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WHAT IS STRUCTURED
PREDICTION?



Structured Prediction

e The focus of most Intro ML courses is
classification

— Given observations: X = (X5, X5 ..., Xp)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X5, X5 ..., Xp)
— Predict a structure: Yy=05Y2» -0 V)

* Some classification problems benefit from
latent structure



Classification [ Regression
1,

4

Structured Prediction

Input can be semi-
structured data
Outputis a single
number (integer [ real)
In linear models,
features can be arbitrary

combinations of [input,
output] pair

Output space is small
Inference is trivial

Structured Prediction

1.

3.

Input can be semi-structured
data

Output is a sequence of
numbers representing a
structure

In linear models, features can
be arbitrary combinations of
[input, output] pair

Output space may be
exponentially large in the input
space

Inference problems are NP-hard
or #P-hard in general and often
require approximations



Structured Prediction Examples

[Human Language Technologies]

Speech Recognition This was easy for us.
Syntactic Parsmg time flies like an arrow time flies like an  arrow

Send a text to Alice that txt (recipient = Alice,

Semantic Parsing I’11 be late msg = “I’11l be late”)

. . WHERE IS THE TRAIN ¢DONDE ESTA LA
Machine Translation
STATION? ESTACION DE TRENES?



Structured Prediction Training Dataset:
Part-of-Speech (POS) Tagging

pata: D = {a\"), y "},
Sample 1 . ‘ @ . . } y(l)
}
Sample 2: ‘ . ’ . ’ } y(Z)
© 6 & O 6}
Sample 3: . . @ . . } y(z)
OIS, |
Sample 4: . ‘ ‘ . . } y(4)




Structured Prediction Training Dataset:
Handwriting Recognition
Data: D = {z\™, ym

0000000000 I

NNEEHEEREN |-
M JoloX YoYoloX } o

Ll AT
mwo@ﬁ%@ @0 1~
GEE -

Figures from (Chatzis & Demiris, 201




Structured Prediction Training Dataset:
Phoneme (Speech) Recognition
Data: D = {z\™, ym

Sample 1
QQQQQQQQQQ b
ST LR
i b R .
. | }x(l)

Figures from (Jansen & Niyogi, 2013)



Structured Prediction Training Dataset:
Scene Understanding

- (D

" y(l)




Structured Prediction

l"‘l’h ZANRARY



Structured Prediction




DECOMPOSING A STRUCTURE
INTO PARTS



Decomposing a Structure into Parts

}' Many real-world problems require
structured prediction

— Given observations: X = (X5, X5, ..., Xg)

— Predict a structure: LX: Vi Yor ees m

/

* The most important idea in structured
prediction:

— Do NOT treat the output structure y as a single
monolithic piece of data

— Instead, divide that structure into its pieces

25



Decomposing a Structure into Parts

* Why divide a structure into its pieces?
— amenable to efficient inference
— enable natural parameter sharing during learning
— easier definition of fine-grained loss functions
— clearer depiction of model’s uncertainty

— easier specification of interactions between the
parts

— (may) lead to natural definition of a search problem

* Akey step in formulating a task as a structured
prediction

26



Decomposing a Structure into Parts

Example 1: Part-of-speech Tagging

e @ @ ® @ @ v
}
Question: Answer:

How would you decompose the
structure y into parts?

A. How many variables would you
need to represent said
decomposition?

B. What values could each variable
take?



Decomposing a Structure into Parts

Example 1: Pait-of- spe@Tag@ @ @

Xe

Question:
How would you decompose the
structure y into parts?

A. How many variables would you
need to represent said
decomposition?

B. What values could each variable
take?

@ €
Y %

@ ©
® ©

Answer:

A.

For each word in the sentence
create one tag variable, e.g. the
t’th word x, has a tag variable y;.

Each tag variable y, ranges over
the set of possible part-of-speech

tags{a,d,n,p, v, ... }



Decomposing a Structure into Parts

Example 2: Phoneme Recognition
" 000000000 ;-
- ‘\l }

"

Question: 2 Answer:
How would you decompose the
structure y into parts?

A. How many variables would you
need to represent said
decomposition?

B. What values could each variable
take?



Decomposing a Structure into Parts

Example 2: Phoneme Recognition

mwo@@@@@@@@@}y

Question: Answer:

How would you decompose the A.

structure y into parts?

A. How many variables would you
need to represent said

decomposition? B.

B. What values could each variable
take?

Assume the speech signal consists
of T segments of 10 milliseconds
each, then create T phoneme
variablesy,, y,, ..., Y7

Each phoneme variable y, can be a
phoneme {dh, h#, |h iy, ...} or the

special symbol “—” meaning “no
phoneme”



Decomposing a Structure into Parts

. Definition of a Dependency Parse:
: Dependency Parsing 1. Each word must have exactly
one parent
Sample 1

. ¢\:,-\— - 2. The parent must be another
2"’\3'\ /Ld_\ 4 word in the sentence OR the
* “wall”

time ﬂles like an arrow

[ X 3. Exactly one word must have
\Kmé{ "';\/HM the “wall” as its parent
U 235 4. The resulting directed graph

Example

*wall” must be acyclic

QueStion: Answer:
How would you decompose the
structure y into parts? 9- P"“"
A. How many variables would you

need to represent said

decomposition?

P wofé "'WW- l‘e" k LC an ¥y IA)

B. What values could each variable

take? ( és‘ l L’ S



Decomposing a Structure into Parts

Example 3: Dependency Parsing
Answer:

Solution #1: (most obvious solution)
A. Have one variable for each word in the sentence

B. Each variable can take on an integer indicating which word is its parent

, O, O,

0 1 2 3 4
<WALL> Juan_Carlos abdica su reino



Decomposing a Structure into Parts

Example 3: Dependency Parsing
Answer:

Solution #1: (most obvious solution)
A. Have one variable for each word in the sentence

B. Each variable can take on an integer indicating which word is its parent

&G o @ @
@ ® ® @

0 1 2 3
<WALL> Juan_Carlos abdica su reino
root

09.5.



Decomposing a Structure into Parts

Example 3: Dependency Parsing

Answer:

Solution #2: (one that’s not so obvious)

A. Create one variable for
every possible edge in
the graph

B. Each variable can
take either the
value 1 (if the

edge is

present)

or o (if 0
the edge <WALL>
is not

present)



Decomposing a Structure into Parts

Example 3: Dependency Parsing

Answer:

Solution #2: (one that’s not so obvious)

A. Create one variable for
every possible edge in
the graph

B. Each variable can
take either the

value 1 (if th
edge is \/e
present)
or o (it ¢ 0 :
the edge 7 <WALL> reino

is not ‘\ ‘y‘\ ‘y’

present)




Decomposing a Structure into Parts

Example 4: Scene Understanding
Question:

. How would you decompose the
structure y into parts?

A. How many variables would you
need to represent said

- X decomposition?
B. What values could each variable
take?
7 Answer:




Decomposing a Structure into Parts

Example 4: Scene Understanding
Question:

. How would you decompose the
structure y into parts?

A. How many variables would you
] need to represent said
X decomposition?
B. What values could each variable
take?

Answer:

; A. One output variable y;; for each of
| . A pixel x;;

B. The value of eachy;; would be one
of the possible labels, e.g.

{sailboat, sky, tree, water,
mountain, ... }

: P LR '_ v




Decomposing a Structure into Parts

Example 5: Medical Diagnosis
Fy
I x

patient’s diagnosis

patient’s chart

§ vOACIS - DEV
Application /! Roster List Datasheet ED Order Resources ts User Feedback Hely
X ¢ v w W &

Question:

How would you decompose the
structure y into parts?

How many variables would you
need to represent said

o T T

| = decomposition?
ew P' L]
== B. What values could each variable
Assessment | Physical @ Investigations | Discharge k 5
T take:
Temp(°C): = P: | BP(L): |
Resp: | 02sat(os): | BP(R): ™ Y
Emerg. Phys.: °
it Answer:
Assessment: :
Onset of Pain: | v ago Duration: | v | Severity: w| |
Describe Pain:
Pain is/was: Radiatin
Gone Episodic with exertion e i Sguesthiy L Arm
Burning Stabbing
Constant Episodic Unrelated to exertion = it R Arm
Other:
Pain worse with: Pain relieved with:
Most physical
Activity Eating Movement Deep breathing NTG NONE
Deep Fn&hm Lying Sitting Eating Rest Spedin
Other: Other:
Cardiac Risk Factors: Associated Symptoms:
Hx MI Diabetes | Nausea | Presyncope
Hx IHD Hypertension Yomiting | Syncope
CABG Increased Cholesterol | Diaphoresis Cough URT Symptoms
CHF Family Hx IHD age < 60 years Shortness of Breath | Peripheral Edema(New/Increased)



Decomposing a Structure into Parts

Example 5: Medical Diagnosis

patient’s diagnosis ]- y Question:
L How would you decompose the
patient’s chart ]‘ X structure y into parts?
] — _ A. How many variables would you st
Application AU Roster List Datasheet ED Order Resources ) User Feedback Hely need to represent Said
X ¢ v ko W &
= decomposition? E
2 B,  What values could each variable £
Assessment | Physical @ Investigations | Discharge take7 P
Triage * et
Temp(® C): 1 P: BP(L): | 1 :
Resp: | 02sat(eo): | BP(R): Ty !
Pt Answer: =
Assessment: : ) Z@A
Onset of Pain: | v ago Duration: | v | Severity: w| A. JUSt one Varlable y )
Describe Pain:
Pain is/was: Radiatin .
S e s s s ' B. That variable would ranges over
Sl e T — it the possible diagnoses (assuming
Pain worse with: Pain relieved with: ; X
Activity Eating [ Movement Deep breathing | |NTG N::;tpm“‘ we have a Iong list of them)
Deep preathm Lying Sitting Eating Rest P
Other: Other:
Cardiac Risk Factors: Associated Symptoms:
Hx MI Diabetes | Nausea | Presyncope
Hx IHD Hypertension Yomiting | Syncope
CABG Increased Cholesterol Diaphoresis Cough 1] l.l-lrslymptoms

CHF Family Hx IHD age < 60 years Shortness of Breath | Peripheral Edema(New/Increased)



Decomposing a Structure into Parts

Takeaways from these examples

1. The structure often provides an obvious
decomposition (e.g. POS tagging)

2. Dealing with variable size structures can be
tricky (e.g. phoneme recognition)

3. There are often many ways to decomposition
the structure (e.g. dependency parsing)

4. Sometimes the less obvious decomposition
may be the ”’simpler” one (e.g. scene
understanding)

5. Don’t confuse structure in the input for
structure in the output (e.g. medical diagnosis)



Structured Prediction




WHAT IS A MODEL?



A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

®© 0 ® @ O !
& T

44



A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

®© 0 ® @ 0 -
& T




A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural
network (MLP) that expects a fixed size input/output to a
prediction task with variable length input/output?

word x; and the current tag y,

Y1 2 Y3 In other words, it makes an
N\

0 / 0 independent classification
decision for each tag.

Q: Why is this model not-very-
@ interesting?
A: Because it only considers the
@ interaction between the current
v

A / A For part-of-speech tagging, we
know that verbs are much more

@ Q @ likely to follow nouns. But this
X X2 X3 model CANNOT learn that.




Joint Modeling

After we come up with a way to decompose our
structure into variables, what comes next?

We can define a joint model over those variables

The joint model defines a score for each possible
structure allowed by our decomposition

The model should give high scores to “good”
structures and low scores to “bad”’ structures

— in probability terms: high scores for likely structures
and low scores for unlikely structures

— “likely structures” could be defined as those appearing
in your training dataset



How do we write

down a joint model?

(Factor Graphs)




An Abstraction for Modeling

Factor Graph
(bipartite graph)

* variables (circles)
* factors (squares)




An Abstraction for Modeling

Factor Graph
(bipartite graph)

* variables (circles)
* factors (squares)

Factors have
local opinions




An Abstraction for Modeling

Factor Graph
(bipartite graph)

* variables (circles)
* factors (squares)

Factors have
local opinions




An Abstraction for Modeling

Factor Graph
(bipartite graph)

* variables (circles)
* factors (squares)

Factors have
local opinions




An Abstraction for Modeling

P(tuna, ice cream) = ?

peanut butter

chocolate 2 | 9| 7 |01

ice cream 7 3 2 | 041

peanut butter

53



peanut butter

peanut butter

An Abstraction for Modeling

P(tuna, ice cream) = %(6 *7%0.1)

Uh-oh! The probabilities of

the various assignments sum
up to Z > 1.

So divide them all by Z.

chocolate 2 | 9| 7 |01

ice cream 7 3 2 | 041

54



Mathematical
Modeling

An Abstraction for Modeling

(Agent] (Mode

v \

time flies like an  arrow

Factors have
local opinions

A

time flies like an  arrow




Mathematical
Modeling

An Abstraction for Modeling

(Agent] (Mode

v \

time flies like an  arrow

Factors have
local opinions

T

time flies like an  arrow




Mathematical
Modeling

An Abstraction for Modeling

(Agent)

v

time flies like an  arrow

Mode

The domains of
these variables
is exponential
in the length of
the sentence!

This factor

would be
massive

T

time flies like an  arrow

That’s why decomposing into many small

variables is so important



EXAMPLE: FACTOR GRAPH FOR
DEPENDENCY PARSING



Factor Graph for Dependency Parsing

Y <Y2,1> <Y2,3> <Y3,2>



&% E\Sﬂe

Factor Graph for Dependency Parsing

%)

G

<WALL>

60



Factor Graph for Dependency Parsing

3
&E\Sﬂe“loo )

(Sﬂ\.\th

Carlos

0 1
<WALL> Juan_

61



Factor Graph for Dependency Parsing

o)
. e( ) 20
&% E\Sﬂ

(Sﬁ\.\th

@ Unary:local opinion
about one edge

©
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Factor Graph for Dependency Parsing

o)
. e( ) 20
&% E\Sﬂ

(Sﬁ\.\th

0 ‘ 1
<WALL> Juan_Carlos

@ Unary:local opinion
about one edge

63



Factor Graph for Dependency Parsing

0083
, gisneh” J§ PTree: Hard constraint,

multiplying in 1if the
variables form a tree
and o0 otherwise.

@ Unary:local opinion
about one edge

<WALL> reino

64



Factor Graph for Dependency Parsing

0083
, gisneh” J§ PTree: Hard constraint,

multiplying in 1if the
variables form a tree
and o0 otherwise.

@ Unary:local opinion
about one edge

<WALL> reino

65



Factor Graph for Dependency Parsing

3)

200 .
.m&E\S“e(’ J§ PTree: Hard constraint,
\

G multiplying in 1if the
Ci variables form a tree
and o0 otherwise.

)‘ @ Unary:local opinion
0 about one edge

®) (® J Crandparent: local
opinion about

Y
L~ grandparent, head,

Q) (O Y E
><1? @X and.r:n-eel-ﬁﬁre-rc('t“Ll P‘\"'N"
PR 0D

0 1 2 3 4
<WALL> Juan_Carlos abdica su reino

66



J§ PTree: Hard constraint,
multiplying in 1if the
variables form a tree
and o otherwise.

© ..
? @ Unary:local opinion

about one edge

®) (® J Crandparent: local
opinion about

Y
-~ grandparent, head,
1@ @ © and modifier
; é >< J Sibling: local opinion
about pair of arbitrary
; - ? @ @ S siblings
0 1

<WALL> Juan_Carlos abdica su reino
\ vyﬂ\ y O ©

67



Factor Graph for Dependency Parsing

. 1()'\0
185 10
&P\.\edet’?\ﬂs ot a\e

Now w n

= o) e ca.

Yo [@ @ Y2, (v, work at this
— level of

o, Y Q;) Q;) @P 7)) @ abstraction.




VARIABLES AND INTERACTIONS



Joint Modeling

When do we add factors?

In order to determine which subsets of
variables should have factors between them,
we need to think about which variable
interactions we want to model.

If we expect there to be an interesting
interaction between some collection of
variables, then we should add a factor to
express an opinion about it



Scene Understanding

* Variables:

— boundaries of
iImage regions

— tags of regions

* Interactions:

— semantic
plausibility of
nearby tags

— continuity of tags
across visually
similar regions (i.e.
patches)

Labels with top-down information




Scene Understanding

* Variables:

— boundaries of Labels without top-down information
iImage regions

— tags of regions

* Interactions:

— semantic
plausibility of
nearby tags

— continuity of tags
across visually
similar regions (i.e.
patches)




Word Alignment / Phrase Extraction

* Variables (boolean): W ]
— For each (Chinese phrase, | ///// .
English phrase) pair, % iia s%
are they linked? " the’ ottt :
* Interactions: -
— Word fertilities
— Few “jumps” (discontinuities) -
— Syntactic reorderings — e
— “ITG contraint” on alignment AEEL l
— Phrases are disjoint (?) T

(Burkett & Klein, 2012)
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Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by w
representative and their
vote

— Pairs of representatives
and their local context B

TN S -\\7

CF e Om ) 74




¢ vOACIS - DEV

Application

8 ¢ Y w W

Assessment | Physical | Investigations | Discharge |

CWH  Roster List Datasheet ED Order Resources lHoporis

Medical Diagnosis

User Feedback Help
& ?

—Mml—

 Variables:

DOB: I Isolation Code Allergies T™ Comments

Triage
Temp(°C): | ] P: | ee@)
Resp: | == | 02 sat(oo): | BP(R): |
Emerg. Phys.: | = —= =
Resident: |
Assessment:
Onset of Pain: | [ |~ ago Duration: | R4 Severty-{ e
Describe Pain: s
Pain is/was: Radi
: e : :Achhg | Pressure | Squeezing
'Burning | Stabbing
_ Constant |  Episodic Unrelated to exertion
Other:
Pain worse with: Pain relieved with: ]
Most physic
Activity | Eating | Movement Deep breathing = |NTG INONE '
__ Deep Breathing | Lying Sitting _ Eating _ Rest SDeCfY‘ ‘
Cardiac Risk Factors: _ | Associated Symptoms:
| Hx MI || Diabetes | Nausea | Presyncope
| Hx IHD .| Hypertension .| Yomiting | Syncope
| | CABG | Increased Cholesterol | Diaphoresis | Cough
| CHF Family Hx IHD age <60 years | Shortness of Breath | Peripheral Ede: (N
|PCA/Stenting | Smoker .| Palpitations | Orthopnea
Family History: |
ETOH:

— content of text field
— checkmark
— dropdown menu

Interactions:

— groups of related
symptoms (e.g. that are
predictive of a disease)

— social history (e.g. smoker)
and symptoms

— risk factors (e.g. infant)
and lab results

=181 %]




EXAMPLE: RECURRENT NEURAL
NETWORK LANGUAGE MODEL



What if | want to model
EVERY possible

interaction?

...or at least the interactions of the
current variable with all those that came
before it...

(RNN-LMs)




RNN Language Model

T

RNN Language Model: p(w1,ws, ..., wr) = | [ p(we | fo(wi—y, ..., w1))
t=1

p(Wv W,, W37 cec W6) =
The p(W1)

[ The J( bat | p(Wz fe(W1))

[ The || bat ][ made | P(W3 fe(Wz, W1))

(The ) [(bat ) (‘made ) (Cnoise ) p(w, | fo(ws, Wi, W)

[ The ][ bat ][ made || noise |[ at | p fe(W4, W3, W), W1))

[ The J ([ bat [ made ][ noise J{_at J(night] p(wq [fe(Ws, W,y W3, Wy W,))
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector



RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]

[ R A R R

TP(WJhD Tp(wzlhz) TP(W3|h3) TP(W4lh4) T](Wslhs) T(W6|h6) TP(W7|h7)
> > > > >l— >

N N N N N\ N

h, h, h, h, hs he h

7
I e O e I I e O I e I I e I I e
\

/ N N N AN N N

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

The

T

p(w,|h,)

A
h,
[TT]
A

START

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

bat

T
[p(wzlhz)

h, h,

ITTH—{ 111

(START | [ The |
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)



RNN Language Model

made

T
[p(wslhg)

h, h, h,

I e I I I e

(START| [ The ] [ bat |
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)



RNN Language Model

noise

T
/[ p(wylh,)

N

h, h, h, h,

I e e I e

L 1 1

(START] [ The ] [ bat | [ made |

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

T
t(wslhs)

N

h, h, h, h, hy

[(ITTH+—ll T+l =l 1]

[ T T 1

(START] [ The ] [ bat | [ made | [ noise |

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

T
t(welhe)

N

h, h, h, h, hy he

O g I e I I e O I I b e

[ 1 T 1 T 1

[START] [ The ] [ bat ][made] [noise][ at ]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




RNN Language Model

h, h, h —h, D, ar 5

\

(starT) (The ) (ot ) (made) (oise ) (ot ) (oight )

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)

88



RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]

I Y IR I
Tp(wdho Tp(wzlhz) Tp<w3|h3) TP(W4lh4) Tl(wslhs) T(W6lh6) Tp(w7|h7)
> > > > y > y >

—>
N\ N N N \ \ N\

h, h, h, h,
I e I I I e I I e
N / \

N\ /A

hy he h,
[>T T H—>{TTF—t 1]
/

N\ N N

N

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

p(Wv W, W3: *cc WT) = p(W1 I h1) p(Wz I hz) p(Wz I hT)



A PREVIEW OF INFERENCE



Structured Prediction




Structured Prediction

l"‘l’h /\ _§




(#P-Hard)

(#P-Hard)

(NP-Hard)

(cf. convergence, variance)




Q&A

Q

But in deep learning we don’t need to solve these
inference problems, right?

>

Wrong...it’s not that we don’t need to solve them, it’s that
we often can’t!

Questions you could ask your RNN-LM or seg2seq model:

X 1. Whatis the probability of the 7" token being ‘zebra’ (marginal
inference)

X 2. Foranunnormalized model, what is the normalization constant?
(partition function)

X 3. Whatis the most probable output sequence? (MAP inference)
v 4. Give me 10 samples from the distribution.



Topics (Part I)

e Search-Based Structured
Prediction

— Reductions to Binary
Classification

— Learning to Search
— RNN-LMs
— seq2seq models

* Graphical Model Learning W

— Fully observed Bayesian
Network learning

— Fully observed MRF learning
— Fully observed CRF learning
— Parameterization of a GM

— Neural potential functions \

* Graphical Model
Representation

— Directed GMs vs.
Undirected GMs vs.
Factor Graphs

— Bayesian Networks vs.

Markov Random Fields vs.
Conditional Random Fields

Xact Intere

— Three inference problems:
(1) marginals
ézg partition function
3) most probably
assignment

— Variable Elimination

\QBelief Propagation (sum-
uct and max-pr.

112



Topics (Part 1)

* Learning for Structure * Parameter Estimation
Prediction — Bayesian inference
— Structured Perceptron — Topic Modeling
— Structured SVM .

Approximatg Inference by

Optimization
Farattonal Inference

— Neural network potentials

* (Approximate) MAP

Clnference — Mean Field Variational
— MAP Inferéence via Inference
— MAP Inference via LP — Coordinate Ascent V.I. (CAVI)
relaxation — Variational EM
* Approximate Inference by — Variational Bayes
@ — e Bayesian Nonparametrics
— Monte Carlo Methods — Dirichlet Process
— Gibbs Sampling — DP Mixture Model
— Metropolis-Hastings « Deep Generative Models

— Markov Chains and MCMC — Variational Autoencoders
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SYLLABUS HIGHLIGHTS



Syllabus Highlights

The syllabus is located on the course webpage:

The course policies are required reading.


http://418.mlcourse.org/
http://618.mlcourse.org/

Syllabus Highlights

Grading 418: 60% homework, 15% * Readings: required, online PDFs,
midterm, 20% final, 5% participation recommended for after lecture
Grading 618: 55% homework, 15% * Technologies:
midterm, 15% final, 5% participation, — Piazza (discussion),
10% project — Gradescope (homework),
Midterm Exam: in-class exam, Fri, — Google Forms (polls),
Oct. 14 — Zoom (livestream),
Final Exam: final exam week, — Panopto (video recordings)
date/time TBD by registrar * Academic Integrity:
Homework: ~6 assignments — Collaboration encouraged, but must be
3 : documented
— 8 grace days for homework assignments : :
_  Late submissions: 75% day 1, 50% day 2 — Solutions must always be written
- /5% ddy, 504 day 2, independently

25% day 3

— No submissions accepted after 3 days ,
w/o extension assignments

— Extension requests: for emergency B .Severe penalties (i.e.. failure)
situations, see syllabus * Office Hours: posted on Google

Recitations: Fridays, same time/place Calendar on “Office Hours” page
as lecture (optional, interactive
sessions)

— No re-use of found code [ past



Lectures

* You should ask lots of questions

— Interrupting (by raising a hand, turning on your video,
and waiting to be called on) to ask your question is
strongly encouraged

— Use the chat to ask questions in real time (TAs will be
monitoring the chat and will either answer or interrupt
the instructor)

— Asking questions later on Piazza is also great
* When | ask a question...
— | want you to answer

— Even if you don’t answer, think it through as though I’'m
about to call on you

* Interaction improves learning (both in-class and at
my office hours)



Homework

There will be 6 homework assignments during the semester. The
assignments will consist of both conceptual and programming
problems

Area

HW2

PyTorch Primer

Learning to Search

Marginal inference
and MLE
MCMC

Variational Inference

Advanced Topics

MLP for Sequence
Tagging
seq2seq + Dagger

RNN + Tree CRF

word embeddings +
Gibbs sampler

mean field for cyclic
CRF

NA

speech
recognition

NLP

topic modeling

computer
vision

written +
programmlng

written +
programming
written +
programming

written +
programming

written +
programming

written
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Mini-Project (10-618 only)

e Goals:

— Explore a learning [ inference technique of your
choosing

— Application and dataset will be provided (in the
style of a Kaggle competition)

— Deeper understanding of methods in real-world
application

— Work in teams of 2 students



Textbooks

You are not required to read a textbook, but
Koller & Friedman is a thorough reference text
that includes a lot of the topics we cover.

PROBABILISTIC GRAPHICAL MODELS
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Prerequisites

What they are:

1. Introductory machine learning.
(i.e. 10-301, 10-315, 10-601, 10-701)

2. Significant experience programming in a
general programming language.

— The homework will require you to use Python,
so you will need to be proficient in Python.

3. College-level probability, calculus, linear
algebra, and discrete mathematics.






