Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 26:
Counterexamples & Abstraction Refinement

Matt Fredrikson
mfredrik@cs.cmu.edu

December 6, 2016

Matt Fredrikson

Symbolic Model Checking

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/
» Every trace of M is also a trace of M

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/
» Every trace of M is also a trace of M

» Some traces in M may not be in M

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/
» Every trace of M is also a trace of M

» Some traces in M may not be in M

This preserves safety properties: if M verifies, so will M

Matt Fredrikson Symbolic Model Checking 2/31

Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/
» Every trace of M is also a trace of M

» Some traces in M may not be in M

This preserves safety properties: if M verifies, so will M

But it might introduce spurious counterexamples

Matt Fredrikson Symbolic Model Checking 2/31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Matt Fredrikson Symbolic Model Checking 3/31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values

Matt Fredrikson Symbolic Model Checking 3/31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {¢1,..., ¢}

Define abstraction function « : Env — {0,1}™:

a((l,0)) = (£, (¢1(0), ..., dn(0)))

Matt Fredrikson Symbolic Model Checking 3/31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {¢1,..., ¢}

Define abstraction function « : Env — {0,1}™:

a((l,0)) = (£, (¢1(0), ..., dn(0)))

Intuitively: « ranges over conjunctions of ¢;, =¢;

Matt Fredrikson Symbolic Model Checking 3/31

Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values
We’re given: set of predicates E = {¢1,..., ¢}

Define abstraction function « : Env — {0,1}™:

a((,0)) = (4, (¢1(0), -, dn(0)))
Intuitively: « ranges over conjunctions of ¢;, =¢;

The states in our abstraction will be: S = Loc x {0,1}™

Matt Fredrikson Symbolic Model Checking 3/31

Existential Abstraction (Review)

Matt Fredrikson Symbolic Model Checking 4/31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:

ME¢=ME¢

Matt Fredrikson Symbolic Model Checking 4/31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:

ME¢=ME¢

We’ll define an existential abstraction:
(§1, §2) S R =4 381, SQ.R(Sl, 32) N h(Sl) =351 A h(32) = §9
sele FsseclINh(s)=35

A transition is in the abstraction A1 if and only if:
1. There exist corresponding states (s1, s2) in M,
2. where s1, so are the endpoints of a transition in M

Matt Fredrikson Symbolic Model Checking 4/31

Existential Abstraction (Review)

Important: We want an over-approximation that gives us:

ME¢=ME¢

We’ll define an existential abstraction:
(§1, §2) S R =4 351, SQ.R(Sl, 32) N h(Sl) =351 A h(32) = §9
sele FsseclINh(s)=35

A transition is in the abstraction A1 if and only if:
1. There exist corresponding states (s1, s2) in M,
2. where s1, so are the endpoints of a transition in M

Why is this conservative?

Matt Fredrikson Symbolic Model Checking 4/31

Intuition: Existential Abstraction

Image Credit: Tom Henzinger, Ranijit Jhala, Rupak Majumdar

Intuition: Existential Abstraction

5
X
/.
il

.‘\.\
¢— 0

L]

é

L J

@

L J
—"

Lo
AT N
50 0 1
B E

Image Credit: Tom Henzinger, Ranjit Jhala, Rupak Majumdar

Matt Fredrikson Symbolic Model Checking 5/31

Intuition: Existential Abstraction

—— | —

g

Image Credit: Tom Henzinger, Ranijit Jhala, Rupak Majumdar

Matt Fredrikson

Symbolic Model Checking

Computing Program Approximations

The key issue: how do we compute transitions

Matt Fredrikson Symbolic Model Checking 6/31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(fl,b,gg) el <b70'1> ‘U’b true <C(£1),O’1>~UO’2
([1,01], 162, 00]) € R

Matt Fredrikson Symbolic Model Checking 6/31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(gl,b,gg) el <b70'1> ‘U’b true <C(£1),O’1>~UO’2
([1,01], 162, 00]) € R

We don’t have concrete states o to work with anymore

Matt Fredrikson Symbolic Model Checking 6/31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(gl,b,gg) el <b70'1> ‘U’b true <C(£1),O’1>~UO’2
([1,01], 162, 00]) € R

We don’t have concrete states o to work with anymore

Just predicates.

Matt Fredrikson Symbolic Model Checking 6/31

Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(gl,b,gg) el <b70'1> ‘U’b true <C(£1),O’1>~UO’2
([1,01], 162, 00]) € R

We don’t have concrete states o to work with anymore

Just predicates. Idea: Use predicate transformers

Matt Fredrikson Symbolic Model Checking 6/31

Strengthening Predicates (Review)

Given E = {¢1,...,¢,}, let Pred(¢, E):
» The weakest DNF over F,
» that is at least as strong as ¢,

» where each clause has n literals Env

Notice: Pred(¢, E) = ¢

Compute this by querying SMT solver Pred(¢, E)

» What’s the complexity of this?
» O(2")
» Need to query each:
PLA - App =@
where p; is ¢; or —¢;

Matt Fredrikson Symbolic Model Checking 7/31

Computing Transitions via Strengthening

For assignments x := e:

Matt Fredrikson Symbolic Model Checking 8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)

Matt Fredrikson Symbolic Model Checking 8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)
2. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z := ¢, ¢), E)

Matt Fredrikson Symbolic Model Checking 8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)
2. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z := ¢, ¢), E)
3. If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢

Matt Fredrikson Symbolic Model Checking 8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)
2. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z := ¢, ¢), E)
3. If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢
4. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢

Matt Fredrikson Symbolic Model Checking

8/31

Computing Transitions via Strengthening

For assignments x := e:

Compute wp(z := e, @), wp(z := e, =¢)

Strengthen them: Pred(wp(z := e, ¢), E), Pred(—wp(x := e, ¢), E)
If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢

If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢

If neither implication holds, draw an edge to both

1.

ISA ol A

Matt Fredrikson

Symbolic Model Checking

8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)
. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z :=¢, ¢), E)
. If state implies Pred(wp(z := e, ¢),), draw an edge to ¢
. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢
. If neither implication holds, draw an edge to both

o b~ WD

Matt Fredrikson Symbolic Model Checking 8/31

Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e,)
. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z :=¢, ¢), E)
. If state implies Pred(wp(z := e, ¢),), draw an edge to ¢
. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢
. If neither implication holds, draw an edge to both

by: z:=x+1 l l
¢ . skip @ @

Matt Fredrikson Symbolic Model Checking 8/31

o b~ WD

Computing Transitions via Strengthening

For assumptions assume ¢:

Matt Fredrikson Symbolic Model Checking 9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

Matt Fredrikson Symbolic Model Checking 9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)
2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)

Matt Fredrikson Symbolic Model Checking 9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)
2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it

Matt Fredrikson Symbolic Model Checking 9/31

Computing Transitions via Strengthening

For assumptions assume ¢:

. Weaken ¢: —Pred(—¢, E)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it

4. If next state implies —Pred(¢, F), draw an edge to it

—

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)
2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Po

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
l1: skip

Belezy

Po

Pred(=(z =1),{zr = y}) =

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Po

Pred(—(x = 1),{z = y}) = false

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Pred(—(x = 1),{z = y}) = false

Pred(z = 1,{z = y}) =

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Pred(—(x = 1),{z = y}) = false

Pred(z = 1, {z = y}) = false

Matt Fredrikson Symbolic Model Checking

9/31

Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Pred(—(x = 1),{z = y}) = false

Pred(z = 1, {z = y}) = false

Matt Fredrikson Symbolic Model Checking

9/31

Example: Predicate Abstraction

by : i:=1;

t: while(0 <z <1){
by . d:=i—1;

l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;

¢ : while(0<z<1){ o o
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

Using:

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

by : i:=1;

¢ : while(0<z<1){ ; o
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

Using:

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

by : i:=1;

¢ : while(0<z<1){ ; o
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

Using:

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

by : i:=1;

¢ : while(0<z<1){ ; o
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

Using:

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—
«—

by : i:=1;

¢ : while(0<z<1){ o
by . d:=i—1;
l3: x:=x+1;

} (&)

Suppose we check:
G (ﬁfo —-0< Z)

e

Using:

&=
I
—_—
o
AN
et

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;

|
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;
}

Suppose we check:
G (ﬁfo —-0< Z)

i

Using:

&=
I
—_—
o
AN
et

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;) }
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

i

Using:

ad

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;) }
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

i

1
~—
()
S<IA
-
——

Using:

ﬁ

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;) }
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

i

Using:

£

1
~—
()
S<IA
-
——

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;) }
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)

i

Using:

S
EaY

=

I
=)

A\

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

«—

by : i:=1;

|
t: while(0 <z <1){
by . d:=i—1;
l3: x:=x+1;
}

Suppose we check:
G (ﬁfo —-0< Z)

i

S
EaY

Using:

=

I
=)

A\

Matt Fredrikson Symbolic Model Checking 10/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No.

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

(4o, po)

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

(£o, o)
(glap())

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

(4o, po)
(glap())
(€2, —po)

ﬁ

Matt Fredrikson Symbolic Model Checking 11/31

Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){
by : d:=i—1;

l3: xz:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){
by : d:=i—1;

l3: xz:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){

by: d:=1—1; bo: =1
l3: x:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by: 1:=1;
¢ while(0 <z <1){ _
ly : 1:=1—1; bo: i:=1;

¢;: assume(0 <z < 1)

l3: xz:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: zi=x+1: ¢y : assume(0 <z < 1)
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){
by i=i—1 bo:
l3: x:=x+1; b
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking

{0 <}

1:=1;

assume(0 <z < 1)
{i <0}

12/31

Spurious Counterexamples

by i:=1; _

¢ : while(0 <z < 1) { {0<i}

by i=i—1 bo: =1

ls: zi=x+1: ¢y : assume(0 <z < 1)

} {i <0}
Consider the KS path: Is this a valid Hoare triple?

(KOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: zi=x+1: ¢y : assume(0 <z < 1)
} {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, o) 1. {0<i}i:=1{0<i}
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _

¢ : while(0 <z < 1) { {0<i}

by i=i—1 bo: =1

ls: zi=x+1: ¢y : assume(0 <z < 1)

} {i <0}
Consider the KS path: Is this a valid Hoare triple?

(4o, po) 1. {0<i}i:=1{0<i}Yes
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
by i=i—1 bo: =1
ls: zi=x+1: ¢y : assume(0 <z < 1)
} {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, po) 1. {0<i}i:=1{0<i}Yes
(£1,p0) 2. {0 <i}assume(0 <z < 1) {0 > i}
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: zi=x+1: ¢y : assume(0 <z < 1)
} {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, po) 1. {0<i}i:=1{0<i}Yes
(£1,p0) 2. {0 <i}assume(0 <z < 1) {0 > i}
(€2a _'pO) No

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking 12/31

Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: x=x+1: ¢y : assume(0 <z < 1)
} ’ {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, po) 1. {0<i}i:=1{0<i}Yes
(£1,p0) 2. {0 <i}assume(0 <z < 1) {0 > i}
(€2a _'pO) No

(recall that pg < 0 < 4)

Consider the corresponding program path

This is how we know that the counterexample is spurious

Matt Fredrikson Symbolic Model Checking 12/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

2. Search for counterexamples

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

2. Search for counterexamples

3. Refine spurious counterexamples, building model on-demand

Matt Fredrikson Symbolic Model Checking 13/31

Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand

4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13/31

Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

e

~Po

What caused this?
(¢o,p0) (€1,p0) (L2, —po) l

@@

£

Matt Fredrikson Symbolic Model Checking 14 /31

Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)

i

Matt Fredrikson Symbolic Model Checking 14 /31

Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)

i

We had —Pred(0 < z < 1,{po}) = true

ﬁ

Matt Fredrikson Symbolic Model Checking 14 /31

Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)

i

We had —Pred(0 < z < 1,{po}) = true

...and —pg = true

ﬁ

Matt Fredrikson Symbolic Model Checking 14 /31

Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)

i

We had —Pred(0 < z < 1,{po}) = true

...and —pg = true

ﬁ

How do we fix it?

Matt Fredrikson Symbolic Model Checking 14 /31

Cause and Refinement

by 1:=1;
¢ : while(0<z<1){ l

by d:=i—1; l
l3: x:=x+1; ‘o
Po —po
}

What caused this? $ @
(¢o,p0) (€1,p0) (L2, —po)

We had —Pred(0 < x < 1, {po}) = true @

...and —pg = true

How do we fix it? @ $
E={0<i0<z<1}
N N——

Po p1

Matt Fredrikson Symbolic Model Checking 14 /31

Example: Abstraction Refinement

(7
-
-
-

by i =15
61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,P1 Po,P1 Po;P1 Po, P1
l3: z:=x+1;
} 2 2 12 5}
Do, PL Po,P1 Po, P1 Po,p1
E={0si0=sz<l} f "t g &
Po pP1 po,P1 Po,P1 Dpo,P1 Po,P1
U3 U3 l3 l3
P0,PL P0,P1 Po,P1 Do, P1

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

(7
-
-
-

by i =15
61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,P1 Po,P1 Po;P1 Po, P1
l3: z:=x+1;
} 2 2 12 5}
Do, PL Po,P1 Po, P1 Po,p1
E={0si0=sz<l} f "t g &
Po pP1 po,P1 Po,P1 Dpo,P1 Po,P1
U3 U3 l3 l3
P0,PL P0,P1 Po,P1 Do, P1

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

by i :=1; J l

61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

—
—

l3: z:=x+1;

/ }k' 151 41 1% 1%
e ‘SKIp o, L 70, P1 o, P1 P0, 1

E={0<i0<z<1} 0 42 o
Po P1 po,P1 DPo,Pp1 Po,P1

l3 l3
Po,P1 Do, P1

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

by i :=1; J l l l
41 :while(0 <z < 1) { £o Lo £ »
by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

l3: x:=x+1;

; }k' 151 12 12 4y

e ‘SKIp o, L 70, P1 o, P1 P0, 1

E={0=i0=z<1} ‘. ‘. & o
Po 1 Po, D1 Po,DP1 Po,P1 Do, P1

Do, P1

)

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

by i :=1; l
¢, :while(0 <z < 1) {)
byt ii=i—1; po,PL Do, P1
£y
Po,P1L

l3: z:=x+1;

}
l. :skip
E={0<i0<z<1} n
N N—— €
Po p1 Po,P1

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

(7
-
-
-

by i =15

61 Whlle(o S T < 1) { Lo Lo Lo Lo

by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

l3: z:=x+1;

} . 2 0
E={0<i0<z<1} . “ "
Po p1 Po,PL Po,P1 Do, P1

Is there a
counterexample? ts Le

Matt Fredrikson Symbolic Model Checking 15/31

Example: Abstraction Refinement

by i1 :=1;
41 :while(0 <z < 1) {
by di:=1—1; } } } }
lb3: x:=x+1; o_ 0 0 _0
) Po;P1 Po,P1 Po; 1 Po,P1
/. :skip
151
E={0<i0<a<1} P, BT
~— ——
Po p1
Le
Po,P1

Matt Fredrikson Symbolic Model Checking 16 /31

Example: Abstraction Refinement

by i1 :=1;
41 :while(0 <z < 1) {

by di:=1—1; } J 7 }
lb3: x:=x+1; o_ 0 0 _0
) po, D1 Po, D1 Po, D1 o, D1

/. :skip

E={0<i0<z<1} P0, D1
N N——
Po pP1
Is this valid? be
{0§i/\0§$<1} po,;P1
1:=1;
assume(0 <z < 1)
1:=1—1;

{i<0A0<az<1}

Matt Fredrikson Symbolic Model Checking 16 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

Matt Fredrikson Symbolic Model Checking 17 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant

We should really add this to our abtraction set £

Matt Fredrikson Symbolic Model Checking 17 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £

This is turning into a lot of work!

Matt Fredrikson Symbolic Model Checking 17 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £

This is turning into a lot of work!
» Now we have 8 initial states...

Matt Fredrikson Symbolic Model Checking 17 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £

This is turning into a lot of work!
» Now we have 8 initial states...

» #loc x 2|F| states in general

Matt Fredrikson Symbolic Model Checking 17 /31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £
This is turning into a lot of work!

» Now we have 8 initial states...

» #loc x 2|F| states in general

» There must be a better way!

Matt Fredrikson Symbolic Model Checking

17/31

Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £

This is turning into a lot of work!
» Now we have 8 initial states...
» #loc x 2|F| states in general

» There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking

17/31

Example: Lazy Abstraction

by i :=1;
4y :while(0 <z < 1) { J l l l

by di:=1—1;
l3: x:=x+1; bo _fo bo o
} Ppo,P1 po,P1 Po,P1 Po,P1
L. :skip /
) 51 El
E={0<i0<z<1} Po, PL 0, P1

Po P1
le 15 . 43
Po,P1 Ppo,P1 Po,P1
’\/ P

Matt Fredrikson Symbolic Model Checking 18/31

Example: Lazy Abstraction

by i :=1;
4y :while(0 <z < 1) { J l l l

by di:=1—1;
l3: x:=x+1; bo _fo bo o
} Ppo,P1 po,P1 Po,P1 Po,P1
L. :skip /
) 51 El
E={0<i0<z<1} Po, PL 0, P1

Po p1
Don’t need to be LN _ ([0
update left side with Lo, P 2o P1 Lo, P
paei=1
43
Dbo,p1

Matt Fredrikson Symbolic Model Checking 18/31

Example: Lazy Abstraction

by i =15
4y :while(0 <z < 1) { l l l l
by di:=1—1;
l3: x:=x+1; bo _fo b b
} Ppo,P1 po,P1 Po,P1,P2 Ppo,P1,pP2
L. :skip
) 51 El
E={0<i0<z<1} Po, PL PO, P1, P2
Po p1
Don’t need to be b -
update left side with Dbo, P1 Po,P1, P2 Po,P1, P2
ppei=1
43 Le
p07p17p72 pi07p717p72

Matt Fredrikson Symbolic Model Checking 18/31

Example: Lazy Abstraction

by i :=1;
4y :while(0 <z < 1) { l

by di:=1—1; l
l3: x:=x+1;) _fo b b
} Ppo,P1 po,P1 Po,P1,P2 Ppo,P1,pP2

o~ ~
’ ’
'

L. :skip

. El

E={0<40<z<1} Po, PL PO, P1, P2
Po P1

Don’t need to e £

update left side with Lo, P Po, p1, P2
ppei=1

l3

Do, P1,D2

Matt Fredrikson Symbolic Model Checking 18/31

Example: Lazy Abstraction

by i =15
4y :while(0 <z < 1) { l l l l
by di:=1—1;
l3: x:=x+1; bo _fo b b
} Po,P1 Po,P1 Po,;P1,P2 Po,;P1,P2
L. :skip
) 51 El
E={0<i0<z<1} Po, P1 PO, P1, P2
Po P1
Don’t need to be £
update left side with Lo, P Po, p1, P2
P2 <= =1
l3
Now there’s no P0,P1, P2
counterexample

Matt Fredrikson Symbolic Model Checking 18/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002

Combines on-demand search with “refinement where necessary”

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

2. Add children by computing abstract transitions

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

Matt Fredrikson Symbolic Model Checking 19/31

More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19/31

Proofs from Abstractions

by =15 } l l l
wrhi . ¢ ‘ 4

by .\N.hl|e.(0 sz < 1) { 170707 Pom(zam Po;P1:P2

by d:=1—1;

l3: x:=x+1;

} [1 el
Po,PL PO, P1, P2

l. :skip '

E={0<i0<z<1j=1} be t2
e — N Po,P1 Po,P1; P2
Po p1 p2
L3
P0,P1, P2

Matt Fredrikson Symbolic Model Checking 20/31

Proofs from Abstractions

{true} | |
Lo i :=1; P
(1 :while(0 <z < 1) {
by i:=1—1;
l3: x:=x+1;
}
/. :skip

E={0<i0<z<1,i=1}
N N — NN

Po P1 p2

Matt Fredrikson Symbolic Model Checking 20/31

Proofs from Abstractions

{true}
by i1 :=1; l }
0<ini-1)
4, :while(0 <z < 1) {
by i:=1—1;
l3: x:=x+1;
}
/. :skip

E={0<i0<z<l,i=1}
N N—— N

Po P1 p2

Matt Fredrikson Symbolic Model Checking 20/31

Proofs from Abstractions

{true}

60 Z.—].,
{0<ini=1} l l l
4y :while(0 <z < 1) {
{0<in0<z<lAi=1}
by i:=1—1;
{0<inD<z<1}
l3: v:=x+1;
}
L. :skip

E={0<i0<z<1l,i=1}
N ——

Po P1 b2

Matt Fredrikson Symbolic Model Checking 20/31

Proofs from Abstractions

{true}
lo i :=1;
{o<ini=1} | | | |
4y :while(0 <z < 1) {) ‘%
{0<in0<z<1Ai=1} $
by i:=1—1;
¢

{0<ino<z<1}) o
by x:=x+1; Po; P Po.P1,P2

{0<iA=(0<z<1)}

} Ze ZZ
L. :skip Po; P, P0,P1,P2

E={0<i0<z<1i=1} .
Po;P1,P2

Po P1 b2

Matt Fredrikson Symbolic Model Checking 20/31

Proofs from Abstractions

{true}
b =15
{0<ini=1}
£y :while(0 <z < 1) {
{0<in0<z<lAi=1}
by i:=1—1;
{0<iNO<z<1lAi#1}
l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

{true} These annotations are sufficient to
Lo l{ (1)=<1;‘ =1} prove the property
<iA1=

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}

}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

{true} These annotations are sufficient to
by =15 prove the property
{(0<ini=1}
£y :while(0 <z < 1) { Suppose we wanted to verify
{0<in0<z<iAi=1} {true} Prog {0 < i}
by i:=1—1;

{0<iNO<z<1lAi#1}
l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}

}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}

L. :skip

E={0<i0<z<1,i=1}
—— ——

Po P1 P2

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}

L. :skip

E={0<i0<z<1,i=1}
—— ——

Po P1 P2

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?

(0<ini=1)
Y (0<in0<z<1lAi=1)
% 0<in0<z<1Ai#1)
Y 0<in=(0<z<1)Ai#l)

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}

L. :skip

E={0<i0<z<1,i=1}
—— ——

Po P1 P2

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?
(0<ini=1)

Y (0<in0<z<1lAi=1)
% 0<in0<z<1Ai#1)
Y 0<in=(0<z<1)Ai#l)
&

0<q

Matt Fredrikson Symbolic Model Checking 21/31

Proofs from Abstractions

{true} These annotations are sufficient to
by =15 prove the property
{0<ini=1}
£y :while(0 <z < 1) { Suppose we wanted to verify
{0<in0<z<iAi=1} {true} Prog {0 < i}
by i:=1—1;
{0<in0<z<1Ai#1} What is our loop invariant?

l3: z:=x+1;

. . 0<ini=1)
< =0 <
iOJA O=z<DAiZ1} | <ino<ao<ini=1)
. Vo (0<iA0<z<1Ai#l)
e SKIP Vo (0<iA-(0<z<1)Ai#])
E={0<i0<z<1,i=1} <
—— ——— =~ 0<1

Po P1 b2

CEGAR automatically constructs deductive proofs!

Matt Fredrikson Symbolic Model Checking 21/31

Suppose we wanted to verify:

{true}
Ly i :=10;
¢1 :while(0 < z < 10) {
by d:=1i—1;
l3: x:=x+1;
}
l. :skip
{0<i}

Matt Fredrikson Symbolic Model Checking 22/31

Suppose we wanted to verify: How would we do it by hand?

{true}
Ly i :=10;
¢1 :while(0 < z < 10) {
by d:=1i—1;
l3: x:=x+1;
}
l. :skip
{0<i}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true})
ln i = 10: How would CEGAR do it?
0=].0,
¢; :while(0 < z < 10) {
by d:=1i—1;
l3: x=x+1,;
}
l. :skip
{0<i}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true})
ln i = 10: How would CEGAR do it?
0=].0,
¢, :while(0 < z < 10) { » Findi=10,z=9
by d:=1i—1;
l3: x:=x+1;
}
l. :skip
{0 <4}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true})
ln i = 10: How would CEGAR do it?
0=].0,
(1 :while(0 < z < 10) { » Findi=10,2=9
by d:=1i—1; » Findi=10,2=8
l3: x:=x+1;

}
l. :skip

{o<i}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true})
ln i = 10: How would CEGAR do it?
0=].0,
(1 :while(0 < z < 10) { » Findi=10,2=9
by d:=1i—1; » Findi=10,2=8
l3: x:=x+1; >

}
l. :skip

{o<i}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true})
ln i = 10: How would CEGAR do it?
0=].0,
¢, :while(0 < z < 10) { » Findi=10,z=9
by d:=1i—1; » Findi=10,2=8
{3 :}x =+ 1; >
Ee :Skip » Find7=9
{o<i}

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true} .
0 i 1= 10; How would CEGAR do it?
¢1 :while(0 < z < 10) { » Findi=10,2=9
by di:=1—1; » Find:=10,2 =8
l3: x:=x+1; .
0 :ikip » Findi=9

{O < z} > .

Matt Fredrikson Symbolic Model Checking 22/31

How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true} .
0 i 1= 10; How would CEGAR do it?
¢1 :while(0 < z < 10) { » Findi=10,2=9
by di:=1—1; » Find:=10,2 =8
l3: x:=x+1; .
0 :ikip » Findi=9

{O < z} > .

Finding the right predicates early is crucial

Matt Fredrikson Symbolic Model Checking 22/31

Learning Predicates

Before, we found new predicates by intuition

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition

Model checkers must do it automatically

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Intuitively,

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Intuitively,
> ¢path Simulates executing the counterexample path

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Intuitively,
> ¢path Simulates executing the counterexample path

» If execution completes without error, path is valid
counterexample

Matt Fredrikson Symbolic Model Checking 23/31

Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Intuitively,
> ¢path Simulates executing the counterexample path

» If execution completes without error, path is valid
counterexample

» Otherwise, take an observation that explains why the path won’t
execute

Matt Fredrikson Symbolic Model Checking 23/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form

Matt Fredrikson Symbolic Model Checking 24/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form

Assume we’re given a path with only assign, assume, assert

Matt Fredrikson Symbolic Model Checking 24/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:

Matt Fredrikson Symbolic Model Checking 24/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0

Matt Fredrikson Symbolic Model Checking 24/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript

Matt Fredrikson Symbolic Model Checking 24/31

SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript

Matt Fredrikson Symbolic Model Checking 24/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions

assert 0 <

7:=1

assert 0 <1
assume 0 <z <1
assert —(0 < 1)
i=i—1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

assert 0 <

7:=1

assert 0 <1
assume 0 <z <1
assert —(0 < 1)
i=i—1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

assert 0 < assert 0 < 49

7:=1 i1:=1

assert 0 < assert 0 < iy
assume 0 <z <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i)

1i=1—1 i9 =141 — 1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

assert 0 < assert 0 < 49

7:=1 i1:=1

assert 0 < assert 0 < iy
assume 0 <z <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i)
i:=7—1 i9 =141 — 1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

assert 0 < assert 0 < 49 assert 0 < 49

7:=1 i1:=1 assume i; =1
assert 0 < assert 0 < iy assert 0 < i
assume 0 <z <1 assume 0 < xg <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i) assert (0 < i1)
1:=7—1 20 =11 — 1 assume i =71 — 1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 < assert 0 < 49 assert 0 < 49

7:=1 i1:=1 assume i; =1
assert 0 < assert 0 < iy assert 0 < i
assume 0 <z <1 assume 0 < xg <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i) assert (0 < i1)
1:=7—1 20 =11 — 1 assume i =71 — 1

Matt Fredrikson Symbolic Model Checking 25/31

Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 < assert 0 < 49 assert 0 < 49

7:=1 i1:=1 assume i; =1
assert 0 < assert 0 < iy assert 0 < i
assume 0 <z <1 assume 0 < xg <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i) assert (0 < i1)
1:=7—1 20 =11 — 1 assume i =71 — 1

Wp(. .. ,true) =0 <oA1 = 1IN0 <110 < 2 < 1/\ﬁ(0 < il)AiQ =11—1

Matt Fredrikson Symbolic Model Checking 25/31

Path Validity

We have a counterexample, path formula pair

Matt Fredrikson Symbolic Model Checking 26/31

Path Validity

We have a counterexample, path formula pair

(i :=1,true)
(assume 0 < z < 1,0 < 19)
(i:=i—1,-(0 <))

Matt Fredrikson Symbolic Model Checking 26/31

Path Validity

We have a counterexample, path formula pair

(i :=1,true)
(assume 0 < z < 1,0 < 19)
(i:=i—1,-(0 <))

Matt Fredrikson

Symbolic Model Checking

0<ig A
i1=1A
0<51 A
0<zo<1A
ﬁ(OSh)/\
i9 =11 — 1

26/31

Path Validity

We have a counterexample, path formula pair

(i :=1,true)
(assume 0 < x < 1,0 <)
(i=1—1,-(0 <))

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson

Symbolic Model Checking

0<ig A
i1=1A
0<51 A
0<zo<1A
ﬁ(OSil)/\
i9 =11 — 1

26/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

2. If C'" is still unsatisfiable, then let C := C”’

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?
Recall: An unsatisfiable core C* is a subset of C:
» (C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

2. If C’ is still unsatisfiable, then let C := C’
3. Otherwise, keep original C

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

2. If C’ is still unsatisfiable, then let C := C’
3. Otherwise, keep original C

We’ll modify this slightly:

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?
Recall: An unsatisfiable core C* is a subset of C:
» (C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

2. If C’ is still unsatisfiable, then let C := C’
3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every [,I’ € C where | # 1’

Matt Fredrikson Symbolic Model Checking 27/31

Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [in C"
1. Drop [from C to build C’

2. If C’ is still unsatisfiable, then let C := C’
3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every [,I’ € C where | # 1’

2. If | = U’, then remove I

Matt Fredrikson Symbolic Model Checking 27/31

Example: Learning New Predicates

Initial formula:

0<ip A
11 =1 AN
0 <11 A
0<zy <1l A
—\(0§i1) AN
g =11 — 1

Matt Fredrikson Symbolic Model Checking 28/31

Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 = 0< 1)
0<% A 0 <o A
i1=1 A i1=1 A
0<14 A 0<zo<1l A
0<zo<l A ~(0<i) A
-(0<41) A ig =11 — 1
io =141 — 1

Matt Fredrikson Symbolic Model Checking 28/31

Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0 <10 A 0<1o A i1=1 A
i =1 A =1 A 0<zo<l A
0< 4 A 0<zo<1l A =(0 <41) A
0<zo<1l A -(0<id1) A io=ip — 1
—\(Ogil) A\ o =19 — 1
ig =19 —1

Matt Fredrikson Symbolic Model Checking 28/31

Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0 <10 A 0<1o A i1=1 A
i =1 A =1 A 0<zo<l A
0< 4 A 0<zo<1l A =(0 <41) A
0<zo<1l A -(0<id1) A io=ip — 1
—\(Ogil) A\ o =19 — 1
ig =19 —1

3: Remove 0 < 29 < 1

i1=1 A
-(0<4) A
g =11 — 1

Matt Fredrikson Symbolic Model Checking 28/31

Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0<% A 0<1 N i1 =1 A
11 =1 A i1=1 A 0<zo<1l A
0<1i A 0<zo<1l A -(0<4) A
0<zo<1 A -(0<i1) A ig=d1 — 1
-(0<41) A ig =11 — 1
i =19 — 1
3: Remove 0 < zg <1 4: Remove iz =41 — 1

i1=1 A i1=1 A
-(0<d1) A -(0<i) A
g =11 — 1

Matt Fredrikson Symbolic Model Checking 28/31

Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0<% A 0<1 N i1 =1 A
11 =1 A i1=1 A 0<zo<1l A
0<1i A 0<zo<1l A -(0<4) A
0<zo<1 A -(0<i1) A ig=d1 — 1
-(0<41) A ig =11 — 1
i =19 — 1
3: Remove 0 < zg <1 4: Remove iz =41 — 1

i1=1 A i1=1 A
-(0<d1) A -(0<i) A
g =11 — 1

i1 = 1 wasn’t previously in our set, so we refine by adding it

Matt Fredrikson Symbolic Model Checking 28/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,

3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,
3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)

4. Generate the path formula ¢patn

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

Enumerate a sequence of statements /4,...,¢,
Create the “counterexample” (¢1,true), ..., ({,, true), (skip, —¢)

Generate the path formula ¢pain

o~ 0N

Check ¢path for satisfiability

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

Enumerate a sequence of statements /4,...,¢,
Create the “counterexample” (¢1,true), ..., ({,, true), (skip, —¢)

Generate the path formula ¢pain

o~ 0N

Check ¢path for satisfiability

The results tell us everything:

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

Enumerate a sequence of statements /4,...,¢,
Create the “counterexample” (¢1,true), ..., ({,, true), (skip, —¢)

Generate the path formula ¢pain

o~ 0N

Check ¢path for satisfiability

The results tell us everything:
» If unsat, there’s no way to execute /4, ..., ¢, satisfying —¢

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,

3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)
4. Generate the path formula ¢patn

5. Check ¢path for satisfiability

The results tell us everything:
» If unsat, there’s no way to execute /4, ..., ¢, satisfying —¢

» If sat, then this path is a valid counterexample

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
. Given an invariant property G ¢,

—

2. Enumerate a sequence of statements ¢4,...,¢,

3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)
4. Generate the path formula ¢patn

5. Check ¢path for satisfiability

The results tell us everything:
» If unsat, there’s no way to execute /4, ..., ¢, satisfying —¢

» If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,

3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)
4. Generate the path formula ¢patn

5. Check ¢path for satisfiability

The results tell us everything:
» If unsat, there’s no way to execute /4, ..., ¢, satisfying —¢

» If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
» When run on these inputs, the property will be violated

Matt Fredrikson Symbolic Model Checking 29/31

Bounded Model Checking: Example

by i :=1;
4, :while(0 < z < 2) {
by i:=1—1;

l3: v:=x+1;

}

L, :assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/ 31

Bounded Model Checking: Example

by i :=1;
4, :while(0 < z < 2) {
by di:=1—1;
l3: v:=x+1;
¥

L, :assert(0 < i)

We suspect the path:

1:=1;

assume(0 < z < 2)
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/ 31

Bounded Model Checking: Example

by i :=1;
(1 :while(0 <z < 2) { After SSA, assumption encoding:
by di:=1—1;
b x:=x+1; assume i1 = 1;
} assume 0 < zg < 2;

assume i; = i1 — 1;
assume r; = xg + 1;
assume 0 < z; < 2;

L, :assert(0 < i)

We suspect the path: assume iz = i — 1;
‘ assume x> = 1 + 1;
i=1 assume —(0 < x5 < 2);
assume(0 < z < 2) = ’
aesr assert 0 < i3;
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/31

Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by di:=1—1; =1 A
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/ 31

Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1;) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/31

Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1;) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1; i1=1,x0=0,i2=0,l’1=1,’1:3=—1,£L'2=2
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/31

Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1;) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1; i1=1,x0=0,i2=0,l’1=1,’1:3=—1,£L'2=2
Ti=x+1;

assume(—(0 < z < 2))

X We can use z = 0 as an initial test case
assert(0 < i)

Matt Fredrikson Symbolic Model Checking 30/31

Next Lecture

Go over homeworks

Matt Fredrikson Symbolic Model Checking 31/31

Next Lecture

Go over homeworks

Review for the final

Matt Fredrikson Symbolic Model Checking 31/31

Next Lecture

Go over homeworks
Review for the final

Last homework due on Friday evening, 11:59
» No late days!
» University policy...

Matt Fredrikson Symbolic Model Checking 31/31

