{j}} = \beta_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{dz_{j}} \frac{dz_{j}}{da_{j}}, \frac{dz_{j}}{da_{j}} = \frac{\exp(a_{j})}{(\exp(a_{j}) + 1)^{2}}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$$

Hybrid: NN + HMM

Computing the Gradient: $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$

Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$
 $\alpha_{i,t} = \dots$ (forward prob) $\beta_{i,t} = \dots$ (backward prop) $\gamma_{i,t} = \dots$ (marginals)

The derivative of the log-likelihood with respect to the neural network parameters!

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

$$\frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$$

$$\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{k} \frac{Z_{k}}{((2\pi)^{n} | \Sigma_{k}|)^{1/2}} (\sum_{l} d_{k,lj}(\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2}(Y_{t} - \mu_{k})\Sigma_{k}^{-1}(Y_{t} - \mu_{k})^{T})$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^{2}}$$

$$\frac{dJ}{d\beta_{j}} = \frac{dJ}{db} \frac{db}{d\beta_{j}}, \frac{db}{d\beta_{j}} = z_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{db} \frac{db}{dz_{j}}, \frac{db}{dz_{j}} = \beta_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{dz_{j}} \frac{dz_{j}}{da_{j}}, \frac{dz_{j}}{da_{j}} = \frac{\exp(a_{j})}{(\exp(a_{j}) + 1)^{2}}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \frac{da_{j}}{d\alpha_{ji}} = x_{i}$$
39

Hybrid: NN + HMM

Experimental Setup:

- Task: Phoneme Recognition (aka. speaker independent recognition of plosive sounds)
- Eight output labels:
 - /p/, /t/, /k/, /b/, /d/, /g/, /dx/, /all other phonemes/
 - These are the HMM hidden states
- **Metric:** Accuracy
- 3 Models:
 - 1. NN only
 - 2. NN + HMM (trained independently)
 - 3. NN + HMM (jointly trained)

HYBRID: RNN + HMM

Hybrid: RNN + HMM

The model, inference, and learning can be **analogous** to our NN + HMM hybrid

- Objective: log-likelihood
- Model: HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with gradient by backpropagation

Hybrid: RNN + HMM

Experimental Setup:

• Task: Phoneme Recognition

Dataset: TIMIT

• **Metric:** Phoneme Error

Rate

Two classes of models:

1. Neural Net only

2. NN + HMM hybrids

TRAINING METHOD	TEST PER
CTC	21.57 ± 0.25
CTC (NOISE)	18.63 ± 0.16
TRANSDUCER	$\textbf{18.07} \pm \textbf{0.24}$

1. Neural Net only

NETWORK	DEV PER TEST PER
DBRNN	19.91 ± 0.22 21.92 ± 0.35
DBLSTM	17.44 ± 0.156
DBLSTM	19.34 ± 0.15 16.11 ± 0.15
(NOISE)	$\textbf{17.99} \pm \textbf{0.13}$

2. NN + HMM hybrids

HYBRID: CNN + CRF

Markov Random Field (MRF)

Joint distribution over tags Y_i and words X_i

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z}(4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Conditional Random Field (CRF)

Conditional distribution over tags Y_i given words x_i . The factors and Z are now specific to the sentence x.

$$p(n, v, p, d, n | time, flies, like, an, arrow) = \frac{1}{Z} (4*8*5*3*...)$$

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

Hybrid: Neural Net + CRF

- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

Hybrid: Neural Net + CRF

Forward computation

- For computer
 vision,
 Convolutional
 Neural Networks
 are in 2-dimensions
- For natural language, the CNN is 1-dimensional

"NN + SLL"

- Model: Convolutional Neural Network (CNN) with linearchain CRF
- Training objective: maximize sentencelevel likelihood (SLL)

"NN + WLL"

- Model: Convolutional Neural Network (CNN) with logistic regression
- Training objective: maximize word-level likelihood (WLL)

Experimental Setup:

- Tasks:
 - Part-of-speech tagging (POS),
 - Noun-phrase and Verb-phrase Chunking,
 - Named-entity recognition (NER)
 - Semantic Role Labeling (SRL)
- Datasets / Metrics: Standard setups from NLP literature (higher PWA/F1 is better)
- Models:
 - Benchmark systems are typical non-neural network systems
 - NN+WLL: hybrid CNN with logistic regression
 - NN+SLL: hybrid CNN with linear-chain CRF

${f Approach}$	POS	Chunking	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99

Experimental Setup:

- Task: pose estimation
- Model: Deep CNN + MRF

Tricks of the Trade

Lots of them:

- Pre-training helps (but isn't always necessary)
- Train with adaptive gradient variants of SGD (e.g. Adam)
- Use max-margin loss function (i.e. hinge loss) though only sub-differentiable it often gives better results

– ...

- A few years back, they were considered "poorly documented" and "requiring great expertise"
- Now there are lots of **good tutorials** that describe (very important) specific implementation details
- Many of them also apply to training graphical models!

MBR DECODING

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})] \ &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y}) \end{aligned}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The θ -1 loss function returns 1 only if the two assignments are identical and θ otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the MAP inference problem!

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$h_{\theta}(x) = \underset{\hat{y}}{\operatorname{argmin}} \left[\sum_{y} p(y|x) \left(1 - \mathcal{A}(\hat{y} = y) \right) \right]$$

$$= \underset{\hat{y}}{\operatorname{argmin}} \left[\sum_{y} p(y|x) \right] - \left[\sum_{y} p(y|x) \mathcal{A}(\hat{y} = y) \right]$$

$$= \underset{\hat{y}}{\operatorname{argmin}} - p(\hat{y}|x)$$

$$= \underset{\hat{y}}{\operatorname{argmax}} p(\hat{y}|x)$$

$$= \underset{\hat{y}}{\operatorname{argmax}} p(\hat{y}|x)$$

MBR Decoders

Q: If loss(y, y*) additively decomposes in the same way as log p(y|x), can we efficiently compute the MBR decoder h(x) for that loss/model pair?

A: Yes.

How to do so is left as an exercise...