
Course Overview
+

What is Structured
Prediction?

1

10-418/10-618 Machine Learning for Structured Data

Matt Gormley
Lecture 1

Aug. 29, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

WHAT IS STRUCTURED
PREDICTION?

3

Structured Prediction
• The focus of most Intro ML courses is

classification
– Given observations: x = (x1, x2, …, xK)
– Predict a (binary) label: y

• Many real-world problems require
structured prediction
– Given observations: x = (x1, x2, …, xK)
– Predict a structure: y = (y1, y2, …, yJ)

• Some classification problems benefit from
latent structure

7

Structured Prediction

Classification / Regression
1. Input can be semi-

structured data
2. Output is a single

number (integer / real)
3. In linear models,

features can be arbitrary
combinations of [input,
output] pair

4. Output space is small
5. Inference is trivial

Structured Prediction
1. Input can be semi-structured

data
2. Output is a sequence of

numbers representing a
structure

3. In linear models, features can
be arbitrary combinations of
[input, output] pair

4. Output space may be
exponentially large in the input
space

5. Inference problems are NP-hard
or #P-hard in general and often
require approximations

8

Structured Prediction Examples

9

[Human Language Technologies]

Task Input Output

Speech Recognition This was easy for us.

Syntactic Parsing

Semantic Parsing Send a text to Alice that
I’ll be late

txt(recipient = Alice,
msg = “I’ll be late”)

Machine Translation where is the train
station?

¿donde esta la
estacion de trenes?

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

n n v d n
Sample 2:

time likeflies an arrow

Structured Prediction Training Dataset:
Part-of-Speech (POS) Tagging

12

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

Structured Prediction Training Dataset:
Handwriting Recognition

14

D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, XXXXXXX 2013

TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods

Figures from (Chatzis & Demiris, 2013)

u e p c t
Sample 1: y(1)

x(1)

n x e de

v l a i c
Sample 2:

o c n

e b a e s
Sample 2:

m r c

y(2)

x(2)

y(3)

x(3)

Structured Prediction Training Dataset:
Phoneme (Speech) Recognition

15

D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)

h# ih w z iy
Sample 1: y(1)

x(1)

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

f r s h#
Sample 2:

ao ah s y(2)

x(2)

Structured Prediction Training Dataset:
Scene Understanding

16(Li et al., 2009)

x(1)

y(1)

Structured Prediction

22

Data
Model

Learning

Inference

(Inference is usually
called as a subroutine

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5

Structured Prediction

23

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

DECOMPOSING A STRUCTURE
INTO PARTS

24

Decomposing a Structure into Parts
• Many real-world problems require

structured prediction
– Given observations: x = (x1, x2, …, xK)
– Predict a structure: y = (y1, y2, …, yJ)

• The most important idea in structured
prediction:
– Do NOT treat the output structure y as a single

monolithic piece of data
– Instead, divide that structure into its pieces

25

Decomposing a Structure into Parts

• Why divide a structure into its pieces?
– amenable to efficient inference
– enable natural parameter sharing during learning
– easier definition of fine-grained loss functions
– clearer depiction of model’s uncertainty
– easier specification of interactions between the

parts
– (may) lead to natural definition of a search problem

• A key step in formulating a task as a structured
prediction

26

Decomposing a Structure into Parts

27

Example 1: Part-of-speech Tagging

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:

n v p d n
Sample 1:

time likeflies an arrow

y

x

Decomposing a Structure into Parts

28

Example 1: Part-of-speech Tagging

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:
A. For each word in the sentence

create one tag variable, e.g. the
t’th word xt has a tag variable yt.

B. Each tag variable yt ranges over
the set of possible part-of-speech
tags {a, d, n, p, v, …}

n v p d n
Sample 1:

time likeflies an arrow

y

x

Decomposing a Structure into Parts

29

Example 2: Phoneme Recognition

h# ih w z iy
Sample 1: y

x

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:

Decomposing a Structure into Parts

30

Example 2: Phoneme Recognition

h# ih w z iy
Sample 1: y

x

dh s uh iyz1704 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013

Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:
A. Assume the speech signal consists

of T segments of 10 milliseconds
each, then create T phoneme
variables y1, y2, …, yT

B. Each phoneme variable yt can be a
phoneme {dh, h#, ih, iy, …} or the
special symbol “—” meaning “no
phoneme”

Decomposing a Structure into Parts

31

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:

Sample 1:

y

x

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Example 3: Dependency Parsing
Definition of a Dependency Parse:
1. Each word must have exactly

one parent
2. The parent must be another

word in the sentence OR the
“wall”

3. Exactly one word must have
the “wall” as its parent

4. The resulting directed graph
must be acyclic

Answer:
Solution #1: (most obvious solution)
A. Have one variable for each word in the sentence
B. Each variable can take on an integer indicating which word is its parent

Decomposing a Structure into Parts

32

0 21 3 4

Y2Y1 Y3

Example 3: Dependency Parsing

Y4

Juan_Carlos suabdica reino<WALL>

Answer:
Solution #1: (most obvious solution)
A. Have one variable for each word in the sentence
B. Each variable can take on an integer indicating which word is its parent

Decomposing a Structure into Parts

33

0 21 3 4

02 4

Example 3: Dependency Parsing

2

Juan_Carlos suabdica reino<WALL>

Answer:
Solution #2: (one that’s not so obvious)

A. Create one variable for
every possible edge in
the graph

B. Each variable can
take either the
value 1 (if the
edge is
present)
or 0 (if
the edge
is not
present)

Decomposing a Structure into Parts

34

0 21 3 4
Juan_Carlos suabdica reino<WALL>

Left
arc

Right
arc

Y2,1Y1,2 Y3,2Y2,3

Y3,1Y1,3

Y4,3Y3,4

Y4,2Y2,4

Y4,1Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Example 3: Dependency Parsing

Answer:
Solution #2: (one that’s not so obvious)

A. Create one variable for
every possible edge in
the graph

B. Each variable can
take either the
value 1 (if the
edge is
present)
or 0 (if
the edge
is not
present)

Decomposing a Structure into Parts

35

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

Left
arc

Right
arc

Example 3: Dependency Parsing

Decomposing a Structure into Parts

37

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:

Example 4: Scene Understanding

x

y

Decomposing a Structure into Parts

38

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:
A. One output variable yi,j for each of

pixel xi,j

B. The value of each yi,j would be one
of the possible labels, e.g.
{sailboat, sky, tree, water,
mountain, …}

Example 4: Scene Understanding

x

y

Decomposing a Structure into Parts

39

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:

Example 5: Medical Diagnosis
y

x

patient’s diagnosis

patient’s chart

Decomposing a Structure into Parts

40

Question:
How would you decompose the
structure y into parts?
A. How many variables would you

need to represent said
decomposition?

B. What values could each variable
take?

Answer:
A. Just one variable y
B. That variable would ranges over

the possible diagnoses (assuming
we have a long list of them)

Example 5: Medical Diagnosis
y

x

patient’s diagnosis

patient’s chart

Decomposing a Structure into Parts
Takeaways from these examples
1. The structure often provides an obvious

decomposition (e.g. POS tagging)
2. Dealing with variable size structures can be

tricky (e.g. phoneme recognition)
3. There are often many ways to decomposition

the structure (e.g. dependency parsing)
4. Sometimes the less obvious decomposition

may be the ”simpler” one (e.g. scene
understanding)

5. Don’t confuse structure in the input for
structure in the output (e.g. medical diagnosis)

41

Structured Prediction

42

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

WHAT IS A MODEL?
(without any math!)

43

A Not-very-interesting Model
Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

44

n v p d n

time likeflies an arrow

y

x

A Not-very-interesting Model
Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

45

n v p d n

time likeflies an arrow

y

x

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

A Not-very-interesting Model
Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

46

n v p d n

time likeflies an arrow

y

x

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Q: Why is this model not-very-
interesting?
A: Because it only considers the
interaction between the current
word xt and the current tag yt

In other words, it makes an
independent classification
decision for each tag.

For part-of-speech tagging, we
know that verbs are much more
likely to follow nouns. But this
model CANNOT learn that.

Joint Modeling
After we come up with a way to decompose our
structure into variables, what comes next?
• We can define a joint model over those variables
• The joint model defines a score for each possible

structure allowed by our decomposition
• The model should give high scores to “good”

structures and low scores to “bad” structures
– in probability terms: high scores for likely structures

and low scores for unlikely structures
– “likely structures” could be defined as those appearing

in your training dataset
• (Hopefully, the joint model is also able to capture

interesting interactions between pairs, triples,
quadruples, … of variables)

47

How do we write
down a joint model?

48

(Factor Graphs)

An Abstraction for Modeling

49

Mathematical
Modeling

y2

y1

ψ12

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

An Abstraction for Modeling

50

Mathematical
Modeling

ψ1

Factors have
local opinions

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

An Abstraction for Modeling

51

Mathematical
Modeling

ψ1

Factors have
local opinions

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

An Abstraction for Modeling

52

Mathematical
Modeling

ψ1

Factors have
local opinions

Factor Graph
(bipartite graph)
• variables (circles)
• factors (squares)

An Abstraction for Modeling

53

Mathematical
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream) = ?

An Abstraction for Modeling

54

Mathematical
Modeling

ψ1

ch
oc

ol
at

e

pe
an

ut
bu

tt
er

Ic
e

cr
ea

m

tu
na …

chocolate 2 9 7 0.1

peanut butter 4 2 3 0.2

ice cream 7 3 2 0.1

tuna 0.1 0.2 0.1 2

…

ψ1

ψ1

chocolate 4

peanut butter 8

ice cream 7

tuna 3

…

chocolate 0.1

peanut butter 5

ice cream 1

tuna 6

…

P(tuna, ice cream) = (6 * 7 * 0.1)
Uh-oh! The probabilities of
the various assignments sum

up to Z > 1.
So divide them all by Z.

An Abstraction for Modeling

55

Mathematical
Modeling

ψ1

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

time flies like an arrow

time flies like an arrow

Agent Mode

6 simple sents

run to the store arrow

3

Factors have
local opinions

An Abstraction for Modeling

56

Mathematical
Modeling

ψ1

time flies like an arrow

time flies like an arrow

Agent Mode

6 simple sents

run to the store arrow

3

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Factors have
local opinions

An Abstraction for Modeling

57

Mathematical
Modeling

ψ1

time flies like an arrow

time flies like an arrow

Agent Mode

6 simple sents

run to the store arrow

3

3 Alice saw Bob on a hill with a telescope

Alice saw Bob on a hill with a telescope

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

The domains of
these variables
is exponential

in the length of
the sentence!

This factor
would be
massive

That’s why decomposing into many small
variables is so important

EXAMPLE: FACTOR GRAPH FOR
DEPENDENCY PARSING

58

Factor Graph for Dependency Parsing

59

Y2,1Y1,2 Y3,2Y2,3

Y3,1Y1,3

Y4,3Y3,4

Y4,2Y2,4

Y4,1Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Factor Graph for Dependency Parsing

60

0 21 3 4
Juan_Carlos suabdica reino<WALL>

(Smith & Eisner, 2008)

Left
arc

Right
arc

Y2,1Y1,2 Y3,2Y2,3

Y3,1Y1,3

Y4,3Y3,4

Y4,2Y2,4

Y4,1Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

Factor Graph for Dependency Parsing

61

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

(Smith & Eisner, 2008)

Left
arc

Right
arc

Factor Graph for Dependency Parsing

62

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

Unary: local opinion
about one edge

(Smith & Eisner, 2008)

Factor Graph for Dependency Parsing

63

✔

x xx

xx

✔✔

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

Unary: local opinion
about one edge

(Smith & Eisner, 2008)

Factor Graph for Dependency Parsing

64

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and 0 otherwise.

Unary: local opinion
about one edge

(Smith & Eisner, 2008)

Factor Graph for Dependency Parsing

65

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and 0 otherwise.

Unary: local opinion
about one edge

(Smith & Eisner, 2008)

Factor Graph for Dependency Parsing

66

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and 0 otherwise.

Unary: local opinion
about one edge

Grandparent: local
opinion about
grandparent, head,
and modifier

(Smith & Eisner, 2008)

Factor Graph for Dependency Parsing

67

✔

x xx

xx

✔

x

x

✔

xx

x

x

x

✔

0 21 3 4
Juan_Carlos suabdica reino<WALL>

PTree: Hard constraint,
multiplying in 1 if the
variables form a tree
and 0 otherwise.

Unary: local opinion
about one edge

Sibling: local opinion
about pair of arbitrary
siblings

Grandparent: local
opinion about
grandparent, head,
and modifier

(Riedel and Smith, 2010)

(Martins et al., 2010)

Factor Graph for Dependency Parsing
(Riedel and Smith, 2010)

(Martins et al., 2010)

Now we can
work at this

level of
abstraction.Y2,1Y1,2 Y3,2Y2,3

Y3,1Y1,3

Y4,3Y3,4

Y4,2Y2,4

Y4,1Y1,4

Y0,1

Y0,3

Y0,4

Y0,2

VARIABLES AND INTERACTIONS

69

Joint Modeling
When do we add factors?
In order to determine which subsets of
variables should have factors between them,
we need to think about which variable
interactions we want to model.

If we expect there to be an interesting
interaction between some collection of
variables, then we should add a factor to
express an opinion about it

70

Scene Understanding

71

• Variables:
– boundaries of

image regions
– tags of regions

• Interactions:
– semantic

plausibility of
nearby tags

– continuity of tags
across visually
similar regions (i.e.
patches)

(Li et al., 2009)

Labels with top-down information

Scene Understanding

72

• Variables:
– boundaries of

image regions
– tags of regions

• Interactions:
– semantic

plausibility of
nearby tags

– continuity of tags
across visually
similar regions (i.e.
patches)

(Li et al., 2009)

Labels without top-down information

Word Alignment / Phrase Extraction

• Variables (boolean):
– For each (Chinese phrase,

English phrase) pair,
are they linked?

• Interactions:
– Word fertilities
– Few “jumps” (discontinuities)
– Syntactic reorderings
– “ITG contraint” on alignment
– Phrases are disjoint (?)

73(Burkett & Klein, 2012)

Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from

Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil

125

Congressional Voting

74(Stoyanov & Eisner, 2012)

• Variables:

– Text of all speeches of a
representative

– Local contexts of
references between two
representatives

• Interactions:
– Words used by

representative and their
vote

– Pairs of representatives
and their local context

Medical Diagnosis

75

• Variables:
– content of text field
– checkmark
– dropdown menu

• Interactions:
– groups of related

symptoms (e.g. that are
predictive of a disease)

– social history (e.g. smoker)
and symptoms

– risk factors (e.g. infant)
and lab results

EXAMPLE: RECURRENT NEURAL
NETWORK LANGUAGE MODEL

(we’ll talk about this in a later lecture…)

78

What if I want to model
EVERY possible

interaction?

…or at least the interactions of the
current variable with all those that came

before it…

79

(RNN-LMs)

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector

80

p(w1, w2, w3, … , w6) =
p(w1)
p(w2 | fθ(w1))
p(w3 | fθ(w2, w1))
p(w4 | fθ(w3, w2, w1))
p(w5 | fθ(w4, w3, w2, w1))
p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 81

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 82

START

p(w1|h1)

h1

The

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 83

TheSTART

h1

p(w2|h2)

h2

bat

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 84

The batSTART

h1 h2

p(w3|h3)

h3

made

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 85

The bat madeSTART

h1 h2 h3

p(w4|h4)

h4

noise

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 86

The bat made noiseSTART

h1 h2 h3 h4

p(w5|h5)

h5

at

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 87

The bat made noise atSTART

h1 h2 h3 h4 h5

p(w6|h6)

h6

night

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 88

The bat made nightnoise atSTART

h1 h2 h3 h4 h5 h6

p(w7|h7)

h7

END

RNN Language Model

89

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)

A PREVIEW OF INFERENCE

103

Structured Prediction

104

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

Structured Prediction

105

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤ = argmax
✓

`(✓;D)p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

x̂ = argmax
x

p(x | ✓)
3. MAP Inference

106

p(xC) =
X

x0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

x̂ = argmax
x

p(x | ✓)

1. Marginal Inference (#P-Hard)
Compute marginals of variables and cliques

2. Partition Function (#P-Hard)
Compute the normalization constant

3. MAP Inference (NP-Hard)
Compute variable assignment with highest probability

p(xi) =
X

x0:x0
i=xi

p(x0 | ✓)

5. Inference

4. Sampling (cf. convergence, variance)
Draw a sample variable assignment

Q&A

107

Q: But in deep learning we don’t need to solve these
inference problems, right?

A: Wrong…it’s not that we don’t need to solve them, it’s that
we often can’t!

Questions you could ask your RNN-LM or seq2seq model:
1. What is the probability of the 7th token being ‘zebra’ (marginal

inference)
2. For an unnormalized model, what is the normalization constant?

(partition function)
3. What is the most probable output sequence? (MAP inference)
4. Give me 10 samples from the distribution.

X

✓

X

X

Topics (Part I)
• Search-Based Structured

Prediction
– Reductions to Binary

Classification
– Learning to Search
– RNN-LMs
– seq2seq models

• Graphical Model
Representation
– Directed GMs vs.

Undirected GMs vs.
Factor Graphs

– Bayesian Networks vs.
Markov Random Fields vs.
Conditional Random Fields

• Graphical Model Learning
– Fully observed Bayesian

Network learning
– Fully observed MRF learning
– Fully observed CRF learning
– Parameterization of a GM
– Neural potential functions

• Exact Inference
– Three inference problems:

(1) marginals
(2) partition function
(3) most probably
assignment

– Variable Elimination
– Belief Propagation (sum-

product and max-product)

112

Topics (Part II)
• Learning for Structure

Prediction
– Structured Perceptron
– Structured SVM
– Neural network potentials

• (Approximate) MAP
Inference
– MAP Inference via MILP
– MAP Inference via LP

relaxation
• Approximate Inference by

Sampling
– Monte Carlo Methods
– Gibbs Sampling
– Metropolis-Hastings
– Markov Chains and MCMC

• Parameter Estimation
– Bayesian inference
– Topic Modeling

• Approximate Inference by
Optimization
– Variational Inference
– Mean Field Variational

Inference
– Coordinate Ascent V.I. (CAVI)
– Variational EM
– Variational Bayes

• Bayesian Nonparametrics
– Dirichlet Process
– DP Mixture Model

• Deep Generative Models
– Variational Autoencoders

113

SYLLABUS HIGHLIGHTS

114

Syllabus Highlights

The syllabus is located on the course webpage:

http://418.mlcourse.org
http://618.mlcourse.org

The course policies are required reading.

115

…cs.cmu.edu…

http://418.mlcourse.org/
http://618.mlcourse.org/

Syllabus Highlights
• Grading 418: 60% homework, 15%

midterm, 20% final, 5% participation
• Grading 618: 55% homework, 15%

midterm, 15% final, 5% participation,
10% project

• Midterm Exam: in-class exam, Fri,
Oct. 14

• Final Exam: final exam week,
date/time TBD by registrar

• Homework: ~6 assignments
– 8 grace days for homework assignments
– Late submissions: 75% day 1, 50% day 2,

25% day 3
– No submissions accepted after 3 days

w/o extension
– Extension requests: for emergency

situations, see syllabus
• Recitations: Fridays, same time/place

as lecture (optional, interactive
sessions)

• Readings: required, online PDFs,
recommended for after lecture

• Technologies:
– Piazza (discussion),
– Gradescope (homework),
– Google Forms (polls),
– Zoom (livestream),
– Panopto (video recordings)

• Academic Integrity:
– Collaboration encouraged, but must be

documented
– Solutions must always be written

independently
– No re-use of found code / past

assignments
– Severe penalties (i.e.. failure)

• Office Hours: posted on Google
Calendar on “Office Hours” page

116

Lectures
• You should ask lots of questions
– Interrupting (by raising a hand, turning on your video,

and waiting to be called on) to ask your question is
strongly encouraged

– Use the chat to ask questions in real time (TAs will be
monitoring the chat and will either answer or interrupt
the instructor)

– Asking questions later on Piazza is also great
• When I ask a question…
– I want you to answer
– Even if you don’t answer, think it through as though I’m

about to call on you
• Interaction improves learning (both in-class and at

my office hours)

117

Homework
There will be 6 homework assignments during the semester. The
assignments will consist of both conceptual and programming
problems.

118

Main Topic Implementation Application
Area

Type

HW1 PyTorch Primer MLP for Sequence
Tagging

NLP written +
programming

HW2 Learning to Search seq2seq + Dagger speech
recognition

written +
programming

HW3 Marginal inference
and MLE

RNN + Tree CRF NLP written +
programming

HW4 MCMC word embeddings +
Gibbs sampler

topic modeling written +
programming

HW5 Variational Inference mean field for cyclic
CRF

computer
vision

written +
programming

HW6 Advanced Topics NA written

Mini-Project (10-618 only)

• Goals:
– Explore a learning / inference technique of your

choosing
– Application and dataset will be provided (in the

style of a Kaggle competition)
– Deeper understanding of methods in real-world

application
– Work in teams of 2 students

119

Textbooks
You are not required to read a textbook, but
Koller & Friedman is a thorough reference text
that includes a lot of the topics we cover.

120

Prerequisites

What they are:
1. Introductory machine learning.

(i.e. 10-301, 10-315, 10-601, 10-701)
2. Significant experience programming in a

general programming language.
– The homework will require you to use Python,

so you will need to be proficient in Python.

3. College-level probability, calculus, linear
algebra, and discrete mathematics.

121

Q&A

123

