
Efficient Runtime Policy Enforcement Using
Counterexample-Guided Abstraction Refinement

Matthew Fredrikson∗, Richard Joiner∗, Somesh Jha∗, Thomas Reps∗$, Phillip
Porras†, Hassen Säıdi†, Vinod Yegneswaran†

∗University of Wisconsin, $Grammatech, Inc., †SRI International

Abstract. Stateful security policies—which specify restrictions on be-
havior in terms of temporal safety properties—are a powerful tool for
administrators to control the behavior of untrusted programs. However,
the runtime overhead required to enforce them on real programs can be
high. This paper describes a technique for rewriting programs to incorpo-
rate runtime checks so that all executions of the resulting program either
satisfy the policy, or halt before violating it. By introducing a rewriting
step before runtime enforcement, we are able to perform static analysis
to optimize the code introduced to track the policy state. We developed
a novel analysis, which builds on abstraction-refinement techniques, to
derive a set of runtime policy checks to enforce a given policy—as well as
their placement in the code. Furthermore, the abstraction refinement is
tunable by the user, so that additional time spent in analysis results in
fewer dynamic checks, and therefore more efficient code. We report ex-
perimental results on an implementation of the algorithm that supports
policy checking for JavaScript programs.

1 Introduction

In this paper, we describe a technique that in-lines enforcement code for a broad
class of stateful security policies. Our algorithm takes a program and a policy,
represented as an automaton, and re-writes the program by inserting low-level
policy checks to ensure that the policy is obeyed. Our key insight is that meth-
ods adapted from abstraction-refinement techniques [6] used in software model
checking can be applied to optimize the in-lined code. From a security perspec-
tive, our approach means that some programs cannot be verified entirely a priori,
but it allows us to ensure that any program that is executed will always satisfy
the policy. Additionally, by bounding the size of the abstraction used in the op-
timization phase, the tradeoff between static analysis complexity and optimality
of the in-lined code can be fine-tuned. The simplicity of this approach is attrac-
tive, and allows our algorithm to benefit from advances in the state-of-the-art
in automatic program abstraction and model checking.

We implemented our approach for JavaScript, and applied it to several real-
world applications. We found the abstraction-refinement approach to be effective
at reducing the amount of instrumentation code necessary to enforce stateful

policies. In many cases, all of the instrumentation code can be proven unneces-
sary after the analysis learns a handful (one or two) facts about the program
through counterexamples. In such cases, the analysis has established that the
program is safe to run as is, and thus there is no runtime overhead. In cases
where the program definitely has a policy violation that the analysis uncovers,
instrumentation is introduced to exclude that behavior (by causing the program
to halt before the policy is violated), again using only a few facts established by
static analysis.

To summarize, our contributions are:

– A language-independent algorithm for weaving stateful policies into pro-
grams, to produce new programs whose behavior is identical to the original
on all executions that do not violate the policy.

– A novel application of traditional software model-checking techniques that
uses runtime instrumentation to ensure policy conformity whenever static
analysis is too imprecise or expensive. The degree to which the analysis relies
on static and dynamic information is tuneable, which provides a trade-off in
runtime policy-enforcement overhead.

– A prototype implementation of our algorithm for JavaScript, called JAM,
and an evaluation of the approach on real JavaScript applications. The eval-
uation validates our hypothesis that additional time spent in static analysis,
utilizing the abstraction-refinement capabilities of our algorithm, results in
fewer runtime checks. For five of our twelve benchmark applications, learn-
ing just four predicates allows JAM to place an optimal number of runtime
checks necessary to enforce the policy.

The rest of the paper is laid out as follows. Section 2 gives an overview of the
algorithm. Section 3 presents the technical details of the analysis and discuss
JAM. Section 4 evaluates the performance of JAM over a set of real applications.
Section 5 discusses related work.

2 Overview

We propose a hybrid approach to enforcing policies over code from an untrusted
source. Our solution is to perform as much of the enforcement as possible stati-
cally, and to use runtime checks whenever static analysis becomes too expensive.
This approach allows us to avoid overapproximations on code regions that are
difficult to analyze statically. Furthermore, varying the degree to which the anal-
ysis relies on runtime information allows us to control the cost of static analysis
at the expense of performing additional runtime checks. While this approach
means that many programs cannot be verified against a policy a priori before
execution, an interpreter provided with the residual information from the static
analysis can prevent execution of any code that violates the policy. In fact, as
we show in Section 3, the target program can often be rewritten to in-line any
residual checks produced by the static analysis, sidestepping the need for explicit
support from the interpreter.

2

Predicate
Abstraction

Model
Checking

Abstraction
Refinement

Dyn. Policy
Derivation

Code
Rewriter

Source
Code
Secure
Code

Source
Code
Source
Code

Fig. 1. Workflow overview of our approach.

Figure 1 presents an overview of our approach. The security policy is first
encoded as a temporal safety property over the states of the target program.
The algorithm then begins like other software model checkers by first performing
predicate abstraction [12] over the target code, and checking the resulting model
for a reachable policy-violating state [20]. Our algorithm differs from previous
techniques in how the results of the model checker are used; when the model
checker produces an error trace, there are a few possibilities.

1. If the trace is valid, then our algorithm places a dynamic check in the target
code to prevent it from being executed on any concrete path.

2. If the trace is not valid, then the algorithm can either:
(a) Refine the abstraction and continue model checking.
(b) Construct a dynamic check that blocks execution of the trace only when

the concrete state indicates that it will violate the policy.

Item (1) has the effect of subtracting a known violating trace from the behav-
iors of the program, and in general, some number of similar behaviors, thereby
decreasing the size of the remaining search space. For an individual counterexam-
ple, item (2)(a) follows the same approach used in traditional counterexample-
guided abstraction refinement-based (CEGAR) software model checking. Item
(2)(b) ensures that a potentially-violating trace identified statically is never exe-
cuted, while avoiding the expense of constructing a proof for the trace. However,
the inserted check results in a runtime performance penalty—thus, the choice
corresponds to a configurable tradeoff in analysis complexity versus runtime
overhead.

To illustrate our approach, consider the program listed in Figure 2(a). This
code is a simplified version of the sort of dispatching mechanism that might
exist in a command-and-control server [24] or library, and is inspired by common
JavaScript coding patterns. The function execute takes an instruction code and
data argument, and invokes an underlying system API according to a dispatch
table created by the program’s initialization code.

We will demonstrate enforcement of the policy given in Figure 2(c), which is
meant to prevent exfiltration of file and browser-history data. Observe that we
specify this policy, which corresponds to a temporal safety property, using an
automaton that summarizes all of the “bad” paths of a program that might lead
to a violation. Thus, policies encode properties on individual paths of a program,

3

1 api[0] = readFile;
2 api[1] = sendPacket;
3 fun execute(instr, data) {
4 api[instr](data);
5 }
6 while(*) {
7 instr, data = read();
8 execute(instr, data);
9 }

(a) Original code (P).

1 policy = 0;
2 api[0] = readFile;
3 api[1] = sendPacket;
4 fun execute(instr, data) {
5 if(api[instr] == readFile

6 && policy == 0) policy++;

7 if(api[instr] == sendPacket

8 && policy == 1) halt();
9 api[instr](data);

10 }

(b) Safe code (previously safe parts
ommitted). Shaded lines contain two
checks inserted by our algorithm; our
analysis prevented an additional check

before line 9.

//
call readFile

33
call readHistory

++

∗

UU
call sendPacket //

∗

UU

(c) Security policy that says “do not read from a file or the
history and subsequently write to the network.”

Fig. 2. Dangerous code example.

api[0] = readFile;
api[1] = sendPacket;
instr, data = read();
execute(0, data);
assume{api[0] == readFile}
api[instr](data);
instr, data = read();
execute(1, data);
assume{api[1] == sendPacket}
api[instr](data);

(1)

api[0] = readFile;
api[1] = sendPacket;
instr, data = read();
execute(0, data);
assume{api[0] == readHistory}
api[instr](data);
instr, data = read();
execute(1, data);
assume{api[1] == sendPacket}
api[instr](data);

(2)

Fig. 3. Counterexamples returned from the example in Figure 2. (2) is invalid, and
leads to a spurious runtime check.

and we intuitively think of policy violation as occurring when a subsequence
of statements in a path corresponds to a word in the language of the policy
automaton. The example in Figure 2(c) is representative of the policies used by
our analysis, and meant to convey the important high-level concepts needed to
understand our approach. For more details about specific policies, see Section 3.

To verify this policy against the program, we proceed initially with software
model checking. The first step is to create an abstract model of the program
using a finite number of relevant predicates [12]. We begin with three predi-
cates, corresponding to the states relevant to the policy: @Func = readHistory,
@Func = readFile, and @Func = sendPacket. We assume the existence of a
special state variable @Func, which holds the current function being executed;
each of these predicates queries which function is currently being executed. With
these predicates, the software model checker will return the two counterexamples
shown in Figure 3.

4

(1) is valid — it corresponds to a real policy violation. Our analysis updates
the program’s code by simulating the violating path of the policy automaton
over the actual state of the program. This is demonstrated in Figure 2(b); the
automaton is initialized on line 1, and makes a transition on lines 6 and 8 after
the program’s state is checked to match the labels on the corresponding policy
transitions. When the transition to the final state is taken, the program halts.

(2) is not valid—the assumption that api[0] == readHistory never holds.
However, for the analysis to prove this, it would need to learn a predicate that
encodes this fact, and build a new, refined abstraction on which it can per-
form a new statespace search. If the user deems this too expensive, then the
analysis can simply insert another runtime check before line 7 corresponding to
the first transition in the policy automaton, which increments policy whenever
api[instr] holds readHistory. This approach will result in a secure program,
but will impose an unnecessary runtime cost: every time execute is called, this
check will be executed but the test will never succeed. Alternatively, the analysis
can learn the predicates {api[instr] = readHistory, instr = 0}, and proceed
with software model checking as described above. This will result in the more
efficient code shown in Figure 2(b).

3 Technical Description

Our analysis takes a program P and a policy, and produces a new program P ′
by inserting policy checks at certain locations in P needed to ensure that the
policy is not violated. In this section, we describe the policies that we support,
as well as the algorithm for inserting policy checks. The algorithm we present
has several important properties that make it suitable for practical use:

1. Upon completion, it has inserted a complete set of runtime checks necessary
to enforce the policy: any program that would originally violate the policy
is guaranteed not to violate the policy after rewriting. Runs that violate the
policy must encounter a check, and are halted before the violation occurs.

2. The policy checks inserted will not halt execution unless the current execu-
tion of the program will inevitably lead to a policy violation. In other words,
our approach does not produce any false positives.

3. The running time of the main algorithm is bounded in the size of the program
abstraction, which is controllable by the user. This approach yields a trade-
off between program running time and static-analysis complexity.

4. JAM always terminates in a finite number of iterations.

We begin with a description of our problem, and proceed to describe our
language-independent algorithm for solving it (Section 3.1). The algorithm relies
only on standard semantic operators, such as symbolic precondition and abstract
statespace search. In Section 3.2, we discuss our implementation of the algorithm
for JavaScript.

5

3.1 Runtime Checks for Safety Properties

Preliminaries. A run of a program P executes a sequence of statements, where
each statement transforms an element σ ∈ ΣP (or state) of P’s state space to
a new, not necessarily distinct, state σ′. For the purposes of this section, we do
not make any assumptions about the form of P’s statements or states. We use
a labeling function ι for each statement s in P, so that ι(s) denotes a unique
integer. Let a state trace be a sequence of states allowed by P, and let TP ⊆ Σ∗
be the complete set of possible state traces of P.

The policies used by our analysis are based on temporal safety properties.
A temporal safety property encodes a finite set of sequences of events that are
not allowed in any execution of the program. We represent these properties
using automata.1 The events that appear in our policies correspond to concrete
program states, and we do not allow non-trivial cycles among the transitions in
the automaton.

Definition 1 (Temporal safety automaton). A temporal safety automaton Φ is
an automaton Φ = (Q,Qs, δ, Qf ,L) where

– Q is a set of states (with Qs ⊆ Q and Qf ⊆ Q the initial and final states,
respectively). Intuitively, each q ∈ Q represents sets of events that have
occurred up to a certain point in the execution.

– δ ⊆ Q × L × Q is a deterministic transition relation that does not contain
any cycles except for self-loops.

– L is a logic whose sentences represent sets of program states, i.e., φ ∈ L
denotes a set JφK ⊆ Σ.

For a given (q, φ, q′) ∈ δ, the interpretation is that execution of a statement
from a program state σ where φ holds (i.e., σ ∈ JφK) causes the temporal safety
automaton to transition from q to q′. Self-loops are necessary to cover state-
ments that do not affect the policy state, but other types of cycles can prevent
our algorithm from terminating in a finite number of iterations. This leads to
the definition of property matching: a program P matches a temporal safety
automaton Φ, written P |= φ, if it can generate a state trace that matches a
word in the language of the automaton.

Our problem is based on the notion of property matching. Given a program P
and temporal safety automaton Φ, we want to derive a new program P ′ that: (i)
does not match Φ, (ii) does not contain any new state traces, and (iii) preserves
all of the state traces from P that do not match Φ.

Policy Checks from Proofs. Our algorithm is shown in Algorithm 1, and
corresponds to the workflow in Figure 1. SafetyWeave takes a program P, a
finite set of predicates E from L, a bound on the total number of predicates k,
and a temporal safety automaton policy Φ. We begin by using predicate set E
to build a sound abstraction of P [12] (this functionality is encapsulated by Abs
in Algorithm 1). Note that E must contain a certain set of predicates, namely

1 This formalism is equivalent to past-time LTL.

6

Algorithm 1 SafetyWeave(P, E, k, Φ)

Require: k ≥ 0
Require: φ ∈ E for all (q, φ, q′) ∈ δ

repeat
PE ← Abs(P, E) {Build abstraction}
π ← IsReachable(PE , Φ)
if π = NoPath then

return P
else if isValid(π) then
{Build runtime policy check; rewrite P to enforce it}
ΨπD ← BuildPolicy(P, π, Φ)
P ← Enforce(P, ΨπD)

else
{Refine the abstraction}
if |E| < k then
E ← E ∪ NewPreds(π)

else
{We have reached saturation of the abstraction set E}
{Build runtime policy check; rewrite P to enforce it}
ΨπD ← BuildPolicy(P, π, Φ)
P ← Enforce(P, ΨπD)

end if
end if

until forever

φi for each (qi, φi, q
′
i) ∈ δΦ. The abstraction is then searched for traces from

initial states to bad states (encapsulated by IsReachable), which correspond to
final states in Φ. If such a trace π is found, it is first checked to see whether it
corresponds to an actual path through P (performed by IsValid). If it does, or if
we cannot build an abstraction that does not contain π, then a runtime policy
check ΨπD is derived (encapsulated by BuildPolicy) and added to P (performed
by Enforce). ΨπD identifies a concrete instance of π.

If π does not correspond to an actual policy-violating path of P, and we
have fewer than k predicates, then the abstraction is refined by learning new
predicates (encapsulated by NewPreds). Otherwise, we add a runtime check to
prevent the concrete execution of π. This process continues until we have either
proved the absence of violating paths (via abstraction refinement), or added a
sufficient set of runtime checks to prevent the execution of possible violating
paths.

Termination. SafetyWeave is guaranteed to terminate in a finite number of
iterations, due to the following properties: (i) the algorithm will stop trying to
prove or disprove the validity of a single trace after a finite number of iterations,
due to the bounded abstraction size (|E| is limited by k). (ii) In the worst case,
it must insert a policy check for each transition in Φ before every statement in
P. Once P is thus modified, IsReachable will not be able to find a violating trace
π, and will terminate.

7

Abstracting P (Abs). On each iteration, an abstraction PE is built from
the predicate set E and the structure of P. PE has two components: a control
automaton GC and a data automaton GD. Each automaton is a nested word
automaton (NWA) [2] whose alphabet corresponds to the set of statements used
in P. GC overapproximates the set of all paths through P that are valid with
respect to P’s control structure (i.e., call/return nesting, looping, etc.), whereas
GD overapproximates the paths that are valid with respect to the data semantics
of P. In GC , states correspond to program locations, and each program location
corresponds to the site of a potential policy violation, so each state is accepting.
In the data automaton, states correspond to sets of program states, and transi-
tions are added according to the following rule: given two data-automaton states
q and q′ representing φ and φ′, respectively, the GD contains a transition from
q to q′ on statement s whenever φ ∧ Pre(s, φ′) is satisfiable, where Pre is the
symbolic precondition operator. We then have that L(GC) ∩ L(GD) represents
an overapproximation of the set of valid paths through P; this is returned by Abs.

Separating the abstraction into GC and GD allows us to provide a straight-
forward, well-defined interface for extending the algorithm to new languages. To
be able to instantiate Algorithm 1 to work on programs written in a different
language, a tool designer need only provide (i) a symbolic pre-image operator for
that language to build GD, and (ii) a generator of interprocedural control-flow
graphs (ICFGs) to build GC .

Proposition 1 L(GD) corresponds to a superset of the traces of P that might
match Φ.

Checking the Abstraction (IsReachable). Given an automaton-based ab-
straction PE = GC ∩ GD, IsReachable finds a path in PE that matches Φ.
This operation is encapsulated in the operator ∩pol specified in Definition 2. In
essence, Definition 2 creates the product of two automata—PE and Φ. However,
the product is slightly non-standard because PE has an alphabet of program
statements, whereas Φ has an alphabet of state predicates. Note that when we
refer to the states of PE in Definition 2, we abuse notation slightly by only us-
ing the program state component from GD, and dropping the program location
component from GC .

Definition 2 (Policy Automaton Intersection ∩pol). Given a temporal safety
automaton Φ = (QΦ, QΦs , δ

Φ, QΦf) and an NWA G = (QG, QGs , δ
G, QGf) whose

states correspond to sets of program states, G ∩pol Φ is the nested word au-
tomaton (Q,Qs, δ, Qf), where

– Q has one element for each element of QG ×QΦ.
– Qs = {(φ, qΦ) | qΦ ∈ QΦs , φ ∈ QGs }, i.e., an initial state is initial in both GD

and Φ.
– δ = 〈δin, δca, δre〉 are the transition relations with alphabet S. For all

(qΦ, φ′′, q′Φ) ∈ δΦ, and φ, φ′ ∈ QG such that φ∧Pre(s, φ′ ∧ φ′′) is satisfiable,
we define each transition relation using the transitions in δG = (δGin, δ

G
ca, δ

G
re):

• δin: when (φ, s, φ′) ∈ δGin, we update δin with: ((φ, qΦ), s, (φ′, q′Φ)).

8

• δca: when (φ, s, φ′) ∈ δGca, we update δca with: ((φ, qΦ), s, (φ′, q′Φ)).
• δre: when (φ, φ′′′, s, φ′) ∈ δGre, we update δre with: ((φ, qΦ), (q′′′Φ, φ′′′), s,

(φ′, q′Φ)) for all q′′′Φ ∈ QΦ.
– Qf = {(φ, qΦ) | qΦ ∈ QΦf , φ ∈ QGf }, i.e., a final state is final in Φ and G.

The words in L(PE ∩pol Φ) are the sequences of statements (traces) in P that
respect the sequencing and nesting specified in the program, and may lead to
an error state specified by Φ. As long as GC and GD overapproximate the valid
traces in P, we are assured that if an erroneous trace exists, then it will be in
L(PE ∩pol Φ). Additionally, if L(PE ∩pol Φ) = ∅, then we can conclude that P
cannot reach an error state.

Checking Path Validity (IsValid); Refining the Abstraction (NewPreds).
Given a trace π ∈ L(PE), we wish to determine whether π corresponds to a
possible path through P (i.e., whether it is valid). This problem is common to
all CEGAR-based software model checkers [3, 16], and typically involves pro-
ducing a formula that is valid iff π corresponds to a real path. We discuss an
implementation of IsValid for JavaScript in Section 3.2.

Because PE overapproximates the error traces in P, two conditions can hold
for a trace π. (i) The sequence of statements in π corresponds to a valid path
through P that leads to a violation according to Φ, or it cannot be determined
whether π is a valid trace or not. (ii) The sequence of statements in π can be
proven to be invalid. In the case (i), a runtime check is added to P to ensure that
the error state is not entered at runtime (see the following section for a discussion
of this scenario). In the case of (ii), PE is refined by adding predicates to GD
(encapsulated in the call to NewPreds). Standard techniques from software model
checking may be applied to implement NewPreds, such as interpolation [25] and
unsatisfiable-core computation [16]; we discuss our JavaScript-specific implemen-
tation in Section 3.2.

Deriving and Enforcing Dynamic Checks. The mechanism for deriving
dynamic checks that remove policy-violating behavior is based on the notion
of a policy-violating witness. A policy-violating witness is computed for each
counterexample trace produced by the model checker that is either known to
be valid, or cannot be validated using at most k predicates. A policy-violating
witness must identify at runtime the concrete instance of the trace π produced
by the model checker before it violates the policy Φ. To accomplish this, we
define a policy-violating witness as a sequence containing elements that relate
statements to assertions from Φ. The fact that a check is a sequence, as opposed
to a set, is used in the definition of Enforce.

Definition 3 (Policy-violating witness). A policy-violating witness ΨπΦ ∈ (N ×
L)∗ for a trace π and policy Φ is a sequence of pairs relating statement elements
in π to formulas in L. We say that π′ |= ΨπΦ (or π′ matches ΨπΦ) if there exists a
subsequence π′′ of π′ that meets the following conditions:

1. The statements in π′′ match those in ΨπΦ : |π′′| = |ΨπΦ |, and for all (i, φi) ∈ ΨπΦ ,
ι−1(i) is in π′′.

9

2. Immediately befre P executes a statement s corresponding to the ith entry
of ΨπΦ (i.e. (ι(s), φi)), the program state satisfies φi.

Suppose that Φ = (QΦ, QΦi , δ
Φ, QΦf) is a temporal safety automaton, and π is a

path that causes P to match Φ. Deriving ΨπΦ proceeds as follows: because π is
a word in L(PE = GD ∩ GC), there must exist some subsequence si1si2 . . . sim
of π that caused transitions between states in Φ that represent distinct states in
Φ. We use those statements, as well as the transition symbols [φi]i∈{i1,i2,...,im}
from Φ on the path induced by those statements, to build the jth element of ΨπΦ
by forming pairs (ij , φj), where the first component ranges over the indices of
si1si2 . . . sim .

More precisely, for all i ∈ i1, i2, . . . , im, there must exist (qi, φi, q
′
i) ∈ δΦ and

((φ, qi), s, (φ
′, q′i)) ∈ δPE∩polΦ such that φ′ ∧φi is satisfiable (recall the ∩pol from

Definition 2). Then:

ΨπΦ = [(ii1 , φ1), (ii2 , φ2), . . . , (iim , φm)]

Intuitively, ΨπΦ captures the statements in π responsible for causing Φ to take
transitions to its accepting state, and collects the associated state assertions to
form the policy-violating witness.

We now turn to Enforce, which takes a policy-violating witness ΨπΦ , and a
program P, and returns a new program P ′ such that P ′ does not contain a path
π such that π |= ΨπΦ . The functionality of Enforce is straightforward: for each ele-
ment (i, φ) in ΨπΦ , insert a guarded transition immediately before ι−1(i) to ensure
that φ is never true after executing ι−1(i). The predicate on the guarded transi-
tion is just the negation of the precondition of φ with respect to the statement
ι−1(i), and a check that the policy variable (inserted by Enforce) matches the
index of (i, φ) in Φ. When the guards are true, the statement either increments
the policy variable, or halts if the policy variable indicates that all conditions in
ΨπΦ have passed. A concrete example of this instrumentation in Figure 2.

Note that a given occurrence of statement s in P may be visited multiple
times during a run of P. Some subset of those visits may cause Φ to transition
to a new state. In this scenario, notice that our definition of Enforce will insert
multiple guarded transitions before s, each differing on the condition that they
check—namely, each transition (q, φ, q′) of Φ that was activated by s in the
policy-violating witness will have a distinct condition for Pre(s, φ) that either
increments the policy variable or halts the program. Additionally, the check on
the policy variable in each guard prevents the policy variable from being updated
more than once by a single check.

Definition 4 (Functionality of Enforce). Given a program P and a dynamic
check ΨπΦ = {(i1, φ1), . . . , (in, φn)}, Enforce produces a new program P ′. P ′ uses
a numeric variable, policy, which is initialized to zero. Enforce performs the
following steps for each element (i, φ) ∈ ΨπΦ :

1. Let φpre ≡ Pre(ι−1(i), φ) ∧ policy = j, where j is the index of (i, φ) in ΦπΦ.
2. Insert a new statement before ι−1(i) that either:

10

– Increments policy whenever φpre is true and policy < |ΨπΦ |.
– Halts the execution of P ′ whenever φpre is true and policy = |ΨπΦ |.

For Enforce to operate correctly, L must be closed under the computation of
pre-images, and pre-images of formulas in L must be convertible to code in the
target language. When Enforce is called on all counterexample paths returned
by Algorithm 1, the resulting program will not match Φ.

3.2 JavaScript Prototype

We implemented our algorithm for JavaScript, in a tool called JAM. There
are four components to Algorithm 1 that must be made specific to JavaScript:
the control (GC) and data (GD) automaton generators (Abs), the path validity
checker (IsValid), and the predicate learner (NewPreds). To build the control
automaton, we used Google’s Closure Compiler [17], which contains methods for
constructing an intraprocedural control flow graph (CFG) for each function in
a program, as well as dataflow analyses for determining some of the targets of
indirect calls. The only language-specific aspect of the data-automaton generator
is the computation of symbolic pre-state for a given statement in P. We use
Maffeis et al.’s JavaScript operational semantics [21], lifted to handle symbolic
term values, and implemented as a set of Prolog rules. Computing a satisfiability
check to build GD in this setting amounts to performing a query over this Prolog
program, with ground state initialized to reflect the initial state of the program.
To learn new predicates (i.e., to compute NewPreds), we apply a set of heuristics
to the failed counterexample trace that we have developed from our experience
of model checking real JavaScript programs. Our heuristics are based on the
statement that made the trace invalid; the predicate they build depends on
the type of that statement (e.g., if the statement is an if statement, the new
predicate will be equivalent to the statement’s guard expression).

Currently, the JAM implementation does not handle programs that contain
dynamically generated code—e.g., generated via language constructs, such as
eval() or Function(), or via DOM interfaces, such as document.write(). JAM
currently only handles a subset of the DOM API that most browsers support.
None of these are fundamental limitations, although supporting dynamically
generated code soundly could cause a large number of runtime checks to be
introduced. Dynamically generated code can be supported by inserting code
that updates the state of the policy variable (Definition 4) by simulating the
policy automaton before each dynamically generated statement, in the manner
of Erlingsson et al. [8]. Additional DOM API functions can be supported by
adding reduction rules to our semantics that capture the behavior of the needed
DOM API.

4 Experimental Evaluation

In this section, we summarize the performance and effectiveness of JAM in ap-
plying realistic security policies to ten JavaScript applications (plus alternative

11

versions of two of them that we seeded with policy-violating code). The results,
summarized in Table 1, demonstrate that the time devoted to static analysis dur-
ing the abstraction-refinement stage often leads to fewer runtime checks inserted
into the subject program. Additionally, because the CEGAR process evaluates
the validity of the potentially-violating execution traces found in the abstract
model, time spent during this stage also yields greater confidence that the in-
serted checks are legitimately needed to prevent policy violations during runtime.

The benchmark applications used to measure JAM’s performance are real
programs obtained from the World Wide Web. Consequently, the policies we
developed typically address cross-domain information-leakage issues and data-
privacy issues that are of concern in that domain. Our measurements indicate
that under such realistic circumstances, (i) JAM is able to identify true vulner-
abilities while (ii) reducing spurious dynamic checks, and (iii) is able to do so
with analysis times that are not prohibitive.

4.1 Results

Because the goal of the system is to derive a minimal set of runtime checks
needed to ensure adherence to a policy, we sought to measure the benefits of
refining the program model against the cost of performing such analysis. This
information was gathered by comparing the running time and result of JAM’s
analysis under varying levels of abstraction refinement, achieved by placing a
limit on the number of predicates learned during the CEGAR analysis before
proceeding to the saturation phase. The validation of counterexamples and learn-
ing of new predicates can be disabled altogether, which establishes the baseline
effectiveness of static analysis without abstraction refinement. Measurements of
JAM’s effectiveness and efficiency with different levels of abstraction refinement
are presented in Table 1.

One dimension on which to evaluate the behavior of JAM is the number
of necessary versus spurious checks that it inserts. All checks that are inserted
during the CEGAR phase are known to be necessary, because the abstract coun-
terexample that gave rise to each such check has been proven valid. In contrast,
spurious checks may be inserted in the saturation phase. We inspected the ap-
plications manually to determine the number of necessary checks Columns 5 and
6 of Table 2 classify the checks identified during saturation as valid or spurious
according to our manual classification. A lower number of spurious checks in-
serted under a particular configuration represents a more desirable outcome vis
a vis minimizing runtime overhead.

Reported performance statistics are the averages of multiple runs on a Vir-
tualBox VM running Ubuntu 10.04 with a single 32-bit virtual processor and
4GB memory. The host system is an 8-core HP Z600 workstation with 6GB
memory running Red Hat Enterprise Linux Server release 5.7. Execution time
and memory usage refer to the total CPU time and maximum resident set size
as reported by the GNU time utility version 1.7.

The results for flickr demonstrate the benefit of additional effort spent on
abstraction refinement. Analysis of the unrefined model identifies two potential

12

Predicates Checks
Benchmark Saturation Execution Memory
application Learned Total CEGAR Valid Spurious Total time (s) (KB)

flickr 2 3 1 0 0 1 138.67 60737
flickr 1 2 1 0 1 2 74.49 61472
flickr 0 1 0 1 1 2 24.23 63520

beacon 0 3 2 0 0 2 74.50 62215

jssec 1 2 0 0 0 0 14.04 46591
jssec 0 1 0 0 1 1 7.59 56023

Table 1. Performance of JAM on selected benchmarks. Learned denotes the number
of predicates learned through abstraction refinement, Total to the number of learned
predicates plus those in the initial state from the policy. CEGAR denotes the number
of checks placed before the abstraction size limit is reached, Saturation to those placed
afterwards.

violations of the policy, one of which is spurious and the other valid (according
to our manual classification of checks). When allowed to learn a single predicate,
JAM is able to avoid a spurious trace, and identify the valid counterexample. Al-
lowing JAM to learn two predicates causes it to prove the spurious counterexame
invalid, and rule out the un-needed runtime check.

The policy for the beacon benchmark is more involved—using multiple tran-
sition sequences to characterize the policy violation; it states “a cookie should
never be written after the DOM is inspected using document.getElementById

or document.getElementsByTagName.” This policy represents a cross-domain
information-leakage concern that JAM is able to identify and validate in the first
iteration of the analysis. The jssec application is intended to allow a website
user to open and close a section of the page being viewed. The policy for jssec
states that the only allowable change to a DOM element’s style properties is to
the display attribute; otherwise, the code could change the backgroundImage

attribute, thereby initiating an HTTP call to a remote server. JAM successfully
proves that the program is free of violations by learning the prototype of an
object whose member is the target of an assignment.

5 Related Work

In-Lined Reference Monitors. In-lined reference monitors were first discussed by
Erlingsson and Schneider [8, 28] who applied the idea to both Java and x86 byte-
code. Their prototype, SASI, supports security policies as finite-state machines
with transitions denoting sets of instructions (i.e., predicates over instructions)
that may be executed by the untrusted program. Note the distinction from the
policy automata used in our work, where transitions have predicates that refer
to the program state, not just restrictions on the next instruction to execute.
SASI works by inserting policy-automaton-simulation code before every instruc-
tion in the program, and then uses local simplification to remove as much of
the added code as possible. This amounts to applying the available local static
information at each location to evaluate the instruction predicate to the greatest

13

degree possible; the authors opted not to use global static analysis in the interest
of maintaining a small TCB. In this respect, the primary focus of our work is
quite different from Erlingsson and Schneider’s foundational work.

Since Erlingsson and Schneider’s work, this has been an active area of re-
search. Nachio [9] is an in-lined-monitor compiler for C, where policies are given
as state machines with fragments of imperative code that execute at each state.
The Java-MOP (Monitor-Oriented Programming) system [5] allows users to
choose from a set of temporal logics, domain-specific logics, and languages in
which to express policies. ConSpec [1] performs in-lined reference monitoring
based on policies similar to those used by Erlingsson and Schneider, and takes
the additional step of formally verifying the in-lined monitor. SPoX [14] built
on aspect-oriented programming to implement in-lined reference monitoring for
Java, using as policies automata whose edges are labeled with pointcut expres-
sions. They define a formal semantics for their policies, laying the groundwork
for future work on verified implementations of in-lined reference monitors; this
feature can also aid in developing analyses for optimizing the in-lined monitor
code, although the authors do not pursue this idea. Sridhar and Hamlen [29]
designed an IRM-compiler for JavaScript bytecodes, and showed how software
model checking can be applied to verify the compiled in-lined monitor code.
Hamlen et al. [15] designed Mobile, an extension to the .NET runtime that
supports IRMs with the advantage that well-typed Mobile code is guaranteed
to satisfy the policy it purports to enforce. The primary difference between these
previous efforts and our own is our focus on optimizing in-lined monitor code,
and our use of abstraction-refinement techniques to do this in a tuneable manner.

Clara [4] is a framework for incorporating static analysis into the reference-
monitor in-lining process. The setting in which Clara operates is similar to ours:
an untrusted program and a security policy, represented by a finite-state ma-
chine, are provided, and the goal is to produce a rewritten program that always
obeys the policy. It works on top of an aspect-weaving framework for Java [18]
by first weaving the policy (represented as an aspect) into the program, and
subsequently applying a modular set of static analyses to remove as many join
points as possible. In this regard, Clara is conceptually similar to our work;
it is conceivable that parts of our work could be combined as a path-sensitive,
semantics-driven static-analysis component inside of Clara’s modular framework.
Otherwise, our work differs from Clara in one important respect: the policies we
use provide direct means to refer to the dynamic state of the program, allow-
ing richer and more concise policies. Clara’s dependence on AspectJ limits the
building blocks of expressible policies to a pre-defined set of pointcuts.

JavaScript Policy Enforcement. Several recent projects attempt to identify sub-
sets of JavaScript that are amenable to static analysis. Two early examples are
ADSafe [7] and FBJS [10], which facilitate “mashups” by removing language
elements that make it difficult to isolate the effects of distinct JavaScript pro-
grams executing from the same domain. Maffeis et al. explored a similar ap-
proach [22, 23], but took the additional step of formally verifying their subsets
against small-step operational semantics of the ECMAScript specification. More

14

recently, Google has released Caja [11], uses the object-capability model to pro-
vide isolation. Our work differs from efforts to identify secure JavaScript subsets
for isolation primarily in the class of policies we are able to support. Rather
than sandbox-based object-capability policies, JAM can verify arbitrary safety
properties, including flow-sensitive temporal-safety properties.

Guarnieri and Livshits presented Gatekeeper, a “mostly static” JavaScript
analysis based on points-to information that is calculated using Datalog inference
rules [13]. Unlike JAM, Gatekeeper is not capable of checking flow-insensitive
policies, and it is not clear how it can be made flow-sensitive without greatly
increasing cost. Kudzu [27] is a JavaScript bug-finding system that uses forward-
symbolic execution. This functionality stands in contrast to JAM, as dangerous
program paths are reported to the user at analysis time, whereas in JAM they
are rewritten to halt at runtime before the dangerous (policy-violating) pay-
load is executed: JAM always inserts sufficient instrumentation to soundly and
completely enforce a given policy.

Yu et al. proposed a safe browsing framework based on syntax-directed
rewriting of the JavaScript source according to an edit automaton [30]. Their
work is formalized in terms of a JavaScript subset they call CoreScript, which
excludes the same difficult language elements as most other static JavaScript
analyses. While our current implementation does not support the full language
either, this is not a limitation of our approach. The dynamic compoment of our
policy-enforcement method is capable of monitoring the execution of these lan-
guage elements. The syntax-directed nature of their rewriting framework effec-
tively restricts the class of policies it can enforce. More recently, Meyerovich and
Livshits presented ConScript [26], which is an in-browser mechanism for enforc-
ing fine-grained security policies for JavaScript applications. One of the primary
contributions of ConScript is a type system for checking policy-instrumentation
code against several different types of attack on the integrity of the policy. Es-
sentially, ConScript is a system for specifying and implementing advice [19] on
JavaScript method invocations. Thus, ConScript is complementary in function
to JAM: while JAM takes a high-level logical formula that represents a secu-
rity policy, and finds a set of program locations to place policy instrumentation,
ConScript is capable of soundly and efficiently enforcing that instrumentation
on the client side, during execution.

References

1. I. Aktug and K. Naliuka. Conspec – a formal language for policy specification.
ENTCS, 197, February 2008.

2. R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3),
2009.

3. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL, 2002.

4. E. Bodden, P. Lam, and L. Hendren. Clara: a framework for statically evaluating
finite-state runtime monitors. In RV, 2010.

15

5. F. Chen and G. Roşu. Java-MOP: A monitoring oriented programming environ-
ment for java. In TACAS, 2005.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. JACM, 50(5), 2003.

7. D. Crockford. Adsafe: Making JavaScript safe for advertising.
http://www.adsafe.org.

8. U. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retro-
spective. In NSPW, 2000.

9. D. Evans and A. Twyman. Flexible policy-directed code safety. SP, 1999.
10. Facebook, Inc. FBJS. http://wiki.developers.facebook.com/index.php/FBJS.
11. Google inc. The Caja project. http://code.google.com/p/google-caja/.
12. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,

1997.
13. S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of security

and reliability policies for JavaScript code. In Security, Aug. 2009.
14. K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference monitors. In

PLAS, 2008.
15. K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined reference

monitoring on .NET. In PLAS, 2006.
16. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

POPL, 2002.
17. G. Inc. Closure Compiler. http://code.google.com/closure/compiler/.
18. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. In ECOOP, 2001.
19. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc Loingtier,

and J. Irwin. Aspect-oriented programming. In ECOOP, 1997.
20. S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. Moped: A model checker for

pushdown systems. http://www.fmi.uni-stuttgart.de/szs/tools/moped/.
21. S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript.

In APLAS, 2008.
22. S. Maffeis and A. Taly. Language-based isolation of untrusted Javascript. In CSF,

2009.
23. S. Maffeis and J. M. A. Taly. Language-based isolation of untrusted JavaScript.

In SP, 2010.
24. L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. Mitchell. A Layered

Architecture for Detecting Malicious Behaviors. In RAID, 2008.
25. K. L. McMillan. Applications of Craig interpolants in model checking. In TACAS,

2005.
26. L. Meyerovich and B. Livshits. Conscript: Specifying and enforcing fine-grained

security policies for javascript in the browser. In SP, 2010.
27. P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and D. Song. A symbolic

execution framework for JavaScript. In SP, 2010.
28. F. B. Schneider. Enforceable security policies. TISSEC, 3, February 2000.
29. M. Sridhar and K. W. Hamlen. Model-checking in-lined reference monitors. In

VMCAI, 2010.
30. D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for

browser security. In POPL, 2007.

16

