
Towards Enforceable Data-Driven Privacy Policies

Matthew Fredrikson, Drew Davidson, Somesh Jha
University of Wisconsin, Madison

Benjamin Livshits
Microsoft Research

Abstract
A defining characteristic of current web applications is
that they are personalized according to the interests and
preferences of individual users; popular examples are
Google News and Amazon.com. While this paradigm
shift is generally viewed as positive by both users and
content providers, it introduces privacy concerns, as the
data needed to drive this functionality is often consid-
ered private. Web applications have responded by giv-
ing users the chance to deny explicit disclosure of per-
sonal information, as well as minimizing the invasive-
ness of the information they require. In this position
paper, we address the concern that explicit disclosure
alone is not sufficient to protect user privacy, as attack-
ers can combine users’ consensually-shared information
with additional background information to infer private
facts about individuals. We argue that to properly ac-
count for these attacks, auditors must consider not just
the relationship between disclosed information and at-
tackers’ background data, but also the semantics of ap-
plications that operate over the private information.

1 Introduction
Modern web applications are increasingly based on the
idea that personalized functionality is both more agree-
able to users and ultimately more effective than tradi-
tional static content. A handful of players such as Ama-
zon.com and DoubleClick.com pioneered the use of per-
sonalized content on the web, and their success has led
most other large, user-facing web services to follow suit.

While users have come to expect personalized func-
tionality, they are also turned off by services that seem to
violate their privacy. In an attempt to balance these con-
flicting needs, many services prompt the user for explicit
consent prior to disclosure. Examples of this are Face-
book’s application platform, the privacy policies used on
many websites, and recent systems discussed in the lit-
erature [6]. Many advertising networks now allow users
to opt out of the default pervasive third-party tracking

mechanisms used to target relevant advertisements, giv-
ing them the option of simply telling the network what
their interests are. Finally, a growing number of browsers
and services now support the “Do not track” tag, simul-
taneously raising awareness of privacy issues on the web
and making explicit disclosure more pervasive yet.

We posit that explicit disclosure alone is not enough
to ensure that a remote party cannot learn more about the
user than she wishes. Given a small amount of seemingly
innocuous information, a motivated attacker may still be
able to infer more about the user than she is ultimately
comfortable disclosing. Thus, we consider the problem
posed by inference attacks on web applications, involv-
ing information from background as well as explicitly-
disclosed sources (see Figure 1 for a graphical depic-
tion). Our goal is to understand the properties of applica-
tions that allow one to reason about the information that
can be leaked through inferences. Our key insight is that
precise conclusions about the inferences to which most
web applications are vulnerable cannot be drawn with-
out taking into account detailed information about the
semantics of the applications themselves. New strate-
gies, analyses, and tools for dealing with this class of
attack are needed.

In this paper, we examine several instances of this
problem, discuss the analysis issues for precise privacy
policy reasoning, and suggest a new notion of privacy
that addresses the specific concerns of analyzing web ap-
plications that use personal information. Rather than su-
perseding existing privacy definitions and mechanisms,
our notion provides a way of incorporating them that is
useful in analyzing the privacy of specific applications.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the privacy notion that characterizes our
concerns. This section also includes three example sce-
narios in which such attacks are possible, and highlights
the issues that call for further study. Section 3 discusses
how existing notions of privacy play into this problem.
We summarize our position and conclude in Section 4.

1



2 Towards a New Notion of Privacy
Consider a client-side application that uses Facebook’s
JavaScript Open Graph API to learn a user’s birthday,
gender, and zip code to provide localized coupon offers,
personalized by gender. After learning about the user, the
application asks a remote server for the set of coupons
applicable to a given locale, passing the user’s location
as the only input to the remote server. Then, the appli-
cation checks to see whether it is the user’s birthday, and
if so, presents any coupons that may be specialized for
the occasion. Finally, the app displays the set of gender-
specific coupons available to the user based on her loca-
tion.

Despite the benign goal of this application, its privacy
implications are severe. Researchers have found that
87% of United States residents can be uniquely identi-
fied by their birthdate, gender, and zip code [12]; it is
no conincidence that this is precisely the information re-
quired by our example. However, as long as our applica-
tion runs entirely on the user’s client, the application de-
veloper will not necessarily be able to de-anonymize the
user, because the only information leaked back to the de-
veloper is the user’s zip code. The remaining information
is used for local computations only, and then forgotten.

This exemplifies the need for enforcement techniques
that incorporate program analysis to reduce the number
of false positives encountered during privacy policy en-
forcement. In this example, an information flow analy-
sis that determines which pieces of information from the
query are communicated to an external host would suf-
fice to certify the application free of any anonymity vio-
lations. Fine-grained, language-level information flow is
a largely unsolved problem. While dynamic techniques
for JavaScript have been proposed [3, 7], the associated
overhead is prohibitive, and precision is an issue. Apply-
ing it to this problem will require further innovation and
novelty.

A New Notion of Privacy. This example suggests a
general way of thinking about the role of an attacker
who wishes to violate the privacy of a user of such an
application. Consider the following game: Alice has a
secret predicate over a database of her personal informa-
tion. If Eve guesses Alice’s predicate correctly, then she
wins the game. Our notion of privacy is concerned with
Eve’s probability of winning in two distinct “worlds”
(depicted in Figure 1). In World A Eve has access only
to a background database, which may or may not con-
tain rows that pertain to Alice. In World B, Eve has ac-
cess to a background database, a function, and the out-
put of that function as computed over Alice’s personal
database. The notion of privacy relevant to our concerns
in this paper seeks to characterize the difference in Eve’s
probability of winning between Worlds A and B.

World A World B

Background Data

Eve

Attempted Breach

Function Output Function
Background 

Data

Eve

Attempted Breach

Figure 1: The differing types of information available to
attacker Eve in worlds A and B reflect the privacy con-
cerns posed by web applications.

Notice the correspondence between our previous ex-
ample and this notion: Alice’s personal database is her
Facebook profile, the function is the coupon application,
and the function output is the data communicated by the
application to the remote server (i.e. Alice’s zip code).
Alice’s secret predicate is her visible identity: the con-
junction of her name and public attributes. If we attempt
to understand the difference between Worlds A and B for
this example by looking only at the information that the
function inputs (i.e. birthday, location, gender), and the
parties with which it communicates (i.e. an untrusted re-
mote server), then we cannot conclude that this benign
application is safe to run; program analysis is the only
way to accurately characterize the difference in Eve’s
probability of winning between worlds A and B.

More Examples. A growing pool of applications draw
personal information from multiple sources and eventu-
ally push portions of that information out to third parties.
One example of this is LuckyCal [8], a personal assis-
tant application that draws information from a number
of sources (e.g. Facebook, Outlook, Google Calendar,
Last.fm, etc.) on the web as well as the user’s desktop to
provide personalized event notification, scheduling, and
booking. For example, if the user has marked a visit to
New York City on the following weekend in her calendar,
then LuckyCal will utilize the user’s Facebook account to
find friends in the area who might be free that weekend,
and the user’s Last.fm account to search for relevant live
music events. LuckyCal will go as far as booking tickets,
hotels, and other services on behalf of the user.

The privacy risks of LuckyCal are serious. Be-
tween calendar data, social networking data, and detailed
records of interests in media and content, nearly all of
the user’s personal data is at stake. Furthermore, be-

2



cause LuckyCal uses all of this data to communicate with
third parties on behalf of the user, the potential for un-
wanted disclosure is ever-present. For example, it is con-
cievable that when searching for and booking tickets to
events, LuckyCal could communicate enough informa-
tion about the user’s calendar to allow a third party to
infer specific dates and locations of calendar entries. Al-
ternatively, some of the data given to LuckyCal, such as
the iTunes database with ratings, is “sparse”, making de-
anonymization a possibility [11] if disclosure of such in-
formation is not done carefully.

In many ways, LuckyCal is a “killer app” for the
personalized web: a personal assistant that automati-
cally finds relevant events for the user based on a large,
timely corpus of personal data. In all likelihood it poses
no serious privacy threat, but the only way to safely
and accurately determine this is to analyze LuckyCal’s
code: we must reason about the inferences that an at-
tacker can make about LuckyCal’s private inputs, based
on its outputs. For example, we propose an analysis that
determines whether unexpected discrepencies exist be-
tween the user’s Facebook privacy settings and Lucky-
Cal’s public output. Traditional information flow analy-
sis can provide a sound overapproximation of the infor-
mation needed by such a procedure.

To address the concern that LuckyCal might leak the
user’s schedule and identity to a third party, we propose
an analysis which determines that LuckyCal does not:
(1) leak the precise date and location of a calendar en-
try, and (2) leak identifying information, such as interest
data sparse enough to identify the user through external
sources [11] (e.g. a Last.fm or Facebook profile page).
One novel challenge with this analysis is determining the
sparsity of the data released by LuckyCal; if this cannot
be done accurately, then the analysis is likely to be too
conservative for most users. In this case, traditional in-
formation flow is not appropriate, and new program anal-
ysis techniques are needed.

Transitioning to another example, recent work that
demonstrates the effectiveness of “browser fingerprint-
ing” [5] exposes another area in which program analysis-
based reasoning about malicious inferences is needed.
Nearly all modern browsers supply configuration infor-
mation to sites for analytics and rendering. Eckers-
ley showed that this configuration data can be used to
form a “fingerprint” that uniquely identifies a partic-
ular browser [5]. His proof-of-concept fingerprinting
tool, called Panopticlick, uniquely identifies 83% of all
browser configurations, and 94% of configurations in
which either Flash or Java is enabled. The effectiveness
of this technique has important implications for privacy:
it is a type of supercookie that can be used to track users
without their consent.

Fingerprinting is difficult to evade because it relies on

functionality that must be available to legitimate applica-
tions. Ad-hoc solutions are ineffective: Eckersley found
that 99.1% of all attempts to alter a fingerprint by chang-
ing plugins or otherwise altering configuration could be
thwarted, and the original fingerprint recovered. If a
browser instead spoofs configuration values or simply
disables “optional” components like JavaScript, then the
page may not function correctly. Rather, we see potential
to analyze the JavaScript contained on untrusted pages
in order to determine the amount of identifying configu-
ration information that is leaked outside of the browser.
One analysis we propose uses information flow to refine
the assessment of a page’s fingerprinting threat: if in-
formation sources are invoked but not leaked off of the
host, then there is no threat. Another promising direction
that we will explore is to use Eckersley’s information-
theoretic assessment of privacy risk [5] in combination
with a quantitative information flow analysis [9] to gain
a more granular notion of leakage, thus reducing the risk
of false positives further.

3 Existing Notions of Privacy
There is a large amount of previous work in database pri-
vacy upon which this work can build. However, as illus-
trated in the previous section, the problem we propose
requires detailed reasoning about the semantics of web
applications and the information that they make available
to attackers. Here, we discuss some closely related work,
and briefly consider the issues involved in adapting it.

Differential Privacy. Intuitively, differential pri-
vacy [4] ensures that the presence of a single individual
in a database does not affect the outcome of a particular
computation over that database. Usually, differential
privacy is achieved by perturbing the results of compu-
tations performed over the database. Differential privacy
is sure to play a role in providing privacy-preserving
personalized content on the web; researchers have
already applied it to related problems [10, 13], and for
certain types of disclosure (e.g. aggregate statistics
over sensitive data) it is the natural definition to apply.
However, that an application claims to provide differ-
ential privacy is not sufficient: we seek procedures to
verify that the actual implementation is free of selected
malicious inferences. This might fail to hold because
of a flawed or malicious implementation, or because
a particular incarnation of differential privacy does
not match the relevant privacy concerns. Chaudhuri
et al. [1] have studied proofs of program robustness,
or sensitivity of inputs to outputs, and briefly discuss
a possible application to proving differential privacy.
While we argue for analyses that verify more general
notions of privacy than differential privacy, this might
prove a worthwhile starting point for such an analysis.

3



Anonymity. There is a growing literature concerned
with assuring anonymity throughout data disclosure.
Work in k-anonymity [15] seeks to modify disclosed data
so that any individual in the set cannot be distinguished
from k − 1 other individuals; as with differential pri-
vacy, there is potential future work in verifying applica-
tions that enforce this notion free of selected inference
attacks. Recently, Narayanan and Shmatikov showed
that on sparse datasets k-anonymity fails for a number of
reasons [11], and it is usually possible to de-anonymize
users even in the presence of perturbations. They quan-
tify the amount of auxiliary information needed for their
algorithm to de-anonymize a particular record in a given
database, in terms of the number of necessary attribute
values. This provides an excellent starting point for a
program analysis that verifies anonymity, but issues re-
main, such as whether the analysis can be made general
enough to account for attacks that use other algorithms.

Information Flow. There is a rich literature on the
topic of information flow. Traditional notions of non-
interference dominate most accounts (see Sabelfeld and
Myers [14] for a nice survey of language-based tech-
niques), and as discussed in Section 2, may play a role
in reasoning about inference attacks. However, the bi-
nary “all-or-nothing” nature of strict non-interference is
likely too restrictive for many applications; it may be
necessary to reason more precisely about how the mu-
tations to sensitive data before disclosure affect the in-
ferencing ability of the attacker. For example, an ap-
plication that computes and leaks an aggregate statistic
over one’s entire database of music ratings will look to a
non-interference analysis as though it is leaking the full
database, despite the fact that many useful statistics pose
no privacy threat. Recent work in quantified information
flow [9] eases the “binary” nature of non-interference,
but it is not clear how to attach semantic meaning to a
real-valued bit leakage measurement. Quantifying infor-
mation flow based on an attacker’s beliefs about a prob-
ability distribution [2] shows promise, but existing work
is theoretical, and the matter of background information
remains to be dealt with.

4 Conclusion
We have argued that it is not possible to come to safe
and accurate conclusions about the inference-based pri-
vacy threats of personalized web applications without re-
sorting to program analysis. A rich literature in database
privacy [4, 10, 11] and information flow analysis [2, 14]
provides a good starting point for developing new pro-
gram analyses that address these challenges. In future
work, we will explore new analysis frameworks, proof
techniques, and decision procedures along these lines, as
well as case studies on real applications. Our goal is to
develop automatic techniques that lead to a precise, rig-

orous understanding of the threat posed by personal in-
formation disclosure on the web.

Acknowledgments. We would like to thank the re-
viewers and shepherd for their insightful comments and
suggestions. We would also like to thank Bill Harris and
Karl Voelker for their thoughts and suggestions on vari-
ous drafts of this work. The first author of this work is
supported by a Microsoft Research PhD fellowship.

References
[1] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navid-

pour. Proving programs robust. Submitted, 2011.

[2] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quan-
tifying information flow with beliefs. Journal of Com-
puter Security, 17, October 2009.

[3] M. Dhawan and V. Ganapathy. Analyzing information
flow in javascript-based browser extensions. In Annual
Computer Security Applications Conference, December
2009.

[4] C. Dwork. Differential privacy: a survey of results. In
International Conference on Theory and Applications of
Models of Computation, May 2008.

[5] P. Eckersley. How Unique Is Your Web Browser? Tech-
nical report, Electronic Frontier Foundation, March 2009.

[6] M. Fredrikson and B. Livshits. RePriv: Re-imagining in-
browser privacy. In IEEE Symposium on Security and
Privacy, May 2011.

[7] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An em-
pirical study of privacy-violating information flows in
javascript web applications. In ACM conference on Com-
puter and communications security, October 2010.

[8] LuckyCal. http://www.luckycal.com.

[9] S. McCamant and M. D. Ernst. Quantitative information
flow as network flow capacity. In Conference on Pro-
gramming Language Design and Implementation, June
2008.

[10] F. McSherry and I. Mironov. Differentially private recom-
mender systems: building privacy into the net. In Inter-
national Conference on Knowledge Discovery and Data
Mining, June 2009.

[11] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. In IEEE Sympo-
sium on Security and Privacy, May 2008.

[12] P. Ohm. Broken promises of privacy: Responding to the
surprising failure of anonymization. UCLA Law Review,
57, August 2010.

[13] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: Security and privacy for mapreduce.
In Symposium on Networked Systems Design and Imple-
mentation, June 2010.

[14] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected Ar-
eas in Communications, 21, 2003.

[15] L. Sweeney. k-anonymity: a model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness,
and Knowledge-Based Systems, 10, October 2002.

4


