
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 26:
Counterexamples & Abstraction Refinement

Matt Fredrikson
mfredrik@cs.cmu.edu

December 6, 2016

Matt Fredrikson Symbolic Model Checking 1 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M

▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂

▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Abstraction (Review)

Key
Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ϕ, we want M̂ such that
M̂ |= ϕ ⇒ M |= ϕ

We’ll see how to build a conservative
overapproximation of M
▶ Every trace of M is also a trace of M̂
▶ Some traces in M̂ may not be in M

This preserves safety properties: if M̂ verifies, so will M

But it might introduce spurious
counterexamples

Matt Fredrikson Symbolic Model Checking 2 / 31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
▶ Predicates relevant to the property, control flow
▶ Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {ϕ1, . . . , ϕn}

Define abstraction
function α : Env 7→ {0, 1}n:
α((ℓ, σ)) = (ℓ, (ϕ1(σ), . . . , ϕn(σ)))

Intuitively: α ranges over conjunctions of ϕi,¬ϕi

The states in our abstraction will be: S = Loc × {0, 1}m

Matt Fredrikson Symbolic Model Checking 3 / 31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
▶ Predicates relevant to the property, control flow
▶ Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {ϕ1, . . . , ϕn}

Define abstraction
function α : Env 7→ {0, 1}n:
α((ℓ, σ)) = (ℓ, (ϕ1(σ), . . . , ϕn(σ)))

Intuitively: α ranges over conjunctions of ϕi,¬ϕi

The states in our abstraction will be: S = Loc × {0, 1}m

Matt Fredrikson Symbolic Model Checking 3 / 31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
▶ Predicates relevant to the property, control flow
▶ Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {ϕ1, . . . , ϕn}

Define abstraction
function α : Env 7→ {0, 1}n:
α((ℓ, σ)) = (ℓ, (ϕ1(σ), . . . , ϕn(σ)))

Intuitively: α ranges over conjunctions of ϕi,¬ϕi

The states in our abstraction will be: S = Loc × {0, 1}m

Matt Fredrikson Symbolic Model Checking 3 / 31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
▶ Predicates relevant to the property, control flow
▶ Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {ϕ1, . . . , ϕn}

Define abstraction
function α : Env 7→ {0, 1}n:
α((ℓ, σ)) = (ℓ, (ϕ1(σ), . . . , ϕn(σ)))

Intuitively: α ranges over conjunctions of ϕi,¬ϕi

The states in our abstraction will be: S = Loc × {0, 1}m

Matt Fredrikson Symbolic Model Checking 3 / 31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
▶ Predicates relevant to the property, control flow
▶ Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {ϕ1, . . . , ϕn}

Define abstraction
function α : Env 7→ {0, 1}n:
α((ℓ, σ)) = (ℓ, (ϕ1(σ), . . . , ϕn(σ)))

Intuitively: α ranges over conjunctions of ϕi,¬ϕi

The states in our abstraction will be: S = Loc × {0, 1}m

Matt Fredrikson Symbolic Model Checking 3 / 31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:
M̂ |= ϕ ⇒ M |= ϕ

We’ll define an existential
abstraction:
(ŝ1, ŝ2) ∈ R̂ ⇔ ∃s1, s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2

ŝ ∈ Î ⇔ ∃s.s ∈ I ∧ h(s) = ŝ

A transition is in the abstraction M̂ if and only if:
1. There exist corresponding states (s1, s2) in M ,
2. where s1, s2 are the endpoints of a transition in M

Why is this conservative?

Matt Fredrikson Symbolic Model Checking 4 / 31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:
M̂ |= ϕ ⇒ M |= ϕ

We’ll define an existential
abstraction:
(ŝ1, ŝ2) ∈ R̂ ⇔ ∃s1, s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2

ŝ ∈ Î ⇔ ∃s.s ∈ I ∧ h(s) = ŝ

A transition is in the abstraction M̂ if and only if:
1. There exist corresponding states (s1, s2) in M ,
2. where s1, s2 are the endpoints of a transition in M

Why is this conservative?

Matt Fredrikson Symbolic Model Checking 4 / 31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:
M̂ |= ϕ ⇒ M |= ϕ

We’ll define an existential
abstraction:
(ŝ1, ŝ2) ∈ R̂ ⇔ ∃s1, s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2

ŝ ∈ Î ⇔ ∃s.s ∈ I ∧ h(s) = ŝ

A transition is in the abstraction M̂ if and only if:
1. There exist corresponding states (s1, s2) in M ,
2. where s1, s2 are the endpoints of a transition in M

Why is this conservative?

Matt Fredrikson Symbolic Model Checking 4 / 31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:
M̂ |= ϕ ⇒ M |= ϕ

We’ll define an existential
abstraction:
(ŝ1, ŝ2) ∈ R̂ ⇔ ∃s1, s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2

ŝ ∈ Î ⇔ ∃s.s ∈ I ∧ h(s) = ŝ

A transition is in the abstraction M̂ if and only if:
1. There exist corresponding states (s1, s2) in M ,
2. where s1, s2 are the endpoints of a transition in M

Why is this conservative?

Matt Fredrikson Symbolic Model Checking 4 / 31

Intuition: Existential Abstraction

Image Credit: Tom Henzinger, Ranjit Jhala, Rupak Majumdar
Matt Fredrikson Symbolic Model Checking 5 / 31

Intuition: Existential Abstraction

Image Credit: Tom Henzinger, Ranjit Jhala, Rupak Majumdar
Matt Fredrikson Symbolic Model Checking 5 / 31

Intuition: Existential Abstraction

Image Credit: Tom Henzinger, Ranjit Jhala, Rupak Majumdar
Matt Fredrikson Symbolic Model Checking 5 / 31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(ℓ1, b, ℓ2) ∈ T ⟨b, σ1⟩ ⇓b true ⟨C(ℓ1), σ1⟩ ⇓ σ2

([ℓ1, σ1], [ℓ2, σ2]) ∈ R

We don’t have concrete states σ to work with anymore

Just predicates. Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6 / 31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(ℓ1, b, ℓ2) ∈ T ⟨b, σ1⟩ ⇓b true ⟨C(ℓ1), σ1⟩ ⇓ σ2

([ℓ1, σ1], [ℓ2, σ2]) ∈ R

We don’t have concrete states σ to work with anymore

Just predicates. Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6 / 31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(ℓ1, b, ℓ2) ∈ T ⟨b, σ1⟩ ⇓b true ⟨C(ℓ1), σ1⟩ ⇓ σ2

([ℓ1, σ1], [ℓ2, σ2]) ∈ R

We don’t have concrete states σ to work with anymore

Just predicates. Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6 / 31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(ℓ1, b, ℓ2) ∈ T ⟨b, σ1⟩ ⇓b true ⟨C(ℓ1), σ1⟩ ⇓ σ2

([ℓ1, σ1], [ℓ2, σ2]) ∈ R

We don’t have concrete states σ to work with anymore

Just predicates.

Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6 / 31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(ℓ1, b, ℓ2) ∈ T ⟨b, σ1⟩ ⇓b true ⟨C(ℓ1), σ1⟩ ⇓ σ2

([ℓ1, σ1], [ℓ2, σ2]) ∈ R

We don’t have concrete states σ to work with anymore

Just predicates. Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6 / 31

Strengthening Predicates (Review)

Given E = {ϕ1, . . . , ϕn}, let Pred(ϕ,E):
▶ The weakest DNF over E,
▶ that is at least as strong as ϕ,
▶ where each clause has n literals

Notice: Pred(ϕ,E) ⇒ ϕ

Compute this by querying SMT solver
▶ What’s the complexity of this?
▶ O(2n)

▶ Need to query each:
p1 ∧ · · · ∧ pn ⇒ ϕ

where pi is ϕi or ¬ϕi

Env
ϕ

Pred(ϕ,E)

Matt Fredrikson Symbolic Model Checking 7 / 31

Computing Transitions via Strengthening

For assignments x := e:

1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ

5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(x := e, ϕ), wp(x := e,¬ϕ)
2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If state implies Pred(wp(x := e, ϕ), E), draw an edge to ϕ

4. If state implies Pred(¬wp(x := e, ϕ), E), draw an edge to ¬ϕ
5. If neither implication holds, draw an edge to both

ℓ0 : x := x + 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 8 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:

1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it

4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) =

false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) =

false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Computing Transitions via Strengthening

For assumptions assume ϕ:
1. Weaken ϕ: ¬Pred(¬ϕ,E)

2. Strengthen them: Pred(wp(x := e, ϕ), E), Pred(¬wp(x := e, ϕ), E)

3. If next state implies ¬Pred(¬ϕ,E), draw an edge to it
4. If next state implies ¬Pred(ϕ,E), draw an edge to it

ℓ0 : assume x = 1
ℓ1 : skip

E = {x = y︸ ︷︷ ︸
p0

}

Pred(¬(x = 1), {x = y}) = false

Pred(x = 1, {x = y}) = false

p0 ¬p0

p0 ¬p0

Matt Fredrikson Symbolic Model Checking 9 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Suppose we check:
G (¬ℓ0 → 0 ≤ i)

Using:
E = {0 ≤ i︸ ︷︷ ︸

p0

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 10 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No.

What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)

(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)

(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Example: Predicate Abstraction

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Does the property hold?
G (¬ℓ0 → 0 ≤ i)

No. What’s a counterexample?

(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 11 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}

ℓ0 : i := 1;

ℓ1 : assume(0 ≤ x < 1)
{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}

ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?

1. {0 ≤ i} i := 1 {0 ≤ i}

Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?
1. {0 ≤ i} i := 1 {0 ≤ i}

Yes

2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}
No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?
1. {0 ≤ i} i := 1 {0 ≤ i} Yes

2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?
1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?
1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Spurious Counterexamples

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

Consider the KS path:
(ℓ0, p0)
(ℓ1, p0)
(ℓ2,¬p0)

(recall that p0 ⇔ 0 ≤ i)

{0 ≤ i}
ℓ0 : i := 1;
ℓ1 : assume(0 ≤ x < 1)

{i < 0}

Is this a valid Hoare triple?
1. {0 ≤ i} i := 1 {0 ≤ i} Yes
2. {0 ≤ i} assume(0 ≤ x < 1) {0 > i}

No

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates

▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample

▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)

▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking

1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples

3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand

4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
▶ At the very least, eliminate this counterexample
▶ Hopefully, many more brought about by same “cause”

Called counterexample-guided
abstraction
refinement (CEGAR)
▶ E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction
2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand
4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?
E = {0 ≤ i︸ ︷︷ ︸

p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?
E = {0 ≤ i︸ ︷︷ ︸

p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?
E = {0 ≤ i︸ ︷︷ ︸

p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?
E = {0 ≤ i︸ ︷︷ ︸

p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Cause and Refinement

ℓ0 : i := 1;
ℓ1 : while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

What caused this?
(ℓ0, p0) (ℓ1, p0) (ℓ2,¬p0)

We had ¬Pred(0 ≤ x < 1, {p0}) = true

...and ¬p0 ⇒ true

How do we fix it?
E = {0 ≤ i︸ ︷︷ ︸

p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

ℓ0
p0

ℓ0
¬p0

ℓ1
p0

ℓ1
p0

ℓ1
¬p0

ℓ2
p0

ℓ2
¬p0

ℓ2
¬p0

ℓ3
p0

ℓ3
¬p0

Matt Fredrikson Symbolic Model Checking 14 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is there a
counterexample?

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 15 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is this valid?
{0 ≤ i ∧ 0 ≤ x < 1}
i := 1;
assume(0 ≤ x < 1)
i := i− 1;
{i < 0 ∧ 0 ≤ x < 1}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 16 / 31

Example: Abstraction Refinement

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Is this valid?
{0 ≤ i ∧ 0 ≤ x < 1}
i := 1;
assume(0 ≤ x < 1)
i := i− 1;
{i < 0 ∧ 0 ≤ x < 1}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

Matt Fredrikson Symbolic Model Checking 16 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!

▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...

▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general

▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set E

This is turning into a lot of work!
▶ Now we have 8 initial states...
▶ #loc× 2|E| states in general
▶ There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking 17 / 31

Example: Lazy Abstraction

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Don’t need to
update left side with

p2 ⇔ i = 1

Now
there’s
no
counterexample

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

ℓ3
p0, p1, p2

ℓe
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 18 / 31

Example: Lazy Abstraction

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Don’t need to
update left side with

p2 ⇔ i = 1

Now
there’s
no
counterexample

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

ℓ3
p0, p1, p2

ℓe
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 18 / 31

Example: Lazy Abstraction

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Don’t need to
update left side with

p2 ⇔ i = 1

Now
there’s
no
counterexample

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

ℓ3
p0, p1, p2

ℓe
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 18 / 31

Example: Lazy Abstraction

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Don’t need to
update left side with

p2 ⇔ i = 1

Now
there’s
no
counterexample

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

ℓ3
p0, p1, p2

ℓe
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 18 / 31

Example: Lazy Abstraction

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

}

Don’t need to
update left side with

p2 ⇔ i = 1

Now
there’s
no
counterexample

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓ2
p0, p1

ℓ3
p0, p1

ℓ3
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

ℓ3
p0, p1, p2

ℓe
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 18 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state
2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state
2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree

1. Pick an abstract initial state
2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state
2. Add children by computing abstract transitions

3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state
2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state
2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19 / 31

Proofs from Abstractions

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 20 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 20 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 20 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1}
ℓ3 : x := x + 1;

}
ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 20 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1)}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

ℓ0
p0, p1

ℓ0
p0, p1

ℓ1
p0, p1

ℓe
p0, p1

ℓ0
p0, p1, p2

ℓ0
p0, p1, p2

ℓ1
p0, p1, p2

ℓ2
p0, p1, p2

ℓ3
p0, p1, p2

Matt Fredrikson Symbolic Model Checking 20 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)

⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)

⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)

⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?

(0 ≤ i ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)

⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)

⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)
⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Proofs from Abstractions

{true}
ℓ0 :i := 1;

{0 ≤ i ∧ i = 1}
ℓ1 :while(0 ≤ x < 1) {

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1}
ℓ2 : i := i− 1;

{0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1}
ℓ3 : x := x + 1;

{0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1}
}

ℓe :skip

E = {0 ≤ i︸ ︷︷ ︸
p0

, 0 ≤ x < 1︸ ︷︷ ︸
p1

, i = 1︸︷︷︸
p2

}

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 ≤ i}

What is our loop invariant?
(0 ≤ i ∧ i = 1)

∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i = 1)
∨ (0 ≤ i ∧ 0 ≤ x < 1 ∧ i ̸= 1)
∨ (0 ≤ i ∧ ¬(0 ≤ x < 1) ∧ i ̸= 1)
⇔
0 ≤ i

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?

▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?

▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …

▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Limitations

Suppose we wanted to verify:

{true}
ℓ0 :i := 10;
ℓ1 :while(0 ≤ x < 10) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :skip

{0 ≤ i}

How would we do it by hand?
▶ Find the invariant 0 ≤ i− x

How would CEGAR do it?
▶ Find i = 10, x = 9

▶ Find i = 10, x = 8

▶ …
▶ Find i = 9

▶ …

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver

▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath

▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious

▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,

▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path

▶ If execution completes without error, path is valid
counterexample

▶ Otherwise, take an observation that explains why the path won’t
execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample

▶ Otherwise, take an observation that explains why the path won’t
execute

Matt Fredrikson Symbolic Model Checking 23 / 31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Key
tool: SMT solver
▶ Given counterexample (ℓ1, ϕ1), . . . , (ℓn, ϕn) generate ϕpath
▶ ϕpath is sat iff (ℓ1, ϕ1), . . . , (ℓn, ϕn) not spurious
▶ If ϕpath unsat, extract predicates from “witness”

Intuitively,
▶ ϕpath simulates executing the counterexample path
▶ If execution completes without error, path is valid

counterexample
▶ Otherwise, take an observation that explains why the path won’t

execute

Matt Fredrikson Symbolic Model Checking 23 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:

1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0

2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript

3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

SSA Form

To build ϕpath, we’ll put path in static
single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form
3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions

2. Convert the path into SSA form
3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions

2. Convert the path into SSA form
3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form
3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form
3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form
3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Building Path Formulas

We’re given a path (ℓ1, ϕ1), . . . , (ℓn, ϕn)

1. Build an annotated path by including ϕ1, . . . , ϕn as assertions
2. Convert the path into SSA form
3. Replace assignments with assume over equality
4. Compute weakest precondition of path wrt. true

assert 0 ≤ i
i := 1
assert 0 ≤ i
assume 0 ≤ x < 1
assert ¬(0 ≤ i)
i := i− 1

assert 0 ≤ i0
i1 := 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
i0 := i1 − 1

assert 0 ≤ i0
assume i1 = 1
assert 0 ≤ i1
assume 0 ≤ x0 < 1
assert ¬(0 ≤ i1)
assume i2 = i1 − 1

wp(. . . , true) = 0 ≤ i0∧i1 = 1∧0 ≤ i1∧0 ≤ x0 < 1∧¬(0 ≤ i1)∧i2 = i1−1

Matt Fredrikson Symbolic Model Checking 25 / 31

Path Validity

We have a counterexample, path formula pair

(i := 1, true)
(assume 0 ≤ x < 1, 0 ≤ i)
(i := i− 1,¬(0 ≤ i))

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson Symbolic Model Checking 26 / 31

Path Validity

We have a counterexample, path formula pair

(i := 1, true)
(assume 0 ≤ x < 1, 0 ≤ i)
(i := i− 1,¬(0 ≤ i))

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson Symbolic Model Checking 26 / 31

Path Validity

We have a counterexample, path formula pair

(i := 1, true)
(assume 0 ≤ x < 1, 0 ≤ i)
(i := i− 1,¬(0 ≤ i))

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson Symbolic Model Checking 26 / 31

Path Validity

We have a counterexample, path formula pair

(i := 1, true)
(assume 0 ≤ x < 1, 0 ≤ i)
(i := i− 1,¬(0 ≤ i))

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson Symbolic Model Checking 26 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:

▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable

▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:

1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:

1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable
core C∗ is a subset of C:
▶ C∗ is still unsatisfiable
▶ Dropping any element of C∗ makes it satisfiable

To
generate: For each literal l in C:
1. Drop l from C to build C ′

2. If C ′ is still unsatisfiable, then let C := C ′

3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every l, l′ ∈ C where l ̸= l′

2. If l ⇒ l′, then remove l′

Matt Fredrikson Symbolic Model Checking 27 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Example: Learning New Predicates

Initial formula:

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ i1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

1: Remove 0 ≤ i1 (i1 = 1 ⇒ 0 ≤ i1)

0 ≤ i0 ∧
i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

2: Remove 0 ≤ i0

i1 = 1 ∧
0 ≤ x0 < 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

3: Remove 0 ≤ x0 < 1

i1 = 1 ∧
¬(0 ≤ i1) ∧
i2 = i1 − 1

4: Remove i2 = i1 − 1

i1 = 1 ∧
¬(0 ≤ i1) ∧

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths

1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,

2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)

4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:

▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ

▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program

▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ϕ,
2. Enumerate a sequence of statements ℓ1, . . . , ℓn

3. Create the “counterexample” (ℓ1, true), . . . , (ℓn, true), (skip,¬ϕ)
4. Generate the path formula ϕpath

5. Check ϕpath for satisfiability

The results tell us everything:
▶ If unsat, there’s no way to execute ℓ1, . . . , ℓn satisfying ¬ϕ
▶ If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
▶ When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

After SSA, assumption encoding:

assume i1 = 1;
assume 0 ≤ x0 < 2;
assume i2 = i1 − 1;
assume x1 = x0 + 1;
assume 0 ≤ x1 < 2;
assume i3 = i2 − 1;
assume x2 = x1 + 1;
assume ¬(0 ≤ x2 < 2);
assert 0 ≤ i3;

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Path formula:
i1 = 1 ∧
0 ≤ x0 < 2 ∧
i2 = i1 − 1 ∧
x1 = x0 + 1 ∧
0 ≤ x1 < 2 ∧
i3 = i2 − 1 ∧
x2 = x1 + 1 ∧
¬(0 ≤ x2 < 2) ∧
0 ≤ i3

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Path formula:
i1 = 1 ∧
0 ≤ x0 < 2 ∧
i2 = i1 − 1 ∧
x1 = x0 + 1 ∧
0 ≤ x1 < 2 ∧
i3 = i2 − 1 ∧
x2 = x1 + 1 ∧
¬(0 ≤ x2 < 2) ∧
0 ≤ i3

Is this satisfiable?

i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Path formula:
i1 = 1 ∧
0 ≤ x0 < 2 ∧
i2 = i1 − 1 ∧
x1 = x0 + 1 ∧
0 ≤ x1 < 2 ∧
i3 = i2 − 1 ∧
x2 = x1 + 1 ∧
¬(0 ≤ x2 < 2) ∧
0 ≤ i3

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Bounded Model Checking: Example

ℓ0 :i := 1;
ℓ1 :while(0 ≤ x < 2) {
ℓ2 : i := i− 1;
ℓ3 : x := x + 1;

}
ℓe :assert(0 ≤ i)

We suspect the path:

i := 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(0 ≤ x < 2)
i := i− 1;
x := x + 1;
assume(¬(0 ≤ x < 2))
assert(0 ≤ i)

Path formula:
i1 = 1 ∧
0 ≤ x0 < 2 ∧
i2 = i1 − 1 ∧
x1 = x0 + 1 ∧
0 ≤ x1 < 2 ∧
i3 = i2 − 1 ∧
x2 = x1 + 1 ∧
¬(0 ≤ x2 < 2) ∧
0 ≤ i3

Is this satisfiable?
i1 = 1, x0 = 0, i2 = 0, x1 = 1, i3 = −1, x2 = 2

We can use x = 0 as an initial test case

Matt Fredrikson Symbolic Model Checking 30 / 31

Next Lecture

Go over homeworks

Review for the final

Last homework due on Friday evening, 11:59
▶ No late days!
▶ University policy...

Matt Fredrikson Symbolic Model Checking 31 / 31

Next Lecture

Go over homeworks

Review for the final

Last homework due on Friday evening, 11:59
▶ No late days!
▶ University policy...

Matt Fredrikson Symbolic Model Checking 31 / 31

Next Lecture

Go over homeworks

Review for the final

Last homework due on Friday evening, 11:59
▶ No late days!
▶ University policy...

Matt Fredrikson Symbolic Model Checking 31 / 31

