

10-418/10-618 Machine Learning for Structured Data

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Course Overview

+

What is Structured Prediction?

Matt Gormley Lecture 1 Aug. 29, 2022

WHAT IS STRUCTURED PREDICTION?

Structured Prediction

 The focus of most Intro ML courses is classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction

Classification / Regression

- Input can be semistructured data
- Output is a single number (integer / real)
- 3. In linear models, features can be arbitrary combinations of [input, output] pair
- 4. Output space is small
- 5. Inference is trivial

Structured Prediction

- Input can be semi-structured data
- Output is a sequence of numbers representing a structure
- 3. In linear models, features can be arbitrary combinations of [input, output] pair
- Output space may be exponentially large in the input space
- Inference problems are NP-hard or #P-hard in general and often require approximations

Structured Prediction Examples

[Human Language Technologies]

Task	Input	Output	
Speech Recognition	40 haf dh ih s w uh z iy z iy f ao r ah s haf ao ao ao ao ao ao ao	This was easy for us.	
Syntactic Parsing	time flies like an arrow	time flies like an arrow	
Semantic Parsing	Send a text to Alice that I'll be late	<pre>txt(recipient = Alice, msg = "I'll be late")</pre>	
Machine Translation	WHERE IS THE TRAIN STATION?	¿DONDE ESTA LA ESTACION DE TRENES?	

Structured Prediction Training Dataset: Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

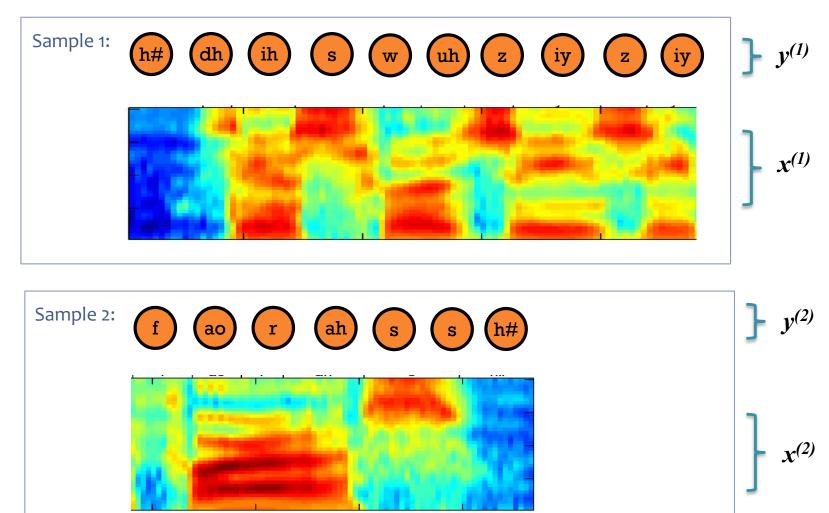
Sample 1:	n	v flies	p like	an	$\begin{array}{c c} & y \\ \hline & x \\ \end{array}$	
Sample 2:	n	n	like	an	$\begin{array}{c c} & & \\ & & \\ \hline & & \\ & & \\ \end{array}$	
Sample 3:	n	fly	with	heir	$ \begin{array}{c c} $	
Sample 4:	with	n	you	will	$\begin{array}{c c} & & \\ & &$	

Structured Prediction Training Dataset: Handwriting Recognition

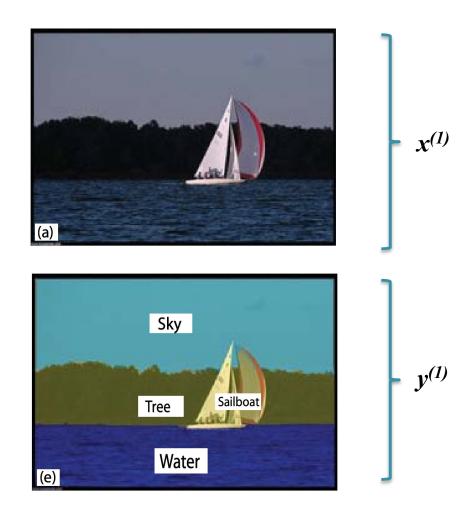
Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Structured Prediction Training Dataset: Phoneme (Speech) Recognition

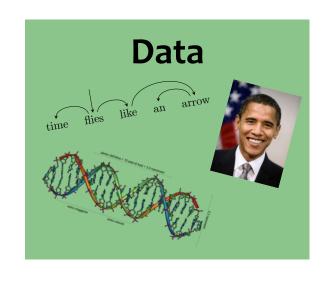
Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

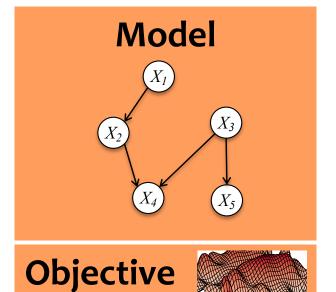


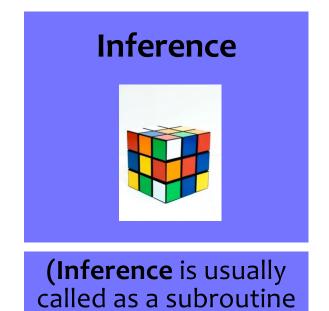
Structured Prediction Training Dataset: Scene Understanding



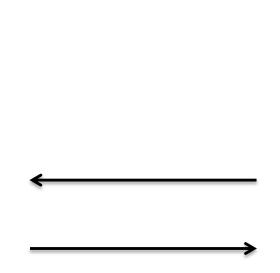
Structured Prediction

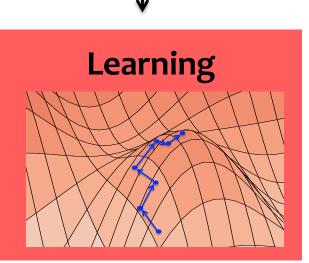






in learning)





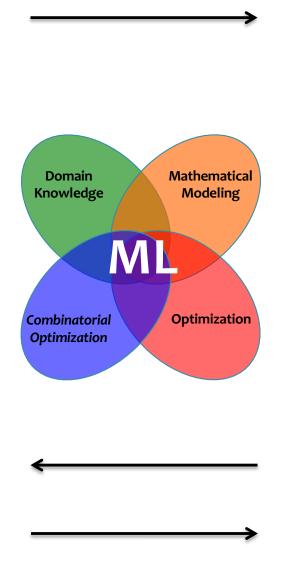
Structured Prediction

The data inspires
the structures
we want to
predict

Inference finds

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)



Our **model**defines a score
for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

DECOMPOSING A STRUCTURE INTO PARTS

- Many real-world problems require structured prediction
 - Given observations:

$$x = (x_1, x_2, ..., x_K)$$

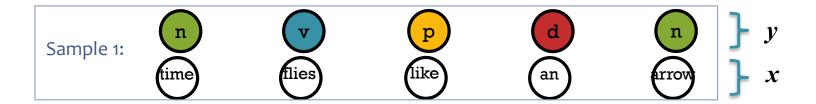
- Given observations:
$$x = (x_1, x_2, ..., x_K)$$

- Predict a structure: $y = (y_1, y_2, ..., y_J)$

- The most important idea in structured prediction:
 - Do NOT treat the output structure v as a single monolithic piece of data
 - Instead, divide that structure into its pieces

- Why divide a structure into its pieces?
 - amenable to efficient inference
 - enable natural parameter sharing during learning
 - easier definition of fine-grained loss functions
 - clearer depiction of model's uncertainty
 - easier specification of **interactions** between the parts
 - (may) lead to natural definition of a search problem
- A key step in formulating a task as a structured prediction

Example 1: Part-of-speech Tagging

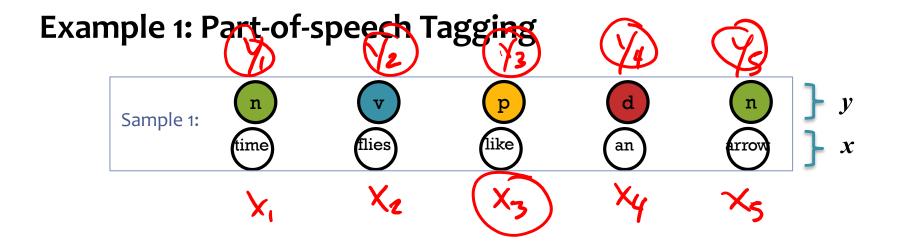


Question:

How would you decompose the structure *y* into parts?

- A. How many variables would you need to represent said decomposition?
- B. What values could each variable take?

Answer:



Question:

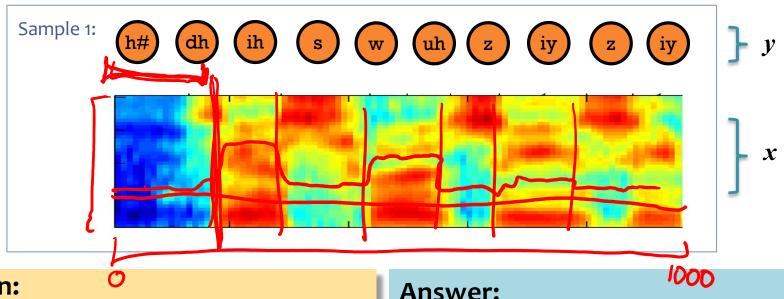
How would you decompose the structure *y* into parts?

- A. How many variables would you need to represent said decomposition?
- B. What values could each variable take?

Answer:

- A. For each word in the sentence create one tag variable, e.g. the t'th word x_t has a tag variable y_t.
- B. Each tag variable y_t ranges over the set of possible part-of-speech tags {a, d, n, p, v, ...}

Example 2: Phoneme Recognition

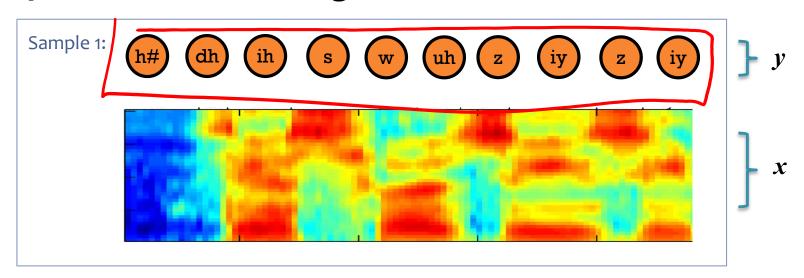


Question:

How would you decompose the structure *y* into parts?

- How many variables would you need to represent said decomposition?
- What values could each variable take?

Example 2: Phoneme Recognition



Question:

How would you decompose the structure *y* into parts?

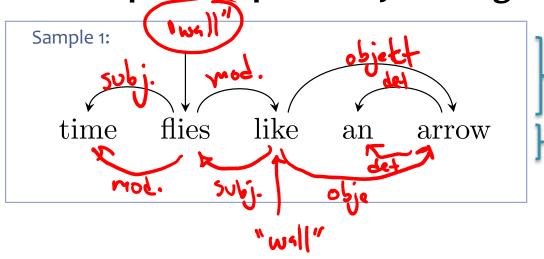
- A. How many variables would you need to represent said decomposition?
- B. What values could each variable take?

Answer:

- A. Assume the speech signal consists of T segments of 10 milliseconds each, then create T phoneme variables y₁, y₂, ..., y_T
- B. Each phoneme variable y_t can be a phoneme {dh, h#, ih, iy, ...} or the special symbol "—" meaning "no phoneme"

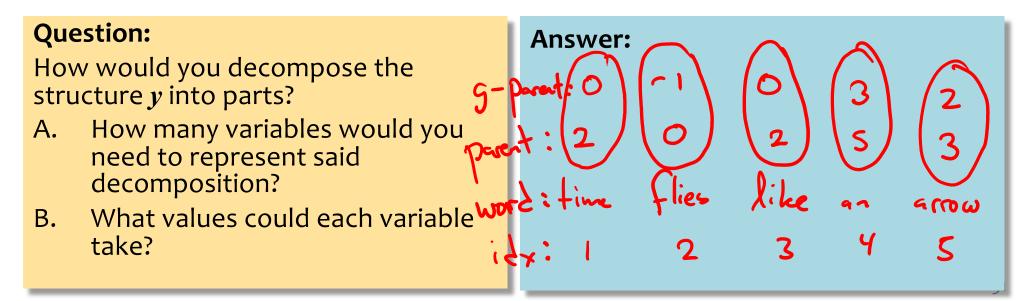
y

Example 3: Dependency Parsing



Definition of a Dependency Parse:

- Each word must have exactly one parent
- The parent must be another word in the sentence OR the "wall"
- 3. Exactly one word must have the "wall" as its parent
- 4. The resulting directed graph must be acyclic

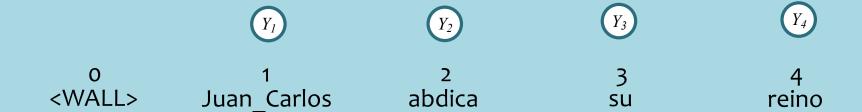


Example 3: Dependency Parsing

Answer:

Solution #1: (most obvious solution)

- A. Have one variable for each word in the sentence
- B. Each variable can take on an integer indicating which word is its parent

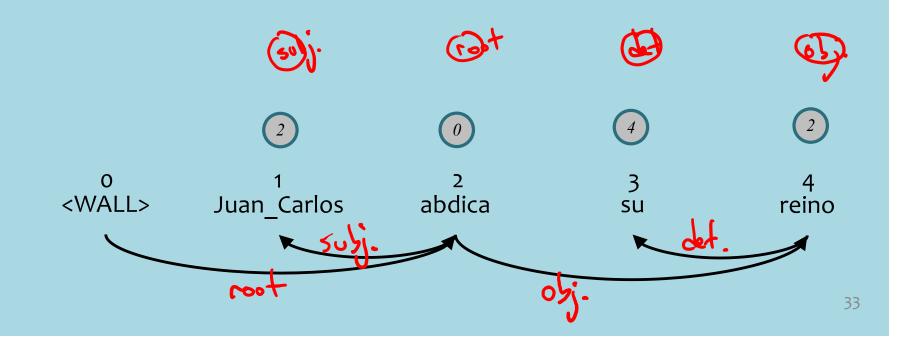


Example 3: Dependency Parsing

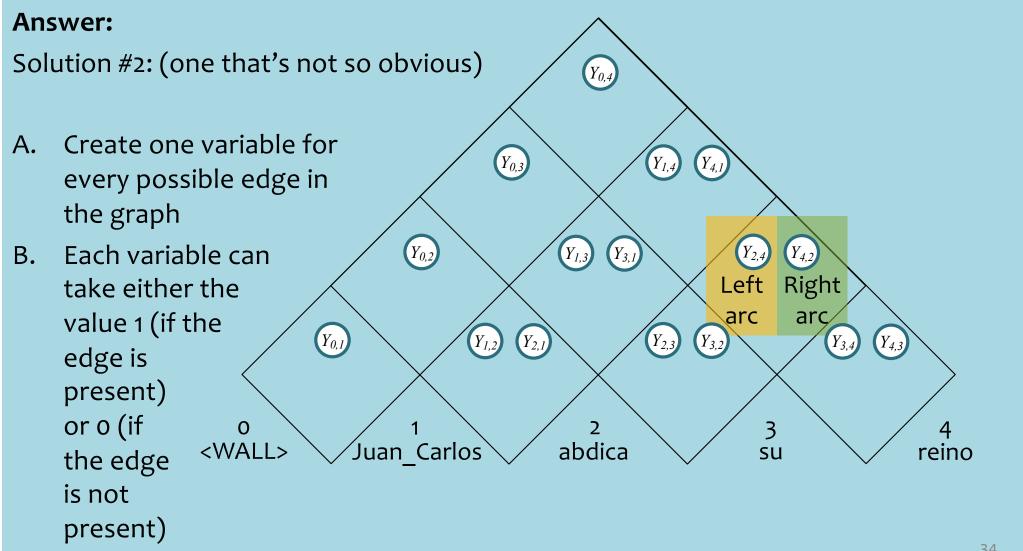
Answer:

Solution #1: (most obvious solution)

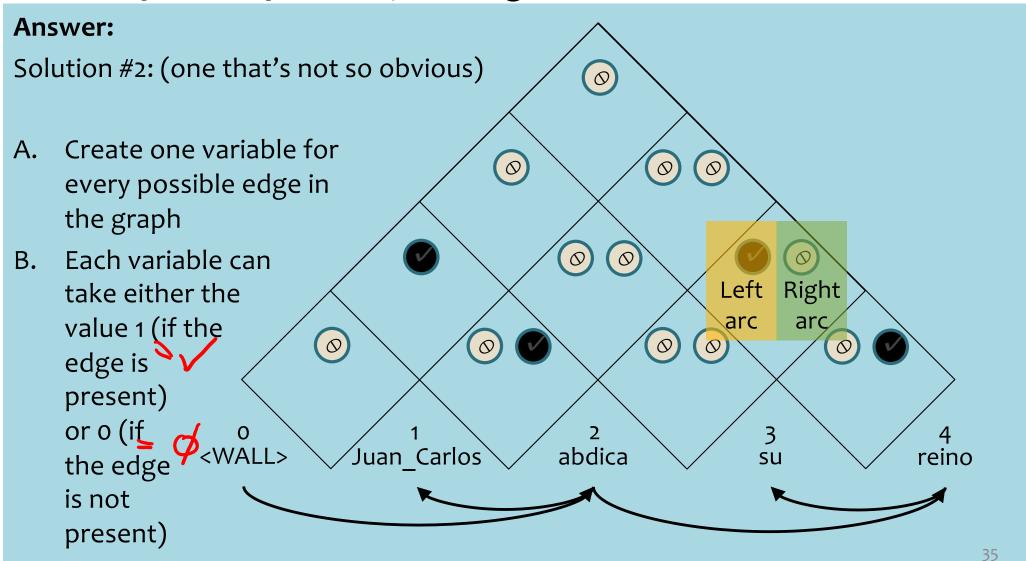
- A. Have one variable for each word in the sentence
- B. Each variable can take on an integer indicating which word is its parent



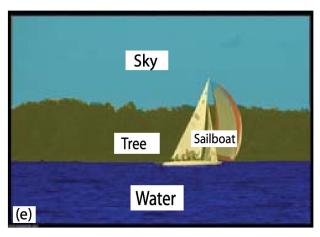
Example 3: Dependency Parsing



Example 3: Dependency Parsing



Example 4: Scene Understanding



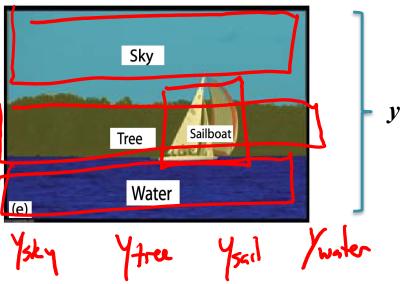
Question:

How would you decompose the structure *y* into parts?

- How many variables would you need to represent said decomposition?
- What values could each variable take?

Answer:

Example 4: Scene Understanding



Question:

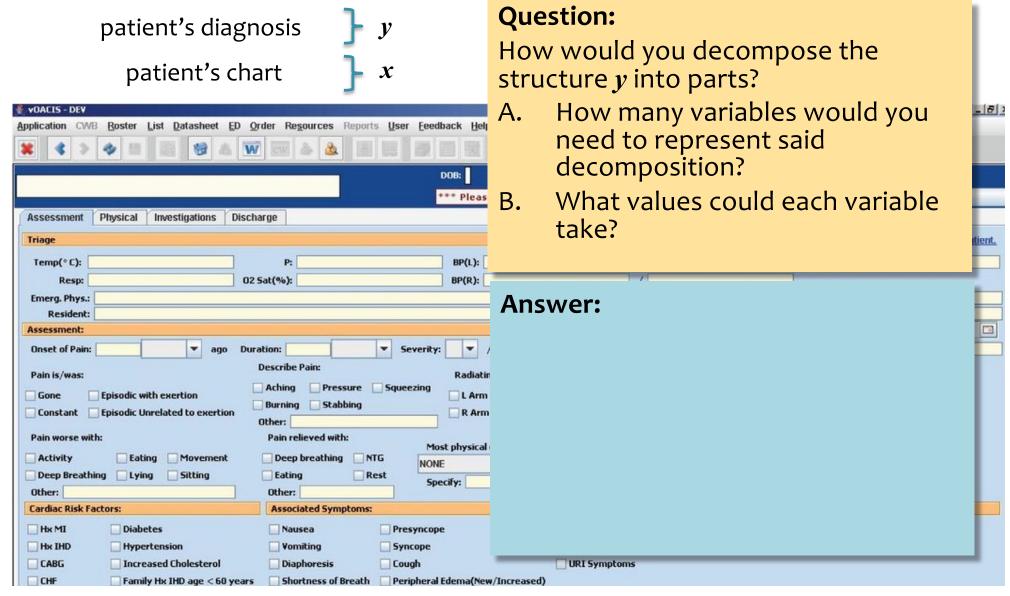
How would you decompose the structure *y* into parts?

- A. How many variables would you need to represent said decomposition?
- B. What values could each variable take?

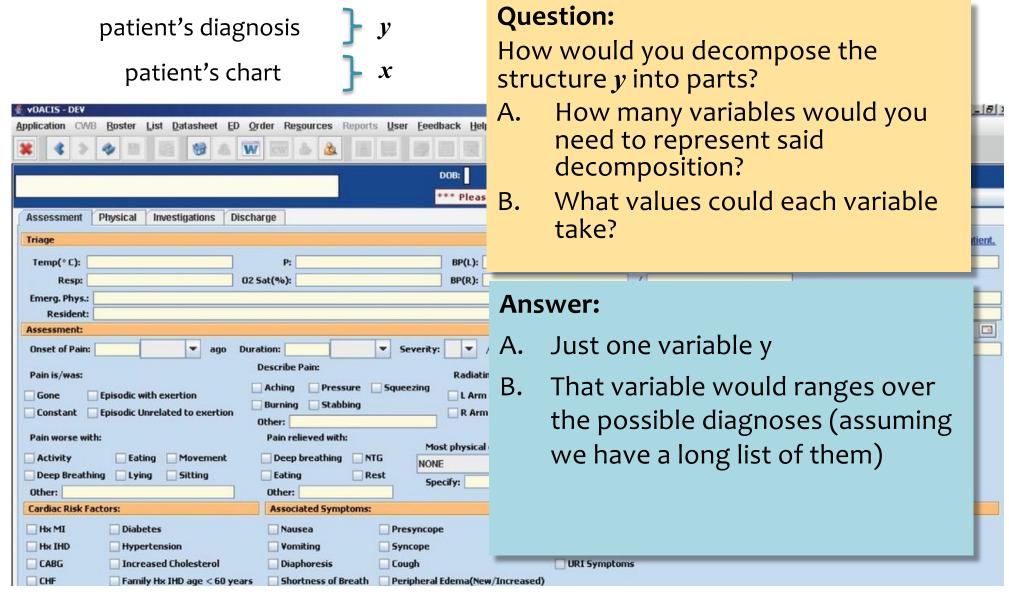
Answer:

- A. One output variable $y_{i,j}$ for each of pixel $x_{i,i}$
- B. The value of each y_{i,j} would be one of the possible labels, e.g. {sailboat, sky, tree, water, mountain, ...}

Example 5: Medical Diagnosis



Example 5: Medical Diagnosis

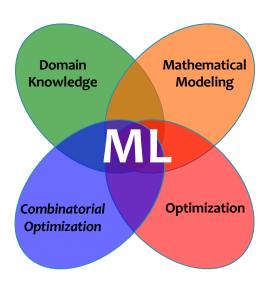


Takeaways from these examples

- 1. The structure often provides an obvious decomposition (e.g. POS tagging)
- Dealing with variable size structures can be tricky (e.g. phoneme recognition)
- There are often many ways to decomposition the structure (e.g. dependency parsing)
- Sometimes the less obvious decomposition may be the "simpler" one (e.g. scene understanding)
- 5. Don't confuse structure in the input for structure in the output (e.g. medical diagnosis)

Structured Prediction

The data inspires
the structures
we want to
predict



Our **model**defines a score
for each structure

It also tells us what to optimize

Inference finds

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

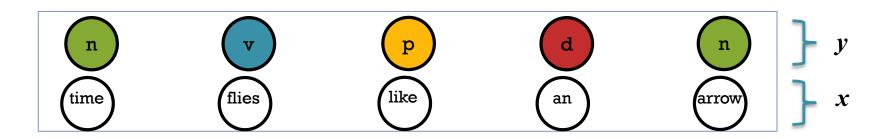
Learning tunes the parameters of the model

(without any math!)

WHAT IS A MODEL?

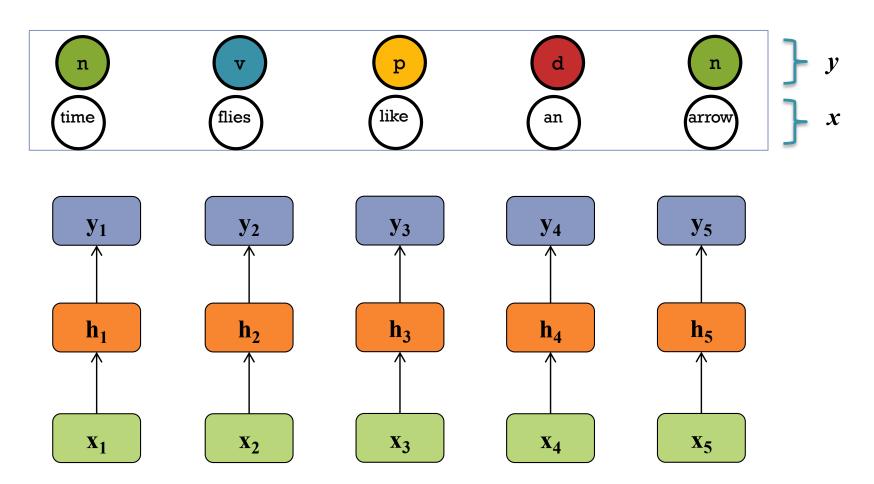
A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural network (MLP) that expects a **fixed size input/output** to a prediction task with **variable length input/output**?



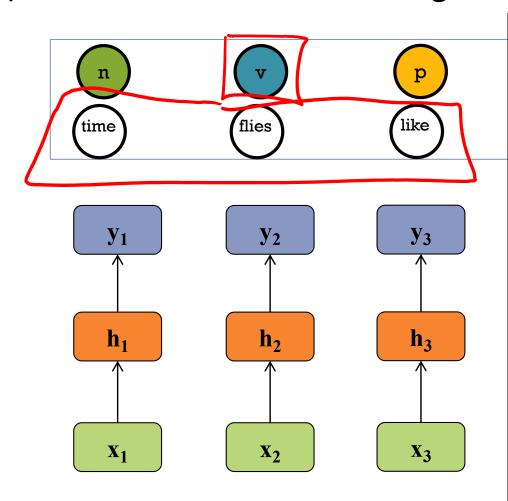
A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural network (MLP) that expects a **fixed size input/output** to a prediction task with **variable length input/output**?



A Not-very-interesting Model

Question: How could we apply a standard feed-forward neural network (MLP) that expects a **fixed size input/output** to a prediction task with **variable length input/output**?



Q: Why is this model not-very-interesting?

A: Because it only considers the interaction between the current word x_t and the current tag y_t

In other words, it makes an independent classification decision for each tag.

For part-of-speech tagging, we know that verbs are much more likely to follow nouns. But this model CANNOT learn that.

Joint Modeling

After we come up with a way to decompose our structure into variables, what comes next?

- We can define a joint model over those variables
- The joint model defines a score for each possible structure allowed by our decomposition
- The model should give high scores to "good" structures and low scores to "bad" structures
 - in probability terms: high scores for likely structures and low scores for unlikely structures
 - "likely structures" could be defined as those appearing in your training dataset
- (Hopefully, the joint model is also able to capture interesting interactions between pairs, triples, quadruples, ... of variables)

How do we write down a joint model?

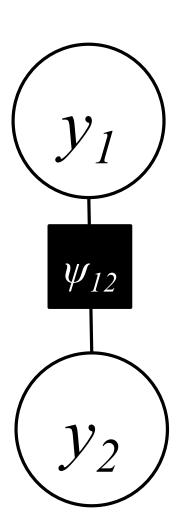
(Factor Graphs)

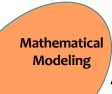
An Abstraction for Modeling

Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)



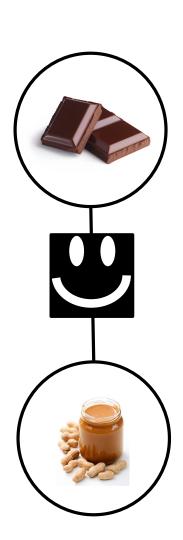


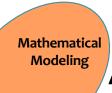
Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions



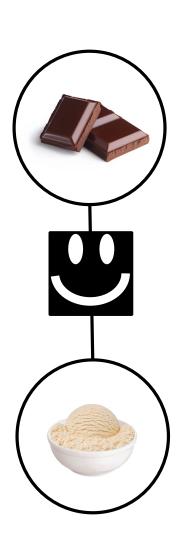


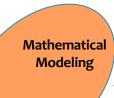
Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions



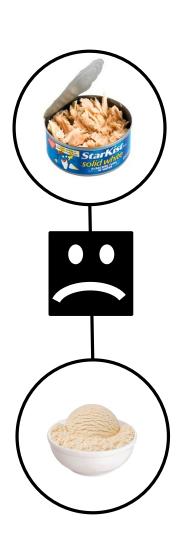


Factor Graph

(bipartite graph)

- variables (circles)
- factors (squares)

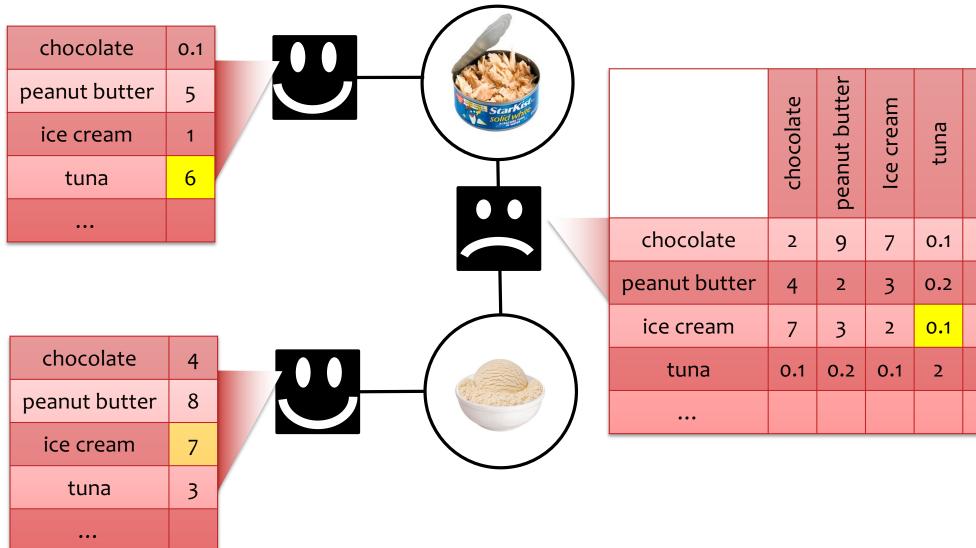
Factors have local opinions



Mathematical Modeling

An Abstraction for Modeling

P(tuna, ice cream) = ?

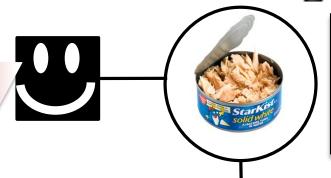


Mathematical Modeling

An Abstraction for Modeling

 $P(\text{tuna, ice cream}) = \frac{1}{Z} (6 * 7 * 0.1)$

chocolate	0.1	
peanut butter	5	
ice cream	1	
tuna	6	
•••		



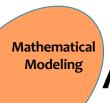
Uh-oh! The probabilities of
the various assignments sum
up to $Z > 1$.

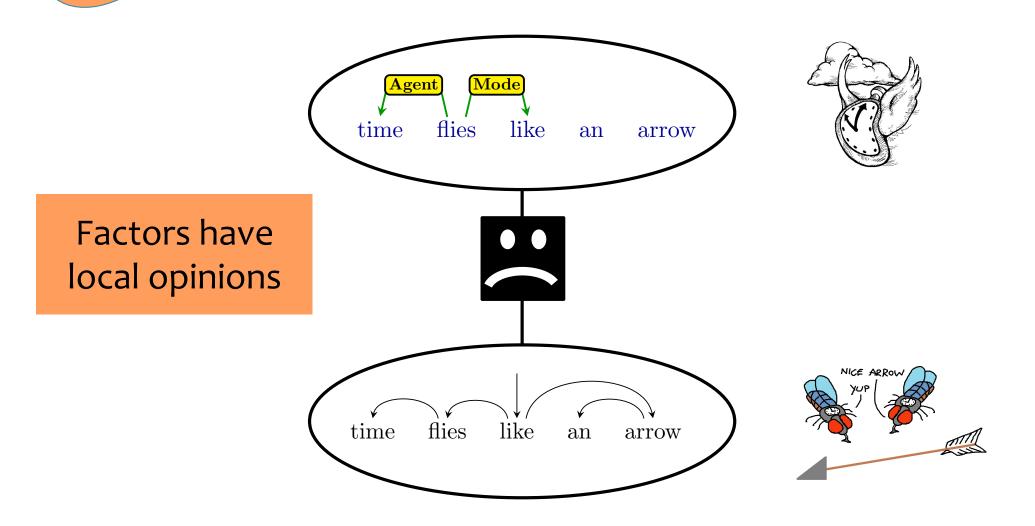
So divide them all by Z.

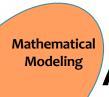
chocolate	4
peanut butter	8
ice cream	7
tuna	3

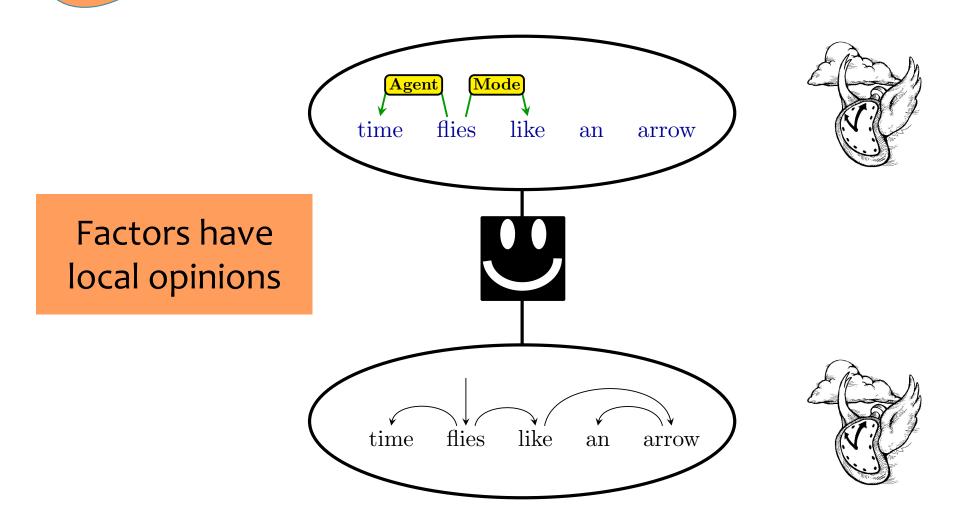
	cho	peanu	Ice	tı	
chocolate	2	9	7	0.1	
peanut butter	4	2	3	0.2	
ice cream	7	3	2	0.1	
tuna	0.1	0.2	0.1	2	

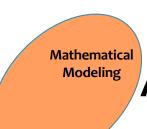
ına



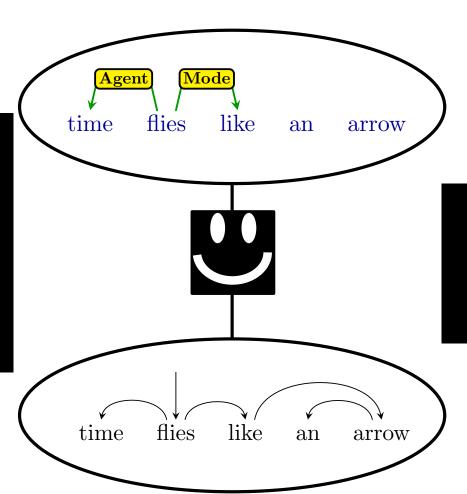








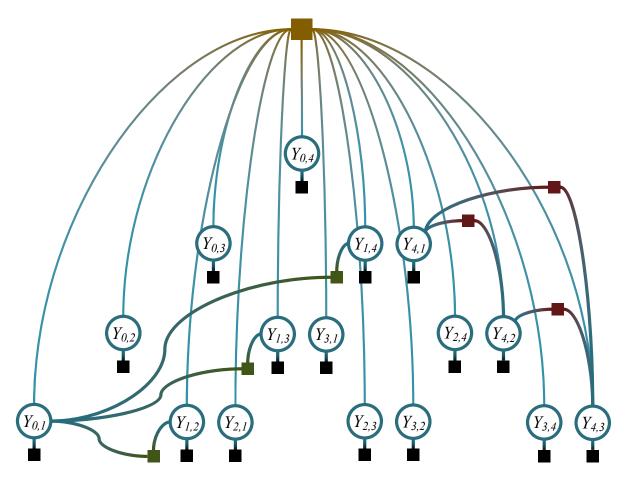
The domains of these variables is exponential in the length of the sentence!

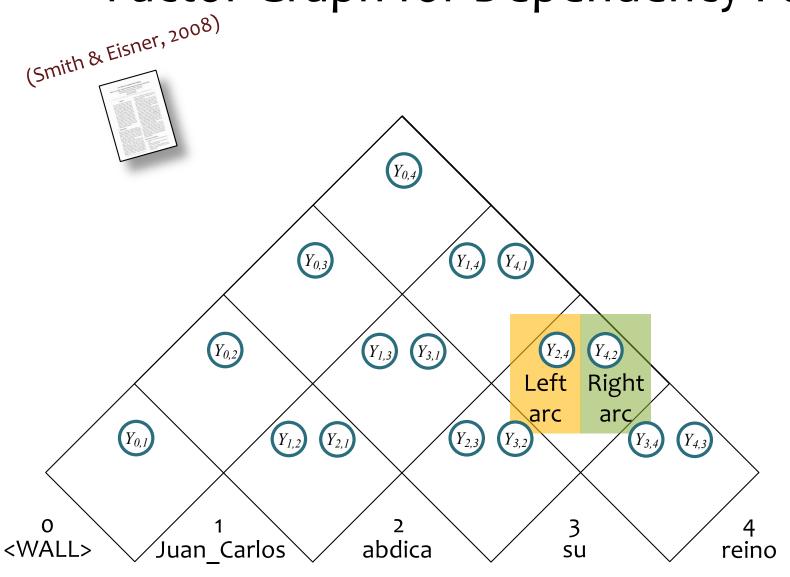


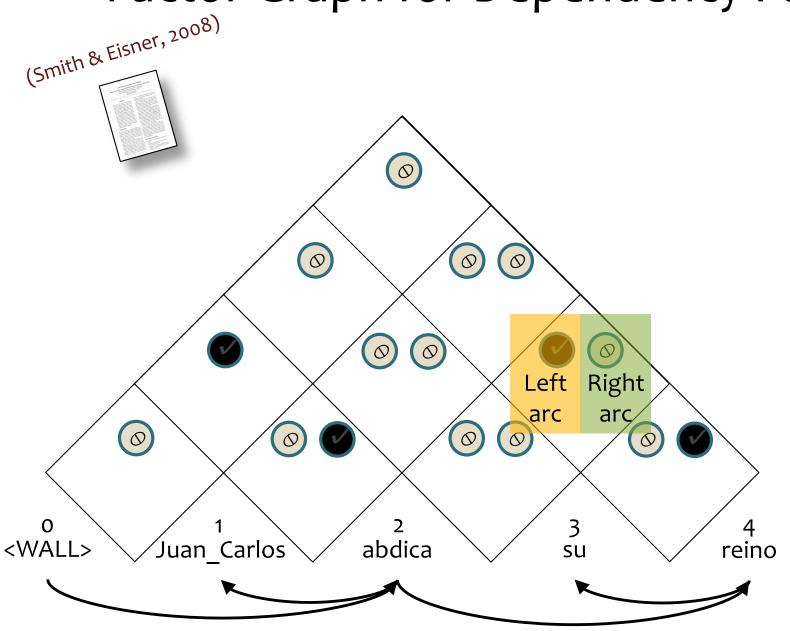
This factor would be massive

That's why decomposing into many small variables is so important

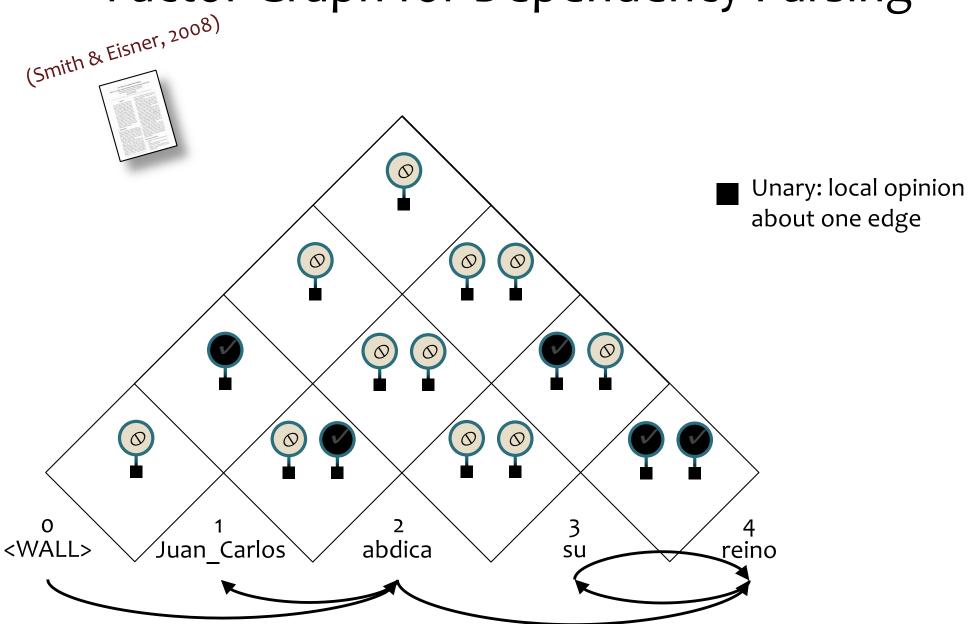
EXAMPLE: FACTOR GRAPH FOR DEPENDENCY PARSING

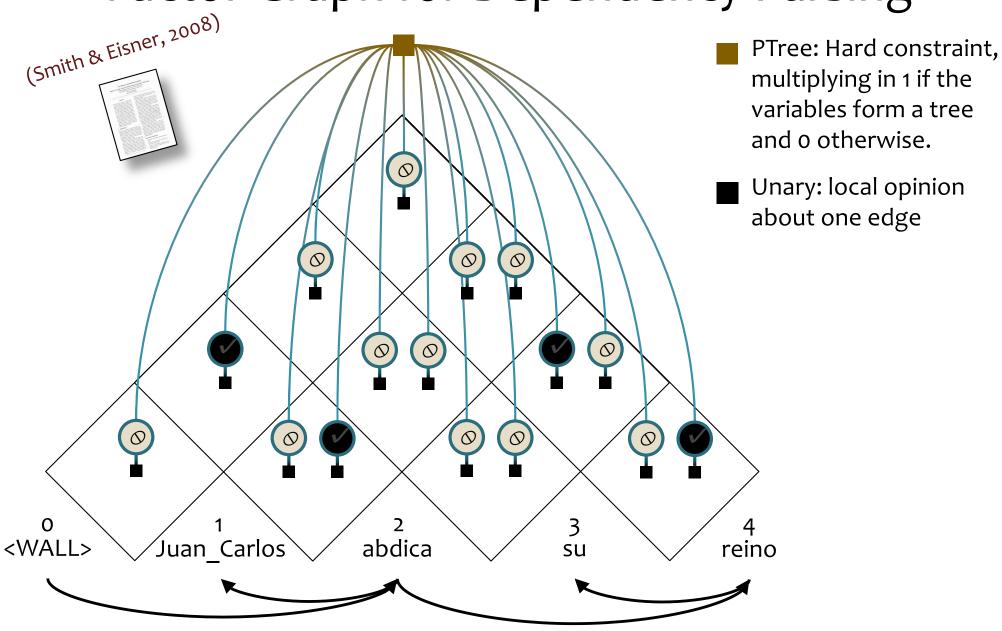


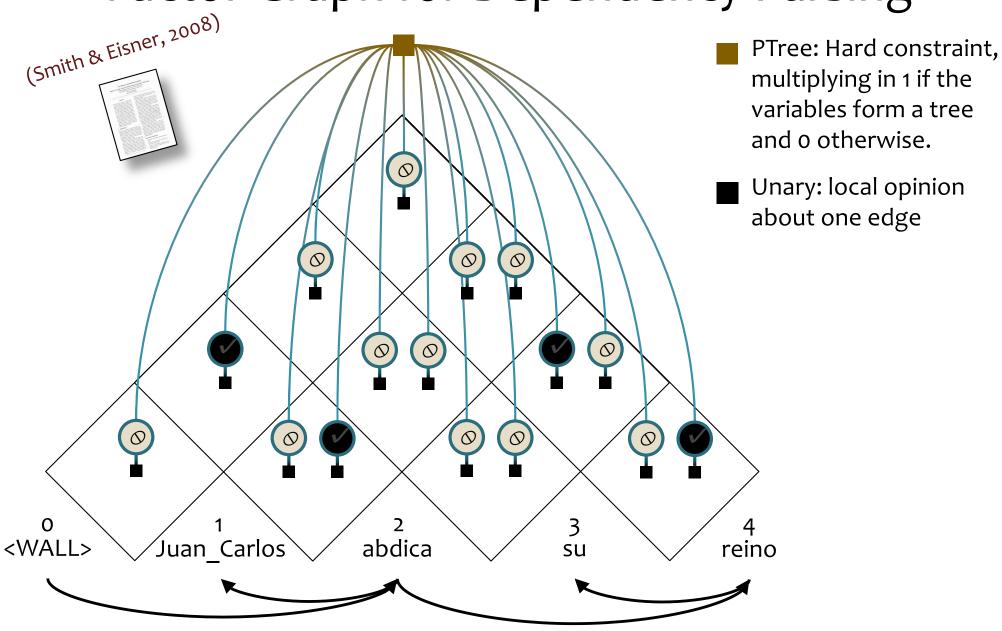


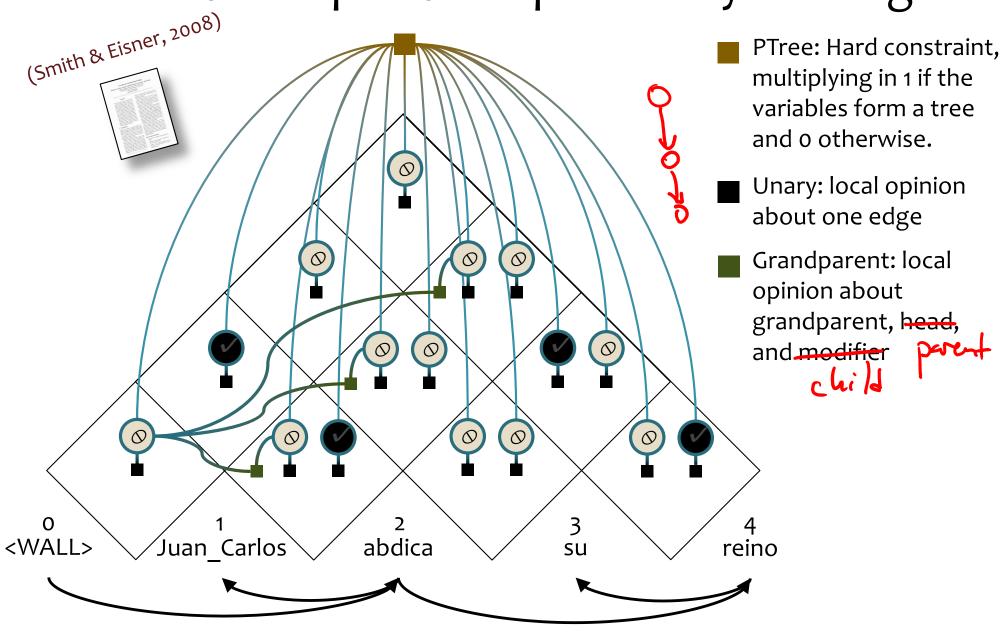


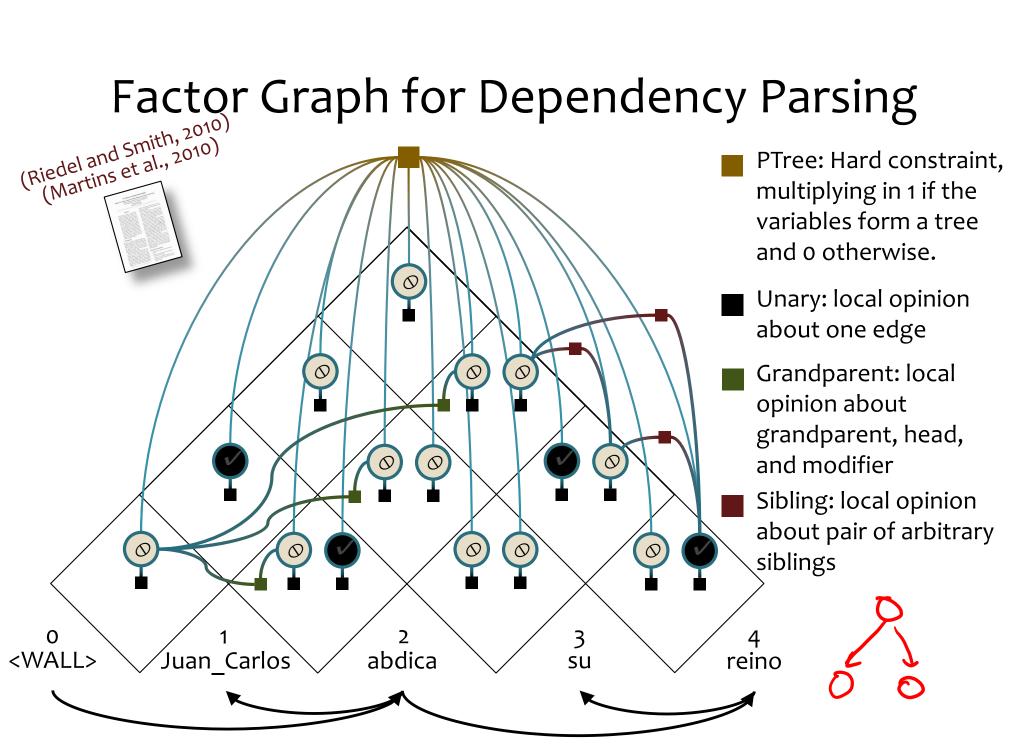


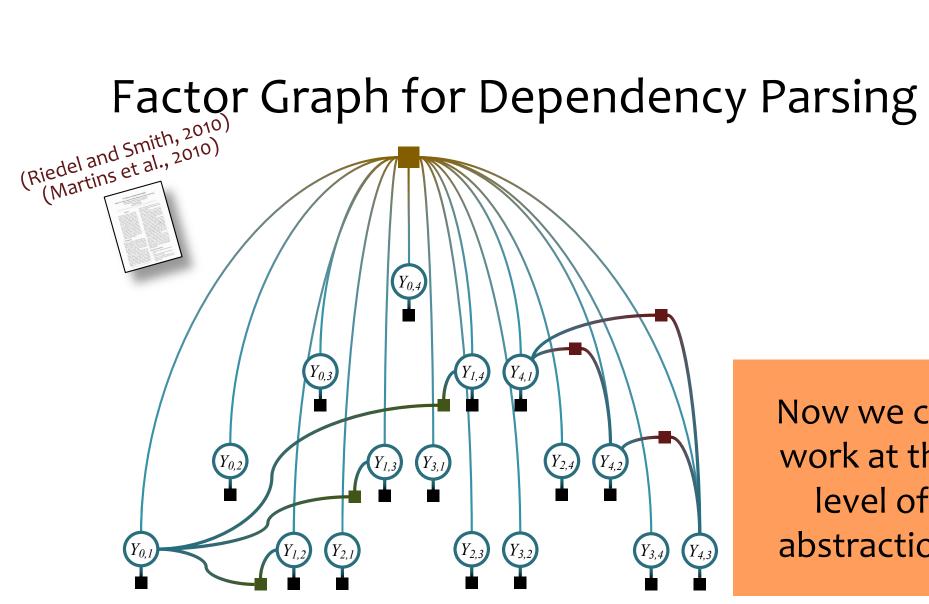












Now we can work at this level of abstraction.

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha})$$

VARIABLES AND INTERACTIONS

Joint Modeling

When do we add factors?

In order to determine which subsets of variables should have factors between them, we need to think about which variable **interactions** we want to model.

If we expect there to be an interesting interaction between some collection of variables, then we should add a factor to express an opinion about it

Scene Understanding

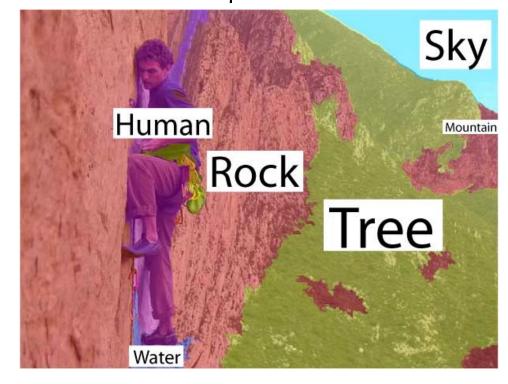
Variables:

- boundaries of image regions
- tags of regions

Interactions:

- semanticplausibility ofnearby tags
- continuity of tags
 across visually
 similar regions (i.e.
 patches)

Labels with top-down information



(Li et al., 2009)

Scene Understanding

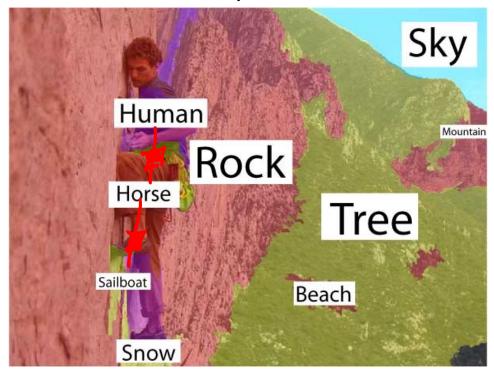
Variables:

- boundaries of image regions
- tags of regions

Interactions:

- semanticplausibility ofnearby tags
- continuity of tags
 across visually
 similar regions (i.e.
 patches)

Labels without top-down information



(Li et al., 2009)

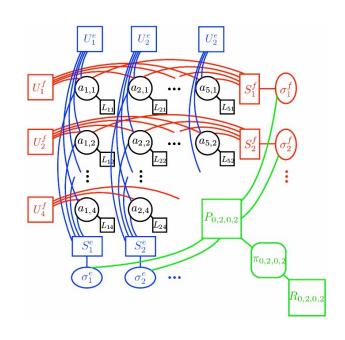
Word Alignment / Phrase Extraction

Variables (boolean):

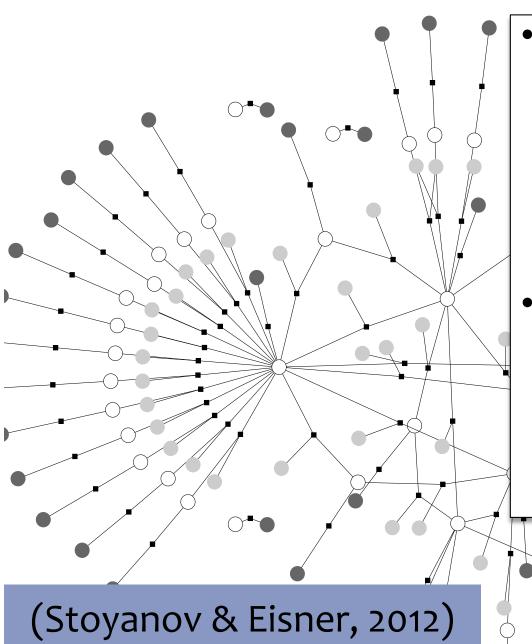
For each (Chinese phrase, English phrase) pair, are they linked?

Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)



Congressional Voting



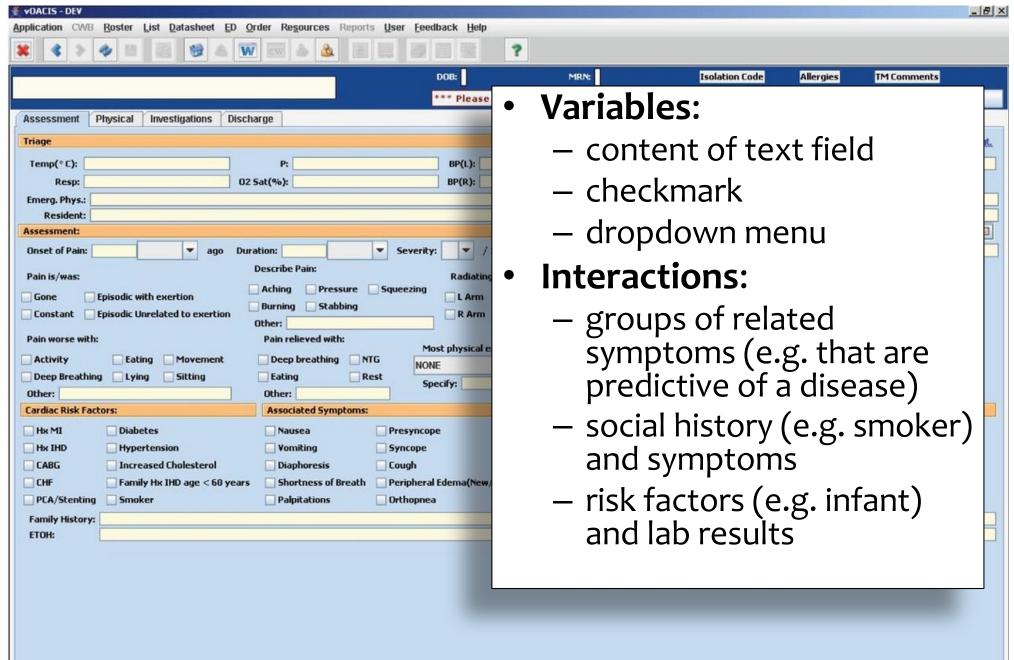
• Variables:

- Representative's vote
- Text of all speeches of a representative
- Local contexts of references between two representatives

• Interactions:

- Words used by representative and their vote
- Pairs of representatives and their local context

Medical Diagnosis



(we'll talk about this in a later lecture...)

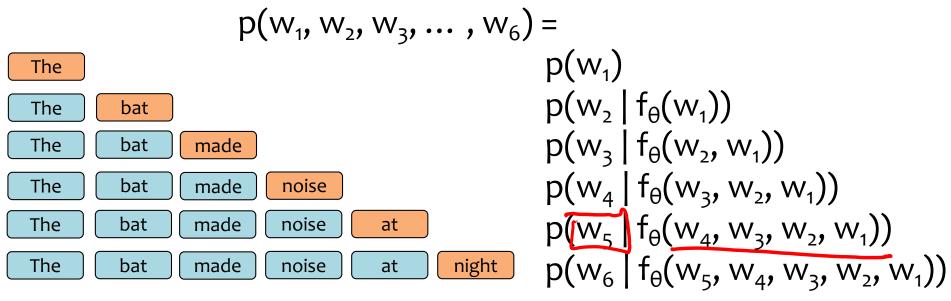
EXAMPLE: RECURRENT NEURAL NETWORK LANGUAGE MODEL

What if I want to model EVERY possible interaction?

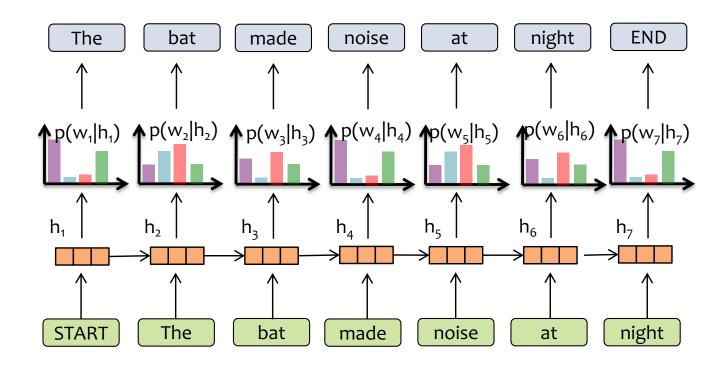
... or at least the interactions of the current variable with all those that came before it...

(RNN-LMs)

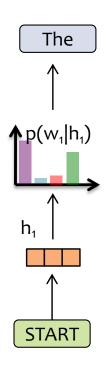
RNN Language Model:
$$p(w_1, w_2, \dots, w_T) = \prod_{t=1}^T p(w_t \mid f_{\boldsymbol{\theta}}(w_{t-1}, \dots, w_1))$$



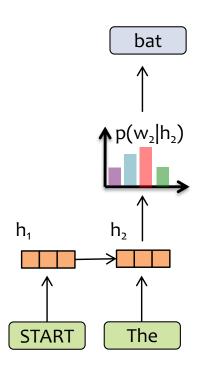
- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector



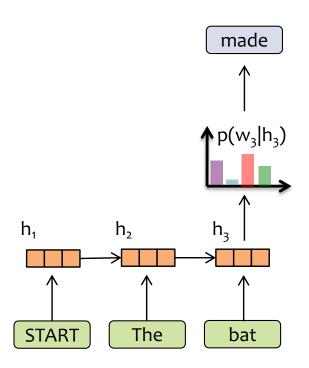
- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$



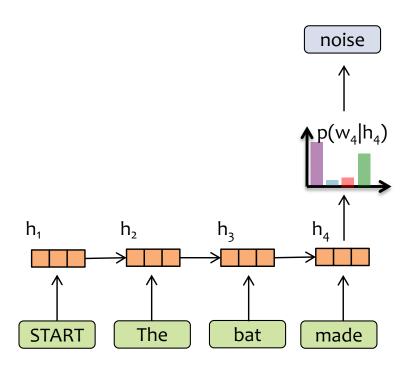
- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$



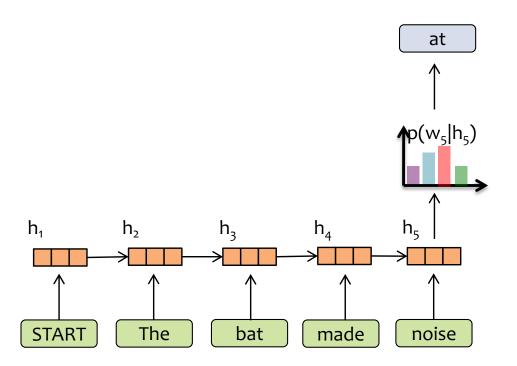
- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$



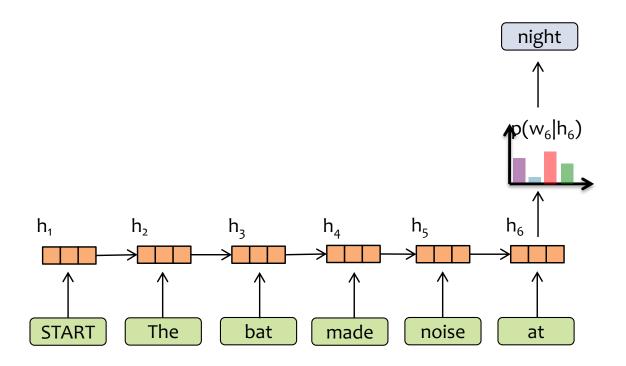
- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$



- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$

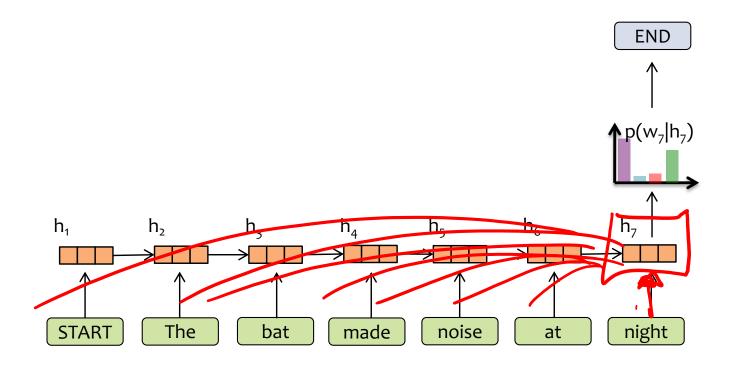


- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$



- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$

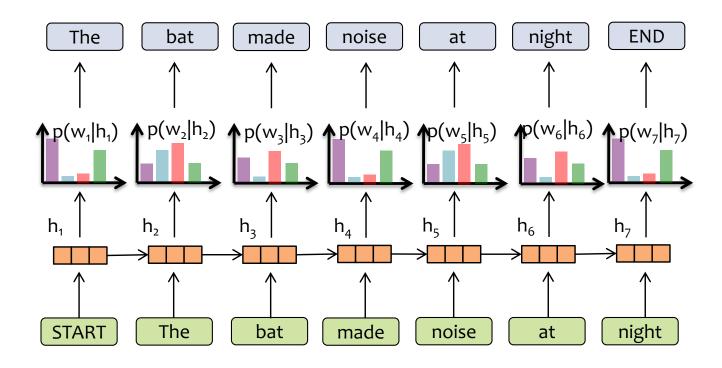
RNN Language Model



Key Idea:

- (1) convert all previous words to a fixed length vector
- (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$

RNN Language Model

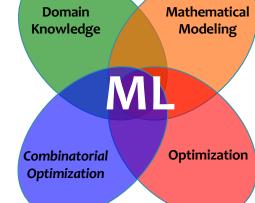


$$p(w_1, w_2, w_3, ..., w_T) = p(w_1 | h_1) p(w_2 | h_2) ... p(w_2 | h_T)$$

A PREVIEW OF INFERENCE

Structured Prediction

The data inspires
the structures
we want to
predict



Our **model**defines a score
for each structure

It also tells us what to optimize

Inference finds

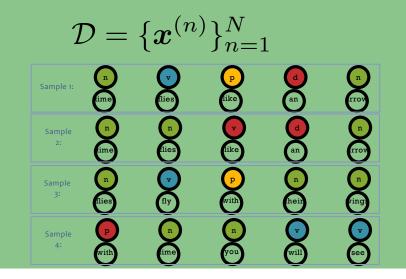
{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

Learning tunes the parameters of the model

Structured Prediction

1. Data



2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

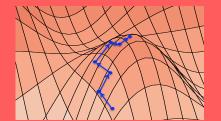
$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



5. Inference

1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Sampling (cf. convergence, variance)

Draw a sample variable assignment

$$\mathbf{x} \sim p(\cdot|\boldsymbol{\theta})$$

Q&A

Q: But in **deep learning** we don't need to solve these inference problems, right?

A: Wrong... it's not that we don't *need* to solve them, it's that we often can't!

Questions you could ask your RNN-LM or seq2seq model:

- X 1. What is the probability of the 7th token being 'zebra' (marginal inference)
- X 2. For an unnormalized model, what is the normalization constant? (partition function)
- X 3. What is the most probable output sequence? (MAP inference)
- ✓ 4. Give me 10 samples from the distribution.

Topics (Part I)

- Search-Based Structured Prediction
 - Reductions to Binary Classification
 - Learning to Search
 - RNN-LMs
 - seq2seq models
- Graphical Model Representation
 - Directed GMs vs.
 Undirected GMs vs.
 Factor Graphs
 - Bayesian Networks vs.
 Markov Random Fields vs.
 Conditional Random Fields

- Graphical Model Learning
 - Fully observed Bayesian Network learning
 - Fully observed MRF learning
 - Fully observed CRF learning
 - Parameterization of a GM
 - Neural potential functions

Exact Inference

- Three inference problems:
 - (1) marginals
 - (2) partition function
 - (3) most probably assignment
- Variable Elimination
- Belief Propagation (sumproduct and max-product)

Topics (Part II)

- Learning for Structure Prediction
 - Structured Perceptron
 - Structured SVM
 - Neural network potentials
- (Approximate) MAP Inference
 - MAP Inference via MILP
 - MAP Inference via LP relaxation
- Approximate Inference by Sampling
 - Monte Carlo Methods
 - Gibbs Sampling
 - Metropolis-Hastings
 - Markov Chains and MCMC

- Parameter Estimation
 - Bayesian inference
 - Topic Modeling
- Approximate Inference by Optimization
 - Variational Inference
 - Mean Field Variational Inference
 - Coordinate Ascent V.I. (CAVI)
 - Variational EM
 - Variational Bayes
- Bayesian Nonparametrics
 - Dirichlet Process
 - DP Mixture Model
- Deep Generative Models
 - Variational Autoencoders

SYLLABUS HIGHLIGHTS

Syllabus Highlights

The syllabus is located on the course webpage:

http://418.mlcourse.org http://618.mlcourse.org

The course policies are required reading.

Syllabus Highlights

- **Grading 418:** 60% homework, 15% midterm, 20% final, 5% participation
- **Grading 618:** 55% homework, 15% midterm, 15% final, 5% participation, 10% project
- Midterm Exam: in-class exam, Fri, Oct. 14
- Final Exam: final exam week, date/time TBD by registrar
- **Homework:** ~6 assignments
 - 8 grace days for homework assignments
 - Late submissions: 75% day 1, 50% day 2,
 25% day 3
 - No submissions accepted after 3 days w/o extension
 - Extension requests: for emergency situations, see syllabus
- Recitations: Fridays, same time/place as lecture (optional, interactive sessions)

- Readings: required, online PDFs, recommended for after lecture
- Technologies:
 - Piazza (discussion),
 - Gradescope (homework),
 - Google Forms (polls),
 - Zoom (livestream),
 - Panopto (video recordings)
- Academic Integrity:
 - Collaboration encouraged, but must be documented
 - Solutions must always be written independently
 - No re-use of found code / past assignments
 - Severe penalties (i.e., failure)
- Office Hours: posted on Google Calendar on "Office Hours" page

Lectures

- You should ask lots of questions
 - Interrupting (by raising a hand, turning on your video, and waiting to be called on) to ask your question is strongly encouraged
 - Use the chat to ask questions in real time (TAs will be monitoring the chat and will either answer or interrupt the instructor)
 - Asking questions later on Piazza is also great
- When I ask a question...
 - I want you to answer
 - Even if you don't answer, think it through as though I'm about to call on you
- Interaction improves learning (both in-class and at my office hours)

Homework

There will be 6 homework assignments during the semester. The assignments will consist of both conceptual and programming problems.

	Main Topic	Implementation	Application Area	Туре
HW1	PyTorch Primer	MLP for Sequence Tagging	NLP	written + programming
HW2	Learning to Search	seq2seq + Dagger	speech recognition	written + programming
HW3	Marginal inference and MLE	RNN + Tree CRF	NLP	written + programming
HW4	MCMC	word embeddings + Gibbs sampler	topic modeling	written + programming
HW5	Variational Inference	mean field for cyclic CRF	computer vision	written + programming
HW6	Advanced Topics	NA		written

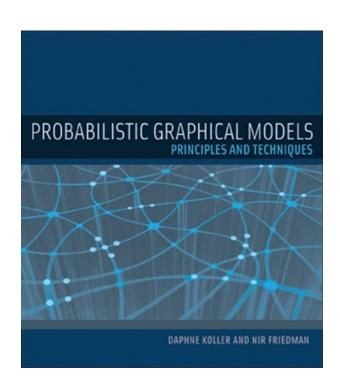
Mini-Project (10-618 only)

Goals:

- Explore a learning / inference technique of your choosing
- Application and dataset will be provided (in the style of a Kaggle competition)
- Deeper understanding of methods in real-world application
- Work in teams of 2 students

Textbooks

You are not required to read a textbook, but Koller & Friedman is a thorough reference text that includes a lot of the topics we cover.



Prerequisites

What they are:

- Introductory machine learning.
 (i.e. 10-301, 10-315, 10-601, 10-701)
- Significant experience programming in a general programming language.
 - The homework will require you to use Python,
 so you will need to be proficient in Python.
- 3. College-level probability, calculus, linear algebra, and discrete mathematics.

Q&A