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Abstract

Static techniques for deriving upper bounds on the resource con-
sumption of programs have been extensively studied. However,
there are applications that require more fine-grained information
such as the difference between upper and lower bounds or the
guaranty that the resource usage of a program does not differ
for certain inputs. This article presents two novel substructural
type systems for deriving lower bounds and for proving that a
program has constant resource consumption for a class of inputs.
The type systems are based on the potential method of amortized
analysis to achieve compositionality, precision, and automatic
inference using off-the-shelf linear optimization. While classic
amortized analysis treats potential as an affine resource, the novel
type systems treat potential as a relevant and linear resource, re-
spectively. The soundness of the type systems with respect to an
operational cost semantics is verified using the proof assistant
Agda. The novel constant-resource and lower bound analyses
are applied to quantify and prevent security vulnerabilities that
leak secret information through resource consumption, such as
side channels. First, implementations of the lower bound and
constant-resource type systems in Resource Aware ML are used to
automatically verify constant-time implementations of list com-
parison, encryption and decryption routines, database queries,
and other resource-sensitive functionality. Second, the type sys-
tems are used to implement a method for automatically turning
programs into constant-resource programs using LP solving. The
method is static, does not require tracking resources at runtime,
and works on most programs for which Resource Aware ML can
derive an upper bound. Third, a resource-aware noninterference
property is introduced. It relaxes the constant-resource require-
ment on programs, and requires only that resource usage does not
leak information about secret inputs. This property is statically
verified by combining the linear type system for constant resource
consumption with an information flow type system.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal Methods; D.4.6 [Security and protection]:
Information Flow Controls

Keywords Timing channels, resource analysis, information flow

1. Introduction

Automatic static analysis of the resource consumption of pro-
grams is an active area of research. Motivated by applications
in embedded and real-time systems [85], finding performance
bugs [69], and providing feedback to developers [41], static re-
source analysis techniques have focused on derivation of worst-
case bounds [2, 4, 13, 14, 20, 27, 33, 77]. One successful technique
for automatically finding resource bounds at compile time is auto-
matic amortized resource analysis (AARA). The idea of AARA is to
combine the potential method of amortized analysis with existing
programming languages techniques to achieve automation. For
example, AARA has been integrated into type systems to automat-

ically derive linear [51] and polynomial [47, 48, 50] bounds for
strict and higher-order [9, 57] functional programs.

The main advantages of AARA are compositionality, efficiency,

and precision. It has been shown that the technique can auto-
matically derive bounds for complex real-world programs such as
parts of the CompCert C Compiler [9] and the cBench benchmark
suite [26]. Precision and efficiency stems from the selection of al-
gebraic structures such as multivariate resource polynomials [50]
that can represent a wide range of bounds, as well as the reduc-
tion of bound inference to efficient LP solving. AARA is naturally
compositional since the potential methods integrates reasoning
about size changes and resource consumption. However, existing
AARA techniques are limited to worst-case bounds.
Novel resource type systems The starting point of this paper
is the technical insight that the potential method of amortized
analysis can also be used to derive lower bounds, as well as to prove
that a program has constant resource consumption for a fixed input
size. In classic AARA the potential is used as an affine resource:
it must be available to cover cost but excess potential is simply
discarded. We show that if potential is treated as a linear resource,
then corresponding type derivations prove that programs have
constant resource consumption, i.e., resource consumption is
independent of the execution path. Intuitively, this amounts to
requiring that all potential must be used to cover the cost and
that excess potential is not wasted. Furthermore, we show that if
potential is treated as a relevant resource, then we derive lower
bounds on the resource usage. Following a similar intuition, this
requires that all potential is used, but the available potential does
not need to be sufficient to cover the remaining cost.

The two novel type systems that we present enjoy the same
advantages as classic AARA for upper bounds. They are naturally
compositional, often derive precise results, and allow for fully-
automated type inference based on LP solving. Moreover, as
in classic AARA, they are parametric in the resource of interest
and incorporate user-specified resource metrics that assign a
constant cost to each basic operation. The type systems discussed
in this paper apply to a simple first-order functional language,
and use the linear potential annotations from the original work
of Hofmann and Jost [51]. This is sufficient to discuss the main
technical points although it limits the systems to linear bounds.
However, our implementation builds on Resource Aware ML
(RAML) [9], and supports polynomial bounds, user-defined data
types, and higher-order functions. We formalized the soundness
proof of these type systems, as well as that of classic linear AARA,
in the proof assistant Agda. Soundness is proved with respect to an
operational cost semantics, and like the type systems themselves,
is parametric in the resource of interest.

Side channel mitigation In the second half of the paper, we ap-
ply our lower-bound and constant-resource type systems to the
problem of preventing and quantifying side channel vulnerabil-
ities. Side channel attacks extract sensitive information about a
program’s state through its use of resources such as time, network,
and memory. Several notable instances of this type of attack have
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demonstrated leakage of cryptographic keys [5, 21, 24, 40, 58] and
private user data [8, 19, 35, 42, 89] through such channels.

Whereas traditional notions of information flow can be de-
scribed in terms of standard program semantics, a similar treat-
ment of side channels requires incorporating the corresponding
resource into the semantics and applying quantitative reasoning.
This difficulty has led previous work in the area to treat resource
use indirectly, by reasoning about the flow of secret information
into branching control flow [6, 16, 66, 73] or introducing obfus-
cation components that mask secret-dependent differences in
resource use [11, 61]. These approaches can limit program expres-
siveness or lead to unnecessary performance penalties.

In contrast, our approach performs quantitative analysis of
resource use directly through the constant-resource type system.
We consider an adversary that is able to observe the final resource
consumption of a program as specified by a cost semantics, and
derive a proof that the attacker’s observations will not change as
the program’s inputs do. Although this observation model does
not cover all known side-channel attacks, it applies to a large class
of attackers that are not able to make intermediate observations
of the program’s behavior, such as those that reside over a network.
Additionally, we show how one can use derived upper and lower
bounds to quantify leakage through resource use, by reasoning
about the number of distinct observations an attacker can make.

In general, requiring that a program only ever consumes a
constant amount of resources is too restrictive. In most settings,
it is sufficient to make sure that the resource usage of a program
does not depend on selected parts of the input. To account for this,
we present a new information flow type system that incorporates
our constant-resource type system to reason about an adversary
who can observe and manipulate inputs marked public, but can
only make observations on secret inputs through the program’s
resource behavior and public outputs. Intuitively, the guarantee
enforced by this type system, resource-aware noninterference,
requires that the parts of the program affected by secret inputs
can only make constant use of resources.

The main technical contribution in this part is the soundness
proof of this type system with respect to the cost semantics. The
main conceptional contribution is that the type system allows to
freely switch between local and global reasoning. One extreme
would be to ignore the information flow of the secret values and
prove that the whole program has constant resource consumption.
The other extreme would be to ensure that every conditional
that branches on a secret value (a critical conditional) uses a
constant amount of resources. However, there are constant time
programs in which individual conditional are not constant time
(see Section 4). As a result, we allow different levels of global and
local reasoning and in the type system to ensure that every critical
conditional occurs in a constant-resource block.

Finally, we show that our type inference algorithm for the
constant-resource type system can be used to automatically turn
programs into constant-resource programs. To this end, we intro-
duce a consume expression that performs resource padding (e.g.,
sleep for time). The amount of resource padding that is needed
is automatically determined by the LP solver and is parametric
in the size of the program variables. This technique is more effi-
cient then existing techniques [citations] since it does not change
the worst-case resource behavior of the program. Of course, it
would be possible to do such a resource padding to the worst-case
behavior dynamically at the end of the run of the program. The ad-
vantage of our method is that we do not have to keep track of the
actual resource usage at runtime and that we automatically derive
a proof (a type derivation) that the modified program has constant
resource use without reasoning on a meta level. We implemented
this technique in RAML.

Contributions We make the following contributions:

* Two novel AARA type systems that derive lower bounds and
prove constant resource use, and an implementation of these
systems that extends RAML. We evaluate the implementation
on several examples, including encryption routines and data
processing programs that were previously studied in the con-
text of timing leaks in differentially-private systems [42].

* A mechanization of the soundness proofs the two new type
systems and classic AARA for upper bounds in Agda. To the
best our knowledge, this is also the first formalization of the
soundness of linear AARA for worst-case bounds.

* Aninformation-flow type system that incorporates our constant-
time system to prevent leakage of selected secrets through
resource side channels, and an LP-based method that trans-
forms programs into constant-resource versions.

Technical details including the complete proofs and inference
rules can found in a companion technical report [10] .

2. Language-level constant-resource programs

In this section we introduce a language, an operational cost
semantics, and the notion of constant-resource functions.

2.1 Thelanguage

Syntax To discuss the main ideas of our work, it is sufficient
to study a purely functional first-order and monomorphic typed
functional language with Booleans, integers, pairs, and list data
types, pattern matching and recursive functions as given in Fig. 1.

T :=unit|bool|int|L(T)|T*T

G ==T-T

e u=( |true|false | n|x|op,(x1,x2) |app(f, x) | if(x, e, ef)
| let(x, e1, x.e2) | pair(xy, x2) | match(x, (x1, x2).e) | nil

| cons(xy, x2) | match(x, eq, (x1, x2).e2) | share(x, (x1, x2).e)
u= () | true | false | n| nil | vy, ..., vu] | (v1, V2)

€ {+,—,*,div, mod,=,<>,>,<,<=,>=,and, or}

o <

Figure 1. Syntax of the language

In this grammar we use abstract binding trees [43] and in
examples we use equivalent expressions in OCaml syntax. The
expressions are in let normal form, meaning that they are formed
from variables whenever it is possible. It makes the typing rules
and semantics simpler without loosing expressivity. The syntactic
form share has to be use to introduce multiple occurrences of a
variable in an expression.

A value is a boolean constant, an integer value n, the empty
list nil, alist of values [v1, ..., 5], or a pair of values (vy, v2). A type
context I' : VID — .7 is a partial mapping from variable identifiers
to data types T. A signature X : FID — ¢ is a partial mapping from
function identifiers to first-order types G. The typing rules that
define a type judgement X;I' - e: T are standard.

A program is a tuple containing a signature X and a finite set

of tuples (eg, x&) gedom(z) Where eg is an expression defining the
function’s body and x€ is the argument. For any eg, it holds that
%x8: T+ eg:Thif2(g) =T — Ta.
Operational cost semantics The operational cost semantics de-
fines the resource consumption of programs. It is instrumented
with a non-negative resource counter that is incremented or decre-
mented by a constant at every step of the semantics. The seman-
tics is parametric in the cost that is used at each step and we call a
particular set of such cost parameters a cost model. The constants
can be used to indicate the costs of storing or loading a value in
the memory, evaluating a primitive operation, binding of a value
in the environment, or branching on a Boolean value.
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(E:FuN)
2g=N—-1

(E:BIN)
v=E(x1)oE(x2)

[y — E) Hr eg Y v

(E:LET)

q—Klet qi
E'T e1ln Elx— v1] 7 e v
1

q+K°P
EF—3— opy(x1,x2) Y v

+K3PP
E qu 7 app(g,x) v

E I% let(x, ey, x.e2) J v

(E:IF-TRUE) (E:MATCH-L)
(E:VAR) _ geond _ gmatchL
x € dom(E) E(x)=true E 7 erjv E(x)=[v1,...,vnl  Elxp— vy, Xt~ [v2,..., Unll 7 e v
var q . q
E % x| E(x) E |7 if(x,er,ep) Y v E |7 match(x, e, (x5, x¢).e2) Y v

Figure 2. Evaluation rules: operational cost semantics

It is possible to further parameterize some constants to obtain
a more precise cost model. For example, the cost of calling a
function may vary according to the number of the arguments.
In the following, we will show that any suitable values can be used
for the constants in the cost model and the soundness of the type
system does not rely on any specific values for these constants.
In the examples, we use a cost model in which the constants are
either 1 for each step or 0 for all steps except for calls to the tick
where tick(q) means that we have resource resource usage q € Q.

The cost semantics is based on a big-step semantics and is
formulated using an environment E : VID — Val that is a finite
mapping from a set of variable identifiers to a set of values.

Evaluation judgements are of the form E I% el vwhere q,q' €

Q)g. The intuitive meaning is that under the environment E and g
available resources, e evaluates to the value v without running out
of resources and g’ resources are available after the evaluation.
The evaluation consumes § = g — g’ resource units. Fig. 2 presents
some selected evaluation rules. All rules are given in the TR [10].

2.2 Constant-resource programs

Informally, a program is constant resource if it has the same
quantitative resource consumption under all environments in
which values have the same size.

We write |= v: T to denote that v is a well-formed value of type
T. The typing rules for values are standard [10, 49, 51] and we omit
them here. Let I' be a context that maps variable identifiers to base
types, an environment E is well-formed w.r.t T', denoted = E: T,
if Vx e dom(I). |= E(x) : I'(x). Below we define the notation of size
equivalence, written |v| = |u|, which is a binary relation relating
two values v and u of the same type T

T € {unit,bool, int} lv1l = luq| |va| = |u|

lv| = |ul [(v1, v2)| = (11, u2)|

m=n  |vil=lu;l

|[Ul! Vn” = I[ulv um”

Let X < dom(I') be a set of variables and E;, E> be two well-
formed environments. Then Ej and E» are size-equivalent w.r.t X,
denoted E; =x E», when they agree on the sizes of the variables
in X, thatis, Vx € X.|Eq (x)| = |E2(x)|.

Definition 1. An expression e is constant resource w.r.t X <
dom(I'), written consty (e), if for all well-formed environments
E; and E» such that E1 =x E», the following statement holds.

p D
IfE; |p—ieU ] andEzlp—zeU v thenpl—p’lng—pé

We say that a function g(x1,...,X,) = eg is constant resource
w.r.t X € {xy,...,xp} if constx (eg). If Y € X and E =~x E» then
E; =y E>. Thus we have the following lemma.

Lemmal. Foralle, X, andY < X, if consty (e) then constx (e).

let rec compare(h,l) = match h with
| [1 — (match 1 with | [J] — Raml.tick 1.0; true
| y::ys — Raml.tick 1.0; false)
| x::xs — match 1 with | [] — Raml.tick 1.0; false
| y::ys — if (x = y) then
Raml.tick 5.0; compare(xs,ys)
else Raml.tick 5.0; false

let rec p_compare(h,l) =
let rec aux(r,h,l) = match h with
| [ — (match 1 with | [] — Raml.tick 1.0; r
| y::ys — Raml.tick 1.0; false)
| x::xs — match 1 with | [] — Raml.tick 1.0; false
| y:i:ys — if (x = y) then
Raml.tick 5.0; aux(r,xs,ys)
else Raml.tick 5.0; aux(false,xs,ys)
in aux(true,h,1)

Figure 3. The list comparison function compare is not constant
resource, while the manually padded function p_compare is con-
stant resource w.r.t i and /.

Example. The function compare in Fig. 3 is not constant-resource
function w.r.t h and | when the cost model is defined using tick
annotations. Since the execution cost of the two branches of the
conditional dependents on the relation of x and y. The function
p_compare is a manually padded version with a dummy compu-
tation that is constant w.r.t h and l. However, it is not constant
w.r.t h. For instance, p_compare([1;2;3],[0;1;2]) has cost 16 but
p_compare([1;2;1],[0;1]) has cost 12 # 16. If we further pad the
nil case with Raml.tick 5.0; aux false xs [] to make the function to
always iterate all of h'’s nodes, then it is constant w.r.t h.

In Section 5, we will provide a better way to transform a pro-
gram into constant with our extended expression consume. Users
insert consume expressions into program-under-consideration
then our analyzer will infer automatically the amount of resource
units needed to spend to make the program constant.

3. Type systems for lower bounds and constant
resource usage

In this section we introduce two substructural resource-annotated
type systems: The type system for constant resource usage is linear
and the one for lower bounds is relevant.

3.1 Background

Amortized analysis The potential method of amortized analysis
has been introduced [79] to bound the worst-case resource usage
of a sequence of data structure operations. The key idea is to
incorporate a non-negative potential into the analysis that can be
used to pay (costly) operations.
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let rec filter_succ 1 = match 1 with
| [ — Raml.tick 1.0; []
| x::xs —
if x > 0 then Raml.tick 8.0; filter_succ xs
else Raml.tick 3.0; (x+1)::filter_succ xs

let fs_twice 1 = filter_succ (filter_succ 1)

Figure 4. Two OCaml functions with linear resource usage.
The worst-case number of ticks executed by fitler succ(¢) and
fs_twice(¢) is 8|¢| + 1 and 11|¢| + 2 respectively. In the best-case
the functions execute 3|¢| + 1 and 6|¢| + 2 ticks, respectively. The
resource consumption is not constant.

To statically analyze a program with the potential method, a
mapping from program points to potentials must be established.
One has to show that the potential at every program point suffices
to cover the cost of any possible evaluation step and the potential
of the next program point. The initial potential is then an upper
bound on the resource usage of the program.

Linear potential for upper bounds To automate amortized anal-
ysis, we fix a format of the potential functions and use LP solving
to find the optimal coefficients. To infer linear potential functions,
inductive data types are annotated with a non-negative rational
numbers ¢ [51]. For example, the type L7 (bool) of Boolean lists
with potential g defines potential ®([by, ..., by] : L9(bool)) = g-n.

This idea is best explained by example. Consider the function
filter_succ below that filters out positive numbers and increments
non-positive numbers. As in RAML, we use OCaml syntax and tick
commands to specify resource usage. If we filter out a number
then we have a high cost (8 resource units) since xis, e.g., sent to
an external device. If x is incremented we have a lower cost of 3
resource units. As a result, the worst-case resource consumption
of filter_succ(?) is 8/¢| + 1 (where 1 is for the cost that occurs
in the nil case of the match). The function fs_twice(¢) applies
filter_succ twice, to ¢ and to the result of filter_succ(¢). The worst-
case behavior appears if no list element is filtered out in the
first call and all elements are filtered out in the second call. The
worst-case behavior is thus 11|¢| + 2. These upper bounds can be
expressed with the following annotated function types, which can
be derived using local type rules in Fig. 5.

filter_succ: L8(int) 170, 19@nt)

fs_twice :  L'(int) 2% 19(ing)

Intuitively, the first function type states that an initial potential
of 8|¢| + 1 is sufficient to cover the cost of filter_succ(¢) and there
is 0]¢'| + 0 potential left where ¢’ is the result of the computation.
This is just one possible potential annotation of many. The right
choice of the potential annotation depends on the use of the
function result. For example, for the inner call of filter succ in
fs_twice we need the following annotation.

filter_succ: L' (int) 2L [8(int)
It states that the initial potential of 11|¢]| + 2 is sufficient to cover
the cost of filter_succ(?) and there is 8|¢| + 1 potential left to be
assigned to the returned list ¢. The potential of the result can
then be used with the previous type of filter_succ to pay for the
cost of the outer call.

. Iq'
filter_succ: LP(int) L L7 (int) | Ggzq'+1Ap=8Ap=3+r

We can summarize all possible types of filter_succ with a linear
constraint system. In the type inference, we generate such a
constraint system and solve it with an off-the-shelf LP solver to
derive a concrete bound. To obtain tight bounds, we perform

a whole-program analysis and minimize the coefficients in the
input potential.

Surprisingly, this approach—as well as the new concepts we in-
troduce here—can be extended to polynomial bounds [50], higher-
order functions [9, 57], polymorphism [56], and user-defined in-
ductive types [9, 56].

3.2 Resource annotations

The resource-annotated types are base types in which the induc-
tive data types are annotated with non-negative rational numbers,
called resource annotations.

A:=unit|bool |int | LP(A) | Ax A (forpEQ)ar)

A type context, I'" : VID — &/, is a partial mapping from variable
identifiers to resource-annotated types. The underlying base type
and base type context denoted by A, and rr respectively can be
obtained by removing the annotations. We extend all definitions
suchas |v|, |= E : T and = for base data types to resource-annotated
data types by ignoring the annotations.

We now formally define the notation of potential representing
how resource is associated with runtime values. The potential of
a value v of type A, written ® (v : A), is defined by the function
@ : Val — Q as follows.

O(() :unit) =@ (b:bool) =d(n:int) =0
D((v1,v2): A1 * A2) =D (v1 : A1) + D (V2 : Ap)
(v, vpl 1 LP(A) = n-p+ 2 @ (v; : A)

Example. The potential of a list v = [by,---, by] of type LP (bool)
is n-p. Similarly, a list of lists of Booleans values v = [vy,---, vyl
of type LP (L9 (bool)), where v; = [b;1,---, bim,1, has the potential
np+(my+---+my)q.

Let I'" be a context and E be a well-formed environment
w.r.t I”. The potential of X € dom(I'") under E is defined as
PE(X:TT) =Z,exP(E(x) : " (x)). The potential of I is ®g (') =
®p(dom(I'") : T"). Note that if x ¢ X then @ (X)) = Pp[x— ) (X).
The following lemma states that the potential is the same under
two well-formed size-equivalent environments.

Lemma 2. IfEj =x E» then®g, (X:T") = @, (X:T7).

Annotated first-order data types are given as follows, where g
and q’ are rational numbers.

/ !
Fu=aA, 29 4,

A resource-annotated signature X7 : FID — @(.%) \ {g} is a
partial mapping from function identifiers to a non-empty sets
of annotated first-order types. That means a function can have
different resource annotations depending on the context. The
underlying base types are denoted by F. and the underlying base
signature is denoted by £" where X7 (f) = 2" (f).

3.3 Type system for constant resource consumption

The typing rules of the constant-resource type system define
judgments of the form

srrr I% e: A
where e is an expression and g, g’ € @8’ . The intended meaning is
that in the environment E, g+®g (') resource units are sufficient
to evaluate e to a value v with type A and there are exactly
q’ +®(v: A) resource units left over.

The typing rules form a linear type system. It ensures that
every variable is used exactly once by allowing exchange but not
weakening or contraction [84]. The rules can be organized into
syntax directed and structural rules.

Syntax-directed rules The syntax-directed rules are shared
among all type systems and selected rules are listed in Fig. 5.
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(A:B-OP)

(A:VAR) o€{and, or} (A:CONS)
var op KCO“S

shx: AHS— x:A 275 x1 :bool, xz : bool HG— op, (x1, x2) : bool Zr;xh:A,xt:Lp(A)I%cons(xh,xt):Lp(A)

(A:LET) K|et q/ (A:FUN) (A:IF) | 4
g p _ gcon _ geon
Zr;FHq—ieI:Al =NTh,x: A q} er: Ay ST = A q/q,AZ Zr;Frquet:A Zr;Frquef:A
7 3PP q_.
DD KA ¥ '7 let(x, e, x.e2) : Az STix: A |q*T app(f, %) : Ay =";T", x: bool '7 if(x,er,ep): A
(A:MATCH_I;matchN KmatchL (A:SHARE)
_ e
Zr;l"rl%el:Al Zr;l"r,xh:A,x;:Lp(A)qufeg:Al zr;r’,xlel,xZ:AZI%e:B Y(A| Ay, A)

s T7 x: LP(A) I% match(x, e1, (X, Xr).€2) : A

T x: A I% share(x, (x1,x2).e): B

Figure 5. Selected syntax-directed rules of the resource type systems.

Rules like A:VAR and A:B-OpP for leaf expressions (e.g., variable,
binary operations, pairs) have fixed costs as specified by the con-
stants K*. Note that we require all available potential to be spent.
The cost of the function call is represented by the constant K @PP

in the rule A:FUN and the argument carries the potential to pay
for the function execution. In the rule A:LET, the cost of binding
is represented by the constant K let The potentials carried by the
contexts I'] and T’} are passed sequentially through the sub deriva-
tions. Note that the contexts are disjoint since our type system is
linear. Multiple uses of variables must be introduced through the
rule A:SHARE. The rule A:IF is the key rule for ensuring constant
resource usage. By using the same context I'” for typing both e;

and e, we ensure that the conditional expression has the same re-
source usage in size-equivalent environments independent of the
value of the Boolean variable x. The rules for inductive data types
are crucial for the interaction of the linear potential annotations
with the constant potential. The rule A:CoNs shows how constant
potential can be associated with a new data structure. The dual
is the rule A:MATCH-L, which shows how potential associated
with data can be released. It is important that these transitions
are made in a linear fashion: potential is neither lost or gained.

Sharing The share expression makes multiple uses of a variable
explicit. While multiple uses of a variable seem to be in conflict
with the linear type discipline, the sharing relationY (A| A1, Ap)
ensures that potential is treated in a linear way. It apportions
potential to ensure that the total potential associated with all uses
is equal to the potential initially associated with the variable. This
relation is only defined for structurally-identical types which differ
in at most the resource annotations as follows.

A € {unit, bool, int} Y (Al Ag, Ag) p=p1+p2
Y(Al A A) Y (LP(A) | LP1(A)), LP? (Ay))
Y(A|A1,A2)  Y(BI|Bj,By)

Y (A*B| Ay * By, A2 * By)
Structural rules To allow more programs to be typed we add two
structural rules to the type system which can be applied to every
expression. These rules are specific to the the constant-resource
type system.

(C:RELAX)
(C:WEAKENING) =hrr I% e:A q=p
q
z’;r’IT e:B  Y(AlAA g-p=q-p
Zr;Fr,x:AI%e:B Zr;Fr%e:A

The rule C:RELAX reflects the fact that if it is sufficient to
evaluate e with p available resource units and there are p’ resource
units left over then e can be evaluated with p + ¢ resource units

and there are exactly p’ + c resource left over, where c € @a’. Rule
C:WEAKENING states that an extra variable can be added into the
given context if its potential is zero. The condition is enforced by
Y(A|A A since®(v:A)=P(v:A)+D(w:A) or®(v:A) =0.The
rules can be used in branchings such as the conditional or the
pattern match to ensure that subexpressions are typed using the
same contexts and potential annotations.

Example. Consider again the function p_compare in Fig. 3 in
which the resource consumption is defined using tick annotations.
The resource usage of p_compare(h, ¢) is constant w.r.t h, that is, it
is exactly 5|h| + 1. This can be reflected by the following type.

(L5 ing), 10(inn) 22 ool

It can be understood as follows. If the input list h carries 5 po-
tential units per element then it is sufficient to cover the cost of
p_compare(h, ¢), no potential is wasted, and 0 potential is left.

p_compare :

Soundness That soundness theorem states that if e is well-typed
in the resource type system and it evaluates to a value v then
the difference between the initial and the final potential is the
net resources usage. Moreover, if the potential annotations of the
return value and all variables not belonging to a set X € dom(I'")
are zero then e is constant-resource w.r.t X.

Theorem 1. If=E:T",E+e| v, andZ";T" I% e: A, then for
all p,r € Q§ such that p = q+ ®g([") +r, there exists p' € QF

satisfying E I% elvandp' =g +®(w: A)+r.

Proof. The proofis done by induction on the length of the deriva-
tion of the evaluation judgment and the typing judgment, in which
the derivation of the evaluation judgment takes priority over the
typing derivation. We need to do induction on the length of both
evaluation and typing derivations since on one hand, an induction
of only typing derivation would fail for the case of function appli-
cation, which increases the length of the typing derivation, while
the length of the evaluation derivation never increases. On the
other hand, if the rule C:WEAKENING is final step in the derivation,
then the length of typing derivation decreases, while the length of
evaluation derivation is unchanged. The additional constant r is
needed to make the induction case for the let rule work. O

Theorem 2. If=E:I7, EF el v, 25T Fir e: A, Y (A| A, 4),
andVx € domT")\ X. Y (I'"(x) | T"(x),I7(x)) then e is constant
resource w.r.t X < dom(I'").

3.4 Type system for upper bounds

If we treat potential as an affine resource then we arrive that the
original amortized analysis for upper bounds [51]. To this end, we
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allow unrestricted weakening and a relax rule in which we can
waste potential.

(U:RELAX)
=hrr I% e:A  q=p (U:WEAKENING)
q
q_pzq’_p’ Zr;Fr|76:B
ST b et A S, x:Abr e:B

Additionally, we can use subtyping to waste linear potential [51].
(See the converse definition for subtyping for lower bounds be-
low.) Similarly to Theorem 1, we can prove the following theorem.

Theorem 3. If=E:T",E+e| v, andZ";T" I% e: A, then for
all p,r € Q§ such that p = q+®g([") +r, there exists p’ € QF
satisfying E I% elvandp' z2q +dw: A +r.

3.5 Type system for lower bounds

The type judgements for lower bounds have the same form and
data types as the type judgements for constant resource usage and
upper bounds. However, the intended meaning of the judgment
=rrr I% e: Ais the following. Under given environment E, less
than g + @ (I) resource units are not sufficient to evaluate e to a
value v so that more than g’ + ® (v : A) resource units are left over.
The syntax-directed typing rules are the same as the rules in
constant-resource type system as given in Fig. 5. In addition, we
have the structural rules in Fig. 6. The rule L:RELAX is dual to
U:RELAX. In L:RELAX, potential is treated as a relevant resource:
We are not allowed to waste potential but we can create potential
out of the blue if we ensure that we either use it or pass it to the
result. The same idea is formalized for the linear potential with
the subtyping rules L:SUBTYPE and L:SUPERTYPE. The subtyping
relation is defined as follows.
Ae€{unit,bool,int} A1<:As pP1<p2 A1<:A2  Bi1<:By
A<: A LPY(A]) <:LP2(A)) A1*Ay<:B) *B»

It holds that if A <: B then A = B and ®(v:A) =d(v:B). Suppose
that it is not sufficient to evaluate e with p available resource
units to get p’ resource units left over. L:SUBTYPE reflects the fact
that we also cannot evaluate e with p resources get more than
p’ resource units after the evaluation. L:SUPERTYPE says that we
also cannot evaluate e with less than p and get p’ resource units
afterwards.

Example. Consider again the functions filter_succ and fs_twice
given in Fig. 4 in which the resource consumption is defined using
tick annotations. The best-case resource usage of filter_succ(?) is
314| + 1 and best-case resource usage of fs_twice(¢) is 6|¢| + 2. This
can be reflected by the following function types for lower bounds.

. o1 .
filter_succ: L3(inp) 10, L0(iny
fs_twice: LS(inp 210, L9Gnn
To derive the lower bound for fs_twice, we need the same composi-

tional reasoning as for the derivation of the upper bound. For the
inner call of filter_succ we use the type

. .2 .
filter succ: I8(inp 21, L3(iny).

It can be understood as follows. If the input list carries 6 potential
units per element then, for each element, we can either use all 6 (if
case) or we can use 3 and assign 3 to the output (else case).

The type system for lower bounds is a relevant type system [84].
That means every variable is used at least once by allowing ex-
change and contraction properties, but not weakening. However,
we as in the constant-time type system we allow a restricted from
of weakening if the potential annotations are zero using the rule
L:WEAKENING. The following lemma states formally the contrac-
tion property which is derived in Fig. 7.

(L:RELAX) (L:SUBTYPE)
Z;F%e:A g=p q-p<q-p Z;FI%e:A A<:B
5Tt e:a 5THr e:B
(L:WEAKENING) (L:SUPERTYPE)
Zr;FrI%e:B Y(A| A A) Z;F,x:BI%e:C A<:B

Zr;Fr,x:AI%e:B Z;F,x:AI%e:C

Figure 6. Structural rules for lower bounds.

Z;F,xl:A,xg:A% e:B Ar<:A

(L:CONTRACTION)

Z;I‘,xyA,xg:Agl%e:B Al <A

q
Z;F,xlel,xg:A2|7e:B Y (A Ay, Ap)

hLx:A I% share(x, (x1,x2).e) : B

Figure 7. Derivation of the contraction rule for lower-bounds.

Lemma3. If";T",x1:Ax: A I% e:BthenX;IT",x: A I%
share(x, (x1,x2).e): B

The following theorems establish the soundness of the analysis.
The proofs can be found in the TR [10]. Theorem 5 is proved by
induction and Theorem 4 follows by contradiction.

Theorem4. Let=E:T",Erelv,andX”;T" I% e: A. Then for
all p,r € Qf such that p < q+®g(") +r, there exists no p' € Qg
satisfying E I% elvandp' zq +dw: A +r.

Theorem 5. Let=E:T",E-el v, andZ”;T" I% e: A. Then for
allp,p’ € Q§ such that E I% el vwehaveq+®g[T")—(q' +®(v:

Aysp-p'.
3.6 Mechanization

We mechanized the soundness proofs for both the two new type
systems as well as the classic AARA type system using the proof
assistant Agda. The development is roughly 4000 lines of code,
which includes the rules of the three types systems, the opera-
tional cost semantics, a proof of type preservation for each type
system, and the soundness theorems for each type system.

One notable difference is our implementation of the typing
contexts. In Agda our contexts are implemented as lists of pairs of
variables and their types. Moreover, in our typing rules whenever a
variable is added to the context we require a proof that the variable
is fresh with respect to the existing context. This requirement
is important as it allows us to preserve the invariant that the
context is well formed with respect to the environment as we
induct over typing and evaluation judgements in our soundness
proofs. Furthermore, as our typing contexts are ordered lists we
added an exchange rule to our typing rules.

Another important detail is in the implementation of potential.
Potential ®(v : A) for a value only is defined for well formed
inputs. Inputs such as @ (nil : bool) are not defined. Agda is total
language and as such prohibits users from implementing partial
functions. Thus we require in our Agda implementation that when
calculating the potential of a value of a given type the user provide
a derivation that the value is well formed with respect to that
type. Similarly when calculating the potential of a context, ®g(I'"),
with respect to an environment we require that the user provide
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a derivation that the context is well formed with respect to that
environment.

Lastly, whereas the type systems and proofs presented here
used positive rational numbers, in the Agda implementation we
use natural numbers. This deviation was simply due to the lacking
support for rationals in the Agda standard library. By replacing
a number of trivial lemmas, mostly related to associativity and
commutativity, the proofs and embeddings could be transformed
to use rational numbers instead.

4. Aresource-aware security type system

In this section we introduce a new type system that enforces
resource-aware noninterference to prevent the leakage of infor-
mation in high-security variables through low-security channels.
In addition to preventing leakage over the usual input/output
information flow channels, our system incorporates the constant-
resource type system discussed in Section 3 to ensure that leakage
does not occur over resource side channels.

The notion of security addressed by our type system considers
an attacker who wishes to learn information about certain inputs
containing sensitive data by making observations of the program’s
public outputs and resource usage. We assume an attacker who
is able to control the value of any variable she is capable of ob-
serving, and thus influence the program’s behavior and resource
consumption. However, in our model the attacker can only ob-
serve the program’s total resource usage upon termination, and
so cannot distinguish between intermediate states or between
terminating and non-terminating executions.

4.1 Security types

To distinguish parts of the program under the attacker’s control
from those that remain secret, we annotate types with labels
ranging over a lattice (£, =, 1, 1). The elements of .Z correspond
to security levels partially-ordered by = with a unique bottom
element L. The corresponding basic security types take the form:

ke? S::= (unit, k) | (bool, k) | (int, k) | (L(S),k) | S* S

A security context 'S is a partial mapping from variable identifiers
and the program counter pc to security types. The context assigns
a type (unit, k) to pc to track information that may propagate
through control flow as a result of branching statements. The
security type for lists contains a label L(S) for the elements, as well
as a label k for the list’s length.

As in other information flow type systems, the partial order
k £ k' indicates that the class k is at least as restrictive as k,
i.e., k is allowed to flow to k. We assume a non-trivial security
lattice that contains at least two labels: ¢ (low security) and h
(high security), with ¢ = h. Following the convention defined
in FlowCaml [76], we also make use of a guard relation k< S
which denotes that all of the labels appearing in S are at least as
restrictive as k. This is given in Figure 8 along with its dual notion
S <k, called the collecting relation, and the standard subtyping
relation S1 < So.

To refer to sets of variables by security class, we write [['¥] ¢
to denote the set of variable identifiers x in the domain of I'
such that I'’(x) <k, and define ;. 4[I'*] similarly. These gives us
the set of variables upper- and lower-bounded by k, respectively.
Conversely, we define [I'*] 4 = {x € dom(T'%) : T¥(x) A k}, the set
of variables more restrictive than k. To refer to the set of variables
strictly bounded below by k; and above by k2, we write i, 4[T"*] 4, -
Given two well-formed environments E] and E», we say that they
are k-equivalent with respect to I'S, written E] =, E», if they agree
on all variables with label at most k:

E1 =4 By © Vx €[] 4. E1(x) = B2(x)

This relation captures the attacker’s observational equivalence
between the two environments.

k=k' TeAtoms kek  k<sS k<S1  k<S
k<(T, k" k<(L(S), kN k<S1 %S

Kok TeAtoms Kck S<k S1 <k Sy «k
(T, k') <k (L(S), k') <k S %Sy 4k

kck' TeAtoms kck  s<S§ S$1=8] S$2<8,

(T, k) < (T, k") (L(S), k)<(L(S", k) S1xS2=8) %S,

Figure 8. Guards, collecting security labels, and subtyping
(Atoms = {unit, int, bool})

The first-order security types take the form:

pece s FSu=s RO o5 P,

The annotation pc indicates the security level of the program
counter, i.e., a lower-bound on the label of any observer who is
allowed to learn that a given function has been invoked. The const
annotation denotes that the function body respects resource-
aware noninterference. A security signature 2’ : FID — o (.% %) \{g}
is a finite partial mapping from a set of function identifiers to a
non-empty sets of first-order security types.

4.2 Resource-aware noninterference

We consider an adversary associated with label k; € .Z, who can
observe and control variables in [I'*] 4, . Intuitively, we say that
a program P satisfies resource-aware noninterference at level
(k1, k2) with respect to I'S, where kj E kp, if 1) the behavior of P
does not leak any information about the contents of variables
more sensitive than kj, and 2) does not leak any information
about the contents or sizes of variables more sensitive than k.
The definition follows.

Definition 2. Let E; and E» be two well-formed environments
and T3 be a security context sharing their domain. An expression e
satisfies resource-aware noninterference at level (k1 , k») for k1 & ko,
if whenever E1 and E» are:

1. observationally-equivalent ar ky: E1 =, E,

2. size-equivalent with respect to i, 4[T°] 4, E1 = E>

k1< [I9] <ky
then the following holds:

B el B2 eh vz = vi=vanp1-pi=p2-ph
The final condition in Defintion 2 ensures two properties. First,
requiring that v; = v, provides noninterference [38], given that E;
and E» are observationally-equivalent. Second, the requirement
p1— p’l =p2— pé ensures that the program’s resource consump-
tion will remain constant with respect to changes in variables from
the set [T'¥] Ak, - This establishes noninterference with respect to
the program’s final resource consumption, and thus prevents the
leakage of secret information through resource side-channels.

Before moving on, we point out an important subtlety in this
definition. We require that all variables in , 4[I"*] , begin with
equivalent sizes in E1 and Ez, but not those in y, 4[T'*]. By fixing
this quantity in the initial environments, we assume that an at-
tacker is able to control and observe it, so it is not protected by
the definition. This effectively establishes three classes of vari-
ables, i.e., those whose size and content are observable to the
k1-adversary, those whose size (but not content) is observable,
and those whose size and content remain secret. In the remainder
of the text, we will simplify the technical development by assum-
ing that the third and most-restrictive class is empty, and that all
of the secret variables reside in ki< ] < ko
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Assumptions and limitations. The definition of resource-aware
noninterference given in Definition 2 assumes an adversary whose
observations of resource consumption match the cost semantics
given in Section 3. Depending on how the costs are parameterized,
this may not match the reality of actual resource use in a physical
environment on modern hardware. For example, if the processor’s
instruction cache is not accounted for then this may introduce
an exploitable discrepancy between the guarantees provided by
the type system and the real-world attacker’s observations [22,
40, 70]. In this work, we use a cost semantics that is conceptually
straightforward, and leave as future work the development of
more precise models (such as the one described in by Zhang et
al. [88]) that are faithful to the subtleties of hardware platforms.

4.3 Proving resource-aware noninterference

There are two extreme ways of proving resource-aware noninter-
ference. Assume we already have established classic noninterfer-
ence by using an information-flow type system. The first way is to
additionally prove constant resource usage globally by forgetting
the security labels and showing that the program has constant re-
source usage. This is a sound approach but it requires us to reason
about parts of the programs that are not affected by secret data.
It would therefore result the rejection of programs that have the
resource-aware noninterference property but are not constant re-
source. The second way is to prove constant resource usage locally
by ensuring that every conditional that branches on secret values
is constant time. However, this local approach is problematic be-
cause it is not compositional. Consider the following examples in
which revis the standard reverse function.
let £f1(b,x) =
let z = if b then x else [] in rev z

let £f2(b,x,y) =
let z = if b then let =rev y in x

else let _ = rev x in y
in rev z

If we assume a cost model in which we count the number of func-
tion calls then the cost of rev(x) is | x|. So revis constant resource
w.r.t its argument. Moreover, the expression if' b then x else [] is
constant resource. However, f1 is not constant resource. In con-
trast, the conditional in the function £2 is not constant resource.
However, f2is a constant resource function. The function f2 can
be automatically analyzed with the constant-resource type system
from Section 3 while f1 is correctly rejected.

The idea of our type system for resource-aware noninterfer-
ence is to allow both global and local reasoning about resource
consumption as well as arbitrary intermediate levels. We ensure
that every expression that is typed in a high security context is part
of a constant resource expression. In this way, we get the benefits
of local reasoning without loosing compositionality.

4.4 Typingrules and soundness

We combine our type system for constant resource usage with
a standard information flow type system which based on Flow-
Caml [72]. The interface between the two type systems is relatively
light and the idea is applicable to other methods for proving con-
stant resource use as well as other security type systems.

In the type judgement, an expression is typed under a type
context I' and a label pc. The pc label can be considered an
upper bound on the security labels of all values that affect the
control flow of the expression and a lower bound on the labels of
the function’s effects [72]. As mentioned earlier, we will simplify
the technical development by assuming that the third and most-
restrictive class is empty, and that all of the secret variables
reside in j 4[] ¢,, that is, the typing rules here guarantee
that well-typed expressions provably satisfy the resource-aware

noninterference property w.r.t. changes in variables from the
set [T*]4,. We define two type judgements of the following
form, in which we write const(e) if there exists I'" and X" such
that =7;T" I% e: A Y(A| AA), and Vx € [Fs]*kl. Y @7 (x) |
I (x), I (x).
pG;ESTSFst o5 and  pgISTSHe:S.

The judgement with the const annotation states that under a
security configuration given by I'¥ and the label pc, e has type
S and it satisfies resource-ware noninterference w.r.t. changes in
variables from the set [['* Lk - The second judgement indicates
that e satisfies the noninterference property but does not make
any guarantees about resource-based side channels. Selected
typing rules are given in Fig. 9. We implicitly assume that the
security types and the resource-annotated counterparts have the
same base types.

Note that the standard information flow typing rules [45, 72]
can be obtained by removing the const annotation from all judge-
ments. Consider for instance the rule SR:IF for conditional ex-
pressions. By executing the true or false branches, an adversary
could gain information about the conditional value whose se-
curity label is kx. Therefore the conditional expression must be
type-checked under a security assumption at least as restrictive
as pc and ky. This is a standard requirement in any information
flow type system. In the following we will focus on explaining how
the rules restrict the observable resource usage instead of these
classic noninterference aspects.

The most interesting rules are SR:C-GEN and the rules for
and let expressions and conditionals, which block leakage over
resource usage when branching on high security data. SR:C-GEN
allows us to globally reason about constant resource usage for an
arbitrary subexpression that has the noninterference property. For
example, we can apply SR:IF, the standard rule for conditionals,
first and then SR:C-GEN to prove that the expression is constant
resource. Alternatively, we can use rules such as SR:L-IF and SR:L-
LET to locally reason about resource use.

The rule SR:L-LET reflects the fact that if both e; and e have
the resource-aware noninterference property and the size of x
only depends on low security data then let(x, ej, x.e2) has the
resource-aware noninterference property. The reasoning is similar
for rule SR:L-IF where we require that the variable x does not
depend on high security data.

Leaf expressions such as op,, (x1, x2) and cons(xy,, x¢) have con-
stant resource usage. Thus their judgments are always associated
with the qualifier const as shown in the rule SR:B-Op. The rule
SR:C-FuN states that if a function’s body has the resource-aware
noninterference property then the function application has the
resource-aware noninterference property too. If the argument’s
label is low security data, bounded below by ki, then the func-
tion application has the resource-aware noninterference property
since the value of the argument is always the same under any
k-equivalent environments. It is reflected by rule SR:L-ARG.

Example. Recall functions compare and p_compare in Fig. 3.
Suppose the content of the first list is secret and the length is public.
Thus it has type (L(int, h), ¢). While the second list controlled by
adversaries is public, hence it has type (L(int, £), ¢). Assume that the
pc label is € and (T°) 4, =[] 4¢. The return value’s label depends
on the content of the first list elements whose label is h. Thus it
must be assigned the label h to make the functions well-typed.

compare: ((L(int, h),?),(L(int, ¢),¢)) L (bool, h)

0/ const

((LGint, b, 0), (L(int, £),£)) —— (bool, h)

Here, both functions satisfy the noninterference property at security
label ¢. However, only p_compare is resource-aware noninterfer-
ence function w.r.t [T'] Alr OF the secret list.

p_compare :
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(SR:B-0Op) (SR:GEN) (SR:C-GEN)
x1:(boolky)ET®  xp:(boolky,)€T®  pcCky Uky, o€fand, or} pe; =5 TS st 5. g pc;Z5I*Fe:S  const(e)
pe; 5T OB op (x1, x2) @ (bool, ky, U ky,) pG T ke:S pe;=5;TS st 5. g
(SR:L-ARG) (SR:C-FuN) (SR:FuN)
! // !
:S1er’ ==, £5(f) = §; 2L g, 5 =5 s, (SR:C-SUBTYPING)
pccpc S <k x:81e€r’  pccpd x:81€r®  pccpd pGESTS Bt o5 §< ¢
pc; =5TS FOBL app(f,x) : So pe; 25T FOL app(f,x) : So pc; 2% TS app(f,x): So pc; =51 st 4. g/
(SR:IF) (SR:L-IF)
x:(bool,ky) TS pclkyZSTS ke :S pelky S5 TS O o 0§ peliky; =5 TS peonst ef:S (SR:SUBTYPING)

pcukx;Zs;Fsl—ef:S pcuky<S

x:(bool, ky) €T

pcUkx<S  kyChy pe;EZ5T¥ke:S  S<§

pc; 25 T° if(x, ey, ef):S

(SR:L-LET)
pG;ES TS Bl o128y pESTS,x: S FBk ¢y Sy

pc; =5 T 8L if(x, ey, ep):S

Sy <k

pe; T ke: S

(SR:LET)
pe;Z5Ike;:S1  poZiIS,x:S1kFex:So

pc; =5 T8 FORL Jet(x, eq, x.€2) : So

(SR:MATCH-L)
x:(L(S), k) €TS  pcuky;Z5T ke :S;
pelky; 255, x7,: 8, x¢: (L(S), kx) Fep:S1 pclkyx<Sy

peU ky; 25T, xp, 1 8,57 (L(S), kx) F92L €51 83

pc; 25 T° let(x, e1, x.e2) : So

(SR:C-MATCH-L)

peUky; =5, TS L o, 2 54
pcllkyx <81

x:(L(S), ky) €T

pc; 2% % - match(x, ey, (xy, X1)-€2) : S1

pc; =5 TS FL match(x, eg, (xp, Xp).€2) : S1

Figure 9. Selected security typing rules

Example. Consider the following function cond_rev in which rev
is the standard reverse function.

let cond_rev(11,12,b1,b2) =
if bl then let r =
if b2 then rev 11; 12 else rev 12; 11
in rev r; ()
else ()

Assume that Iy, lp, by and by have types (L(int, h),¢), (L(int, h), £),
(bool, £), and (bool, h), respectively. Given the rev function is con-
stant w.r.t the argument, the inner if is not resource-aware non-
interference. However, the let expression is resource-aware nonin-
terference w.r.t [[%] 49 = {11, I2, ba} by applying the rule SR:C-GEN.
Finally, the outer if branching on low security data and its branches
of are resource-aware noninterference, has resource-aware nonin-
terference property w.r.t{l1, Iz, b} at level ¢ by the rule SR:L-Ir. We
obtain the following inferred type.

((L(int, h), £), (L(int, h), £), (bool, £), (bool, h))
¢/ const .
— (unit,¥)

We now prove the soundness of the type system w.r.t the
definition of resource-aware noninterference. The soundness
theorem states that if e is well-typed expression with the const
annotation then it is resource-aware noninterference expression
at level ky.

The following two lemmas are needed in the soundness proof.
The first lemma states that the type system satisfies the standard
simple security property [83] and the second shows that the type
system prove classic noninterference.

cond_rev :

Lemma 4. Let p¢;X5T5Fe: S or pcZ5TS feonst o - S For all
variables x in e, if S <4k thenT*(x) <k;.

Lemma5s. Letpc;ES;TSFe:Sorpe TS FL ¢: S By kel vy,
Ey el v2, and Ey =y, Ez. Then vy = v2 if S 4 ky.

Theorem 6. Ifi=E:T5, E+ el v, and pc;Z% TS F¥E ¢ S then e
is resource-aware noninterference expression at level k.

Proof. The proof is done by induction on the structure of the
typing derivation and the evaluation derivation. Let X be the set of
variables [Fs]ﬂkl. For all environments E7, E» such that E1 =x E»

and Ey =g, By, if ) IZ—i el v and E» Il;—z e | vo. We then show

that p1 — p| = p2 — p}, and v1 = v, if S < k1. We illustrate one case
of the conditional expression. Suppose e is of the form if(x, ey, ef),
thus the typing derivation ends with an application of either the
rule SR:L-IF or SR:C-GEN. By Lemma 5, if S < kj then v; = vy.

* Case SR:L-IF. By the hypothesis we have Ej(x) = E2(x). As-

sume that Ej (x) = E2(x) = true, by the evaluation rule E:IF-
Kcond _ Kcond

TRUE, Ej Ipl_T es | vy and E» |’72T er | v2. By in-
duction for e; we have py — p| = p2 — pj. It is similar for
Ej(x) = Ex(x) = false.

* Case SR:C-GEN. Since E; =x E» w.r.t I'S, we have E ~x E
w.r.t I'". By the hypothesis we have const(e). Thus by Theorem
2, it follows py — p} = p2 — pj. O

5. Quantifying and transforming out leakages

We present techniques to quantify the amount of information leak-
age through resource usage and transform leaky programs into
constant resource programs. The quantification relies on the lower
and upper bounds inferred by our resource type systems. The
transformation pads the programs with dummy computations
so that the evaluations consume the same amount of resource
usage and the outputs are identical with the original programs.
In the current implementation, these dummy computations are
added into programs by users and the padding parameters are
automatically added by our analyzer to obtain the optimal values.
It would be straightforward to make the process fully automatic
but the interactive flavor of our approach helps to get a better
understanding of the system.

5.1 Quantification

Recall from Section 4 that we assume an adversary at level k; who
is always able to observe 1) the values of variables in [['¥] ¢ Ky and

2016/7/13



2) the final resource consumption of the program. For many pro-
grams, it may be the case that changes to the secret variables
[[¥] 4, effect observable differences in the program’ final re-
source consumption, but only allow the attacker to learn partial
information about the corresponding secrets. In this section, we
show that the upper and lower-bound information provided by
our type systems allow us to derive bounds on the amount of
partial information that is leaked.

To quantify the amount of leaked information, we measure the
number of distinct environments that the attacker could deduce
as having produced a given resource consumption observation.
However, becuase there may be an unbounded number of such
environments, we parameterize this quantity on the size of the
values contained in each environment. Let EV denote the space
of environments with values of size characterized by N. Given an
environment E and expression e, define U(E, e) = ps such that

E I% e vand ps = p—p'. Then for an expression e and resource
observation pg, we define the set Ry (e, ps) which captures the
attacker’s uncertainty about the environment which produced ps:
Ry (e, ps) = {E' € EN : U(E, e) = ps}

Notice that when |Ry (e, p)| = 1, the attacker can deduce exactly
which environment was used, whereas when this quantity is large
little additional information is learned from pg. This gives us a
natural definition of leakage, which is obtained by aggregating the
inverse of the cardinality of Ry over the possible initial environ-
ments of e:

Y 1
pepn BN (e, U(E, e))
Cp (e) corresponds to our intuition about leakage. When e leaks
no information through resource consumption, then each term
in the summation will be 1/|ESi2¢S) giving Cy(e) = 0, whereas if
e leaks perfect information about its starting environment then
each term will be 1, leading to Cy(e) = IENI —1.

Cn(e) =

Theorem 7. Let PX, be the complete set of resource observations
producible by expression e under environments of size N, i.e.,

P$ ={p:3E€EN.U(E,e) = p)
Then |P§ | =Cn(e) + 1.

Lemma 6. Let [o(N) and ue(N) be lower and upper-bounds on
the resource consumption of e for inputs of size N. IfU(E, e) € Z for
all environments E, then Cn(e) < ue(N) — lo(N).

Lemma 7. Assume that environments are sampled uniform-
randomly from EN. Then the Shannon entropy of Pl‘i] is given
by Cn(e): H(PY) <logy(Cn(e) +1)

Lemma 6 leverages Theorem 7 to derive an upper-bound on
leakage from upper and lower-bounds on resource usage. This
result only holds when the possible resource observations of e
are integral, as this ensures that the interval [l (V), ue(N)] 2 Ple\l
is finite. Lemma 7 relates Cp(e) to Shannon entropy, which is
commonly used to characterize information leakage [59, 60, 88].

5.2 Transformation

To transform programs into constant resource programs we ex-
tend the type system for constant resource use from Section 3.
Recall that the type system treats potential in a linear fashion to
ensure that potential is not wasted. We will now add sinks for po-
tential which will be able to absorb excess potential. At runtime
the the sinks will consume the exact amount of resources that have
been statically-absorbed to ensure that potential is still treated in
alinear way. The advantage of this approach is that the worst-case
resource consumption is often not affected by the transformation.

Additionally, we do not need to keep track of resource usage at run-
time to pad the resource usage at the sinks, because the amount
of resource that must be discarded is statically-determined by the
type system. Finally, we automatically obtain a type derivation
that serves as a proof that the transformation is constant-resource.

More precisely, the sinks are represented by the syntactic
form: consumey ) (x). Here, A is a resource-annotated type and
p € Q¢ is a non-negative rational number. The idea is that A
and p define the resource consumption of the expression. In the
implementation, the user only has to write consume(x), and the
annotations are added via automatic syntax elaboration during
the resource type inference.

Let E be a well-formed environment w.r.t I”. For every
x € dom(I') with I'" (x) = A, the expression consumea, p) (x) con-
sumes ®(E(x) : A) + p resource units and evaluate to (). The
evaluation and typing rules for sinks are:

(E:CONSUME)

(A:CONSUME) G=q +PEX):A+p

=" xA ITP consume(q p)(x) :unit  E I% consumea p)(x) § 0

The extension of the proof of Theorem 1 to consume expressions
is straightforward.

Adding consume expressions Let e; be a subexpression of e and
let e; be the expression let(z,consume(xy, -, Xp), z.e;) for some
variables x;. Let ¢’ be the expression obtained from e by replacing
e; with e;.. We write e — e’ for such a transformation. Note that
additional share and let expressions have to be added to convert
e; into share-let normal form.

Lemma8. IfX;THe:T,EFelv,ande— e thenZ;TFe': T
andEFeé' | v.

To transform an expression e into a constant resource expres-
sions we perform multiple transformations e — e’ which do not
affect the type and semantics of e. This can be done automati-
cally but in our implementation it works in an interactive fashion,
meaning that users are responsible for the locations where con-
sume expressions are put. The analyzer will infer the annotations
A and constants p of the given consume expressions during type
inference. If the inference is successful then we have const(e’) for
the transformed program e’.

Example. Recall the function compare form Fig. 3. To turn
compare into a constant resource function. We insert consume
expressions as shown below. Users can insert many consume ex-
pressions and the analyzer will determine which consume the are
actually needed.
let rec c_compare (h,1) = match h with
| [ — (match 1 with | [] — Raml.tick 1.0; true
| y::ys — Raml.tick 1.0; false)
| x::xs — match 1 with
| [J — Raml.tick 1.0; Raml.consume xs; false
| y::ys — if (x = y) then
Raml.tick 5.0; c_compare (xs,ys)
else Raml.tick 5.0; Raml.consume xs; false
We automatically obtain the following typing of the transformed
function and the consume expressions:

(L5 iny), 10(inn) 222 bool

c_compare :
5. 5/0 . .
consume : L°(int) — unit (at line5)
. 1/0 . .
consume : L5(lnt) — unit (at line 8)

The worst-case resource consumption of the unmodified func-
tion c_compare h 1 is 1+ 5|h|. Thus the consumption of the first
consume must be 5+ 5(lh| =1 —|¢]) when h is longer than .
Otherwise, the consumption is zero. The second one consumes
1+5(lh1|1-1), where hy is the sub-list of h from the first node which
is different from the corresponding node in I.
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6. Implementation and Evaluation

Type Inference The type inference for the type systems for con-
stant resource and lower bounds are implemented in RAML [9].
RAML is integrated in Inria's OCaml compiler and supports poly-
nomial bounds, user-defined inductive types, higher-order func-
tions, polymorphism, and arrays and references. All features are
implemented for the new type systems and are basically orthogo-
nal to the new ideas that we explained in the simplified setting of
this article. The implementation is publically available as source
code and in an easy-to-use web interface [46].

The type inference is technically similar to the inference of
upper bounds [51]. We first integrate the structural rules of the
respective type system in the syntax directed rules. For example,
weakening and relaxation is applied at branching points such
as conditional and pattern matching. We then compute a type
derivation in which all resource annotations are replace by (yet
unknown) variables. For each type rule we produce a set of linear
constraints that specify the properties of valid annotations. These
linear constraints are then solved by the LP solver CLP to obtain a
type derivation in which the annotations are rational numbers.

An interesting challenge lies in finding a solution for the linear
constraints that leads to the best bound for a given function. For
upper bounds, we simply disregard the potential of the result type
and provide an objective function that minimizes the annotations
of the arguments. The same strategy works the constant-time
type systems. An interesting property is that the solution to the
linear program is unique if we require that the potential of the
result type is zero. To obtain the optimal lower bound we want
to maximize the potential of the arguments and minimize the
potential of the result. We currently simply maximize the potential
of the arguments while requiring the potential of the result to be
zero. Another approach would be to first minimize the output
potential and then maximize the input potential.
Resource-aware noninterference We are currently integrating
our constant-time type system with FlowCaml [76]. The combined
inference is based on the typing rules in Fig. 9. It is possible
to derive a set of type inference rules in the same way as for
FlowCaml [72, 78]. One of the challenges in the integration is
interfacing FlowCaml’s type inference with our constant-time
type system in rule SR:C-GEN. In the implementation, we intend
for each application of SR:C-GEN to generate an intermediate
representation of the expression in RAML for the expression under
consideration, in which all types are annotated with fresh resource
annotations along with the set of variables X. The expression is
marked with the qualifier const if a RAML can prove that it is
constant time. The type inference algorithm always tries to apply
the syntax-directed rules first before using SR:C-GEN.
Evaluation Table 1 shows the verification and computation of
constant resource usage, lower and upper bounds for number of
functions with different size in terms of number of line of code
(LOC). The cost models are specified by several different cost met-
ric, i.e.,, number of evaluation steps, number of multiplication
operations. Note that the computed upper bounds are also the
resource usages of functions which are padded using consume
expressions. The experiments were run on machine with Intel
Core i5 2.4 GHz processor and 8GB RAM under the OS X 10.11.5.
The run-time of the analysis of varies from 0.03 to 14.34 seconds
depending on the function code’s complexity. The example pro-
grams that we analyzed consist of commonly-used primitives
(cond_rev, trunc_rev, compare, find, filter), functions related to
cryptography (tea_enc, tea_dec, rsa), and examples taken from
Haeberlan et al. [42] (ipquery, kmeans). The full source code of
the examples can be found in the technical report [10].

The encryption functions tea_enc and tea_dec correspond to
the encryption and decryption routines of the Corrected Block

Tiny Encryption Algorithm [86], a block cipher presented by Need-
ham and Wheeler in an unpublished technical report in 1998. Our
implementation correctly identifies these operations as constant-
time in the number of primitive operations performed. We applied
this cost model for these examples due to the presence of bitwise
operations in the original algorithm, which are not currently sup-
ported in RAML. In order to derive a more meaningful bound,
we implemented bitwise operations in the example source and
counted them as single operations.

The two examples taken from Haeberlen et al. [42] were origi-
nally created in a study of timing attacks in differentially-private
data processing systems. ipquery applies pattern matching to a
database derived from Apache server logs, counting the number
of matches and non-matches. kmeans implements the k-means
clustering algorithm [64], which partitions a set of geometric
points into k clusters that minimize the total inter-cluster dis-
tance between points. Haeberlen et al. demonstrated that when a
query applied to a dataset introduces attacker-observable timing
variations, then the privacy guarantees provided by differential
privacy are negated. To address this, they proposed a mitigation
approach that enforces constant-time behavior by aborting or
padding the query’s runtime. Our implementation is able to de-
termine that these queries were constant-time to begin with, and
thus did not need black-box mitigation.

7. Related work

Resource bounds Our work builds on past research on auto-
matic amortized resource analysis (AARA). AARA has been in-
troduced by Hofmann and Jost for a strict first-order functional
language with built-in data types to derive linear heap-memory
bounds [51]. It has then been extended to polynomial bounds [47,
48, 50] for strict and higher-order [9, 57] functions. AARA has
also been used to derive linear bounds for lazy functional pro-
grams [75, 82] and object-oriented programs [52, 55]. In another
line of work, the technique has been integrated into separa-
tion logic [12] to derive bounds that depend on mutable data-
structures, and into Hoare logic to derive linear bounds that de-
pend on integers [25, 26]. The potential method of amortized
analysis has also been used to manually verify the complexity of
algorithms and data-structures using proof assistants [28, 67].

As discussed in the introduction, AARA has been successfully
extended to other resources and language features [12, 23, 52, 55,
57, 75, 82] and to polynomial bounds [47, 49, 50, 53, 54]. Amor-
tized analysis has also been used to verify bounds on algorithms
and data structures with proof assistants [28, 67]. In contrast
to our work, these techniques can only derive upper bounds
and prove constant resource consumption. This focus on upper
bounds is shared with automatic resource analysis techniques
that based on sized types [80, 81], linear dependent types [62, 63],
and other type systems [29, 31, 32]. Similarly, semiautomatic anal-
yses [14, 17, 33, 39] focus on upper bounds too.

Automatic resource bound analysis is also actively studied for
imperative languages using recurrence relations [4, 7, 36] and ab-
stract interpretation [18, 27, 41, 77, 90]. While these techniques fo-
cus on worst-case bounds, it is possible to use similar techniques
for deriving lower bounds [3]. The advantage of our method is
that it is compositional, deal well with amortization effects, and
works for language features such as user-defined data types and
higher-order functions. Another approach to (worst-case) bound
analysis is based on techniques from term rewriting [13, 20, 68],
which mainly focus on upper bounds. One line of work [37] de-
rives lower bounds on the worst-case behavior of programs which
is different from our lower bounds on the best-case behavior.

Side channels Analyzing and mitigating potential sources of
side channel leakage is an increasingly well-studied area. Sev-
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Constant Function LOC Metric Resource Usage Time
cond_rev : (L(int), L(int), bool) — unit 20 steps 13n+13x+35 0.03s
trunc_rev : (L(int),int) — L(int) 28 function calls 1n 0.06s
ipquery : L(logline) — (L(int), L(int)) 86 steps 86n+99 0.86s
kmeans : L(float, float) — L(float, float) 170 steps 1246n+3784 8.18s
tea_enc : (L(int), L(int), nat) — L(int) 306 ticks 128n2z+32nxz+1184nz+96n+1282+96 13.73s
tea_dec : (L(int), L(int), nat) — L(int) 306 ticks 128n2z+32nxz+1184nz+96n+962+96 14.34s
Function LOC Metric Lower Bound Time Upper Bound Time
compare : (L(int), L(int)) — bool 60 steps 7 0.05s 16n+7 0.09s
find : (L(int), int) — bool 40 steps 5 0.04s 14n+5 0.02s
rsa : (L(bool),int,int) — int 42 multiplications 1n 0.07s 2n 0.05s
filter : L(int) — L(int) 30 steps 13n+5 0.05s 20n+5 0.04s
isortlist : L(L(int)) — L(L(int)) 60 steps 21n+5 0.13s 1212 +9n+10n2 m—10nm+5 0.43s
bfs_tree : (btree,int) — btree option 116 steps 15 0.30s 92n+24 0.32s

Table 1. The computed resource usage in case of constant function, the computed lower and upper bounds, and the run-time of the
analysis in seconds. Note that constant resource usage, lower and upper bounds are the same when a function is constant. In the computed
resource usage 7 is the size of the first argument, m = max; <;<;, m; where m; are the sizes the first argument’s elements, x is the size of
the second argument, y = maxj<;<,¥; Where y; are the sizes the second argument’s elements, and z is the value of the third argument.

eral groups have proposed using type systems or other program
analyses to transform programs into constant-time versions by
padding out branches and loops with “dummy” commands [1,
15, 30, 44, 66, 88]. Because these systems do not account for tim-
ing explicitly, as is the case for our work, this approach will in
nearly all cases introduce an unnecessary performance penalty.
The most recent of these systems by Zhang et al. [88] describes
an approach for mitigating side channels using a combination of
security types, hardware assistance, and predictive mitigation [87].
Unlike the type system given in Section 4, theirs does not guar-
antee that information is not leaked through timing. Rather, they
show that the amount of this leakage is bounded by the variation
of the mitigation commands.

Kopf and Basin [59] presented an information-theoretic model
for adaptive side channel attacks that occur over multiple runs of
aprogram, as well as an automated analysis for measuring the cor-
responding leakage. Because their analysis is doubly-exponential
in the number of steps taken by the attacker, they describe an
approximate version based on a greedy heuristic. Mardziel et al.
later generalized this model to probabilistic systems [65], secrets
that change over time, and wait-adaptive adversaries. Pasareanu
etal. [71] proposed a symbolic approach for the multi-run setting
based on MaxSAT and model counting. Doychev et al. [34] and
Kopf et al. [60] consider cache side channels, and present analyses
that over-approximate leakage using model-counting techniques.
While these analyses are sometimes able to derive useful bounds
on the leakage produced by binaries on real hardware, they do
not incorporate security labels to distinguish between different
sources, and were not applied to verifying constant-time behavior.

FlowTracker [73] and ct-verif [6] are both constant-time anal-
yses built on top of LLVM which reason about timing and other
side-channel behavior indirectly through control and address-
dependence on secret inputs. VirtualCert [16] instruments Com-
pCert with a constant-time analysis based on similar reasoning
about control and address-dependence. These approaches are
intended for code that has been written in “constant-time style”,
and thus impose effective restrictions on the expressiveness of the
programs that they will work on. Because our approach reasons
about resources explicitly, it imposes no a priori restrictions on
program expressiveness.

Information flow Along line of prior work looks at preventing
information flows using type systems. Sabelfeld and Myers [74]
present an excellent overview of much of the early work in this
area. The work most closely related to our security type system

is FlowCaml [72], which provides a type system that enforces
noninterference for a core of ML with references, exceptions, and
let-polymorphism. The portion of our type system that applies
to traditional noninterference coincides with the rules used in
FlowCaml. However, the rules in our type system are not only
designed to track flows of information, but they are also used to
incorporate the information flow and resource usage behavior
such as the rules SR:L-IF and SR:L-LET. Moreover, our type
system constructs a flexible interface between FlowCaml and
the constant resource type system for reasoning about resource
consumption, meaning that the rules can be easily adapted to
integrate into any information flow type system.

The primary difference between our work and the prior work
on information flow type systems is best summarized in terms
of our attacker model. Whereas prior work assumes an attacker
that can manipulate low-security inputs and observe low-security
outputs, our type system enhances this attacker by granting the
ability to observe the program’s final resource consumption. This
broadens the relevant class of attacks to include resource side
channels, which we prevent by extending a traditional informa-
tion flow type system with explicit reasoning about the resource
behavior of the program using AARA.

8. Conclusion

We have introduced new substructural type systems for automati-
cally deriving lower bounds and proving constant resource usage.
The evaluation with the implementation in RAML shows that the
technique extends beyond the core language that we study in this
paper and works for realistic example programs. We have shown
how the new type systems can interact with information-flow type
systems to prove resource-aware noninterference. Moreover, the
type system for constant resource can be used to automatically
remove side-channel vulnerabilities from programs.

There are many interesting connection between security and
(automatic) quantitative resource analysis that we plan to study
in the future. Two concrete projects that we already started are
the integration of the type systems for upper and lower bounds
with information flow type systems to precisely quantify the
resource-based information leakage at certain security levels.
Another direction is to more precisely characterize the amount of
information that can be obtained about secretes by making one
particular resource-usage observation.
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