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Abstraction (Review)

Key Idea: Approximate system so that a given property is preserved

More precisely, given KS M and ¢, we want M such that
ME¢=ME

We’ll see how to build a conservative overapproximation of M/
» Every trace of M is also a trace of M

» Some traces in M may not be in M

This preserves safety properties: if M verifies, so will M

But it might introduce spurious counterexamples
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Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values

We’re given: set of predicates E = {¢1,..., ¢}

Define abstraction function « : Env — {0,1}™:
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Predicate Abstraction (Review)

How do we know which abstraction to use?

Idea: Only track predicates on program’s data state
» Predicates relevant to the property, control flow

» Each state in the transition maps to a vector of predicate values
We’re given: set of predicates E = {¢1,..., ¢}

Define abstraction function « : Env — {0,1}™:

a((,0)) = (4, (¢1(0), -, dn(0)))
Intuitively: « ranges over conjunctions of ¢;, =¢;

The states in our abstraction will be: S = Loc x {0,1}™
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Existential Abstraction (Review)

Important: We want an over-approximation that gives us:

ME¢=ME¢

We’ll define an existential abstraction:
(§1, §2) S R =4 381, SQ.R(Sl, 32) N h(Sl) =351 A h(32) = §9
sele FsseclINh(s)=35

A transition is in the abstraction A1 if and only if:
1. There exist corresponding states (s1, s2) in M,
2. where s1, so are the endpoints of a transition in M
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Existential Abstraction (Review)

Important: We want an over-approximation that gives us:

ME¢=ME¢

We’ll define an existential abstraction:
(§1, §2) S R =4 351, SQ.R(Sl, 32) N h(Sl) =351 A h(32) = §9
sele FsseclINh(s)=35

A transition is in the abstraction A1 if and only if:
1. There exist corresponding states (s1, s2) in M,
2. where s1, so are the endpoints of a transition in M

Why is this conservative?
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Intuition: Existential Abstraction

Image Credit: Tom Henzinger, Ranijit Jhala, Rupak Majumdar
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Computing Program Approximations

The key issue: how do we compute transitions
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Computing Program Approximations

The key issue: how do we compute transitions

Recall our construction of KS from program graphs:

(gl,b,gg) el <b70'1> ‘U’b true <C(£1),O’1>~UO’2
([1,01], 162, 00]) € R

We don’t have concrete states o to work with anymore

Just predicates. Idea: Use predicate transformers
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Strengthening Predicates (Review)

Given E = {¢1,...,¢,}, let Pred(¢, E):
» The weakest DNF over F,
» that is at least as strong as ¢,

» where each clause has n literals Env

Notice: Pred(¢, E) = ¢

Compute this by querying SMT solver Pred(¢, E)

» What’s the complexity of this?
» O(2")
» Need to query each:
PLA - App =@
where p; is ¢; or —¢;
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Computing Transitions via Strengthening

For assignments x := e:
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Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e, )
2. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z := ¢, ¢), E)
3. If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢
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Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e, )
2. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z := ¢, ¢), E)
3. If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢
4. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢
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Computing Transitions via Strengthening

For assignments x := e:

Compute wp(z := e, @), wp(z := e, =¢)

Strengthen them: Pred(wp(z := e, ¢), E), Pred(—wp(x := e, ¢), E)
If state implies Pred(wp(z := e, ¢), E), draw an edge to ¢

If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢

If neither implication holds, draw an edge to both

1.

ISA ol A
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Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e, )
. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z :=¢, ¢), E)
. If state implies Pred(wp(z := e, ¢), ), draw an edge to ¢
. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢
. If neither implication holds, draw an edge to both

o b~ WD
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Computing Transitions via Strengthening

For assignments x := e:
1. Compute wp(z := ¢, @), wp(z := e, )
. Strengthen them: Pred(wp(x := e, ¢), E), Pred(—wp(z :=¢, ¢), E)
. If state implies Pred(wp(z := e, ¢), ), draw an edge to ¢
. If state implies Pred(—wp(z := ¢, ¢), E'), draw an edge to —¢
. If neither implication holds, draw an edge to both

by: z:=x+1 l l
¢ . skip @ @
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Computing Transitions via Strengthening

For assumptions assume ¢:
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)
2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
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Computing Transitions via Strengthening

For assumptions assume ¢:

. Weaken ¢: —Pred(—¢, E)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it

4. If next state implies —Pred(¢, F), draw an edge to it

—
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)
2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Po
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
l1: skip

Belezy

Po

Pred(=(z =1),{zr = y}) =
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Po

Pred(—(x = 1),{z = y}) = false
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Pred(—(x = 1),{z = y}) = false

Pred(z = 1,{z = y}) =
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Belezy

Pred(—(x = 1),{z = y}) = false
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Computing Transitions via Strengthening

For assumptions assume ¢:
1. Weaken ¢: —Pred(—¢, F)

2. Strengthen them: Pred(wp(z := ¢, ¢), E), Pred(—wp(z := e, ¢), E)
3. If next state implies —Pred(—¢, E), draw an edge to it
4. If next state implies —Pred(¢, F), draw an edge to it

fp: assume x =1
¢y : skip

Pred(—(x = 1),{z = y}) = false

Pred(z = 1, {z = y}) = false
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Example: Predicate Abstraction

by : i:=1;

t: while(0 <z <1){
by . d:=i—1;

l3: x:=x+1;

}

Suppose we check:
G (ﬁfo —-0< Z)
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Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

ﬁ
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Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No.
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Example: Predicate Abstraction
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¢, : while(0 <z <1){ % %
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Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

(£o, o)
(glap())
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Example: Predicate Abstraction

by i:=1; l l
¢, : while(0 <z <1){ % %
l3: xT:=x+1;

}

Does the property hold?
G (_‘60 —-0< Z)

i

No. What’s a counterexample?

(4o, po)
(glap())
(€2, —po)

ﬁ
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Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){
by : d:=i—1;

l3: xz:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)
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Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){

by: d:=1—1; bo: =1
l3: x:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples

by: 1:=1;
¢ while(0 <z <1){ _
ly : 1:=1—1; bo: i:=1;

¢;: assume(0 <z < 1)

l3: xz:=x+1;
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: zi=x+1: ¢y : assume(0 <z < 1)
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples

by: 1:=1;
f: while(0 <z <1){
by i=i—1 bo:
l3: x:=x+1; b
}
Consider the KS path:
(EOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path

Matt Fredrikson Symbolic Model Checking
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1:=1;
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{i <0}

12/31



Spurious Counterexamples

by i:=1; _

¢ : while(0 <z < 1) { {0<i}

by i=i—1 bo: =1

ls: zi=x+1: ¢y : assume(0 <z < 1)

} {i <0}
Consider the KS path: Is this a valid Hoare triple?

(KOapO)
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: zi=x+1: ¢y : assume(0 <z < 1)
} {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, o) 1. {0<i}i:=1{0<i}
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples

by i:=1; _

¢ : while(0 <z < 1) { {0<i}

by i=i—1 bo: =1

ls: zi=x+1: ¢y : assume(0 <z < 1)

} {i <0}
Consider the KS path: Is this a valid Hoare triple?

(4o, po) 1. {0<i}i:=1{0<i}Yes
(élapo)
(€2a _'pO)

(recall that pg < 0 < 4)

Consider the corresponding program path
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Spurious Counterexamples
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¢ : while(0 <z < 1) { {0<i}
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ls: zi=x+1: ¢y : assume(0 <z < 1)
} {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, po) 1. {0<i}i:=1{0<i}Yes
(£1,p0) 2. {0 <i}assume(0 <z < 1) {0 > i}
(€2a _'pO) No
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Spurious Counterexamples

by i:=1; _
¢ : while(0 <z < 1) { {0<i}
ly : 1:=1—1; bo: i:=1;
ls: x=x+1: ¢y : assume(0 <z < 1)
} ’ {i <0}
Consider the KS path: Is this a valid Hoare triple?
(4o, po) 1. {0<i}i:=1{0<i}Yes
(£1,p0) 2. {0 <i}assume(0 <z < 1) {0 > i}
(€2a _'pO) No

(recall that pg < 0 < 4)

Consider the corresponding program path

This is how we know that the counterexample is spurious
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Abstraction Refinement

We want to make the abstraction more precise: add more predicates
» At the very least, eliminate this counterexample

» Hopefully, many more brought about by same “cause”

Called counterexample-guided abstraction refinement (CEGAR)
» E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, 2000

Main technique behind all modern software model checking
1. Start with a simple, automatic abstraction

2. Search for counterexamples
3. Refine spurious counterexamples, building model on-demand

4. Continue until real counterexample, or property holds

Matt Fredrikson Symbolic Model Checking 13/31



Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

e

~Po

What caused this?
(¢o,p0) (€1,p0) (L2, —po) l

@@

£
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¢ : while(0<z<1){
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l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)
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Cause and Refinement

by 1:=1;

¢ : while(0<z<1){
by d:=i—1;

l3: xT:=z+1;

}

PR—

~Po

@
}

What caused this?
(¢o,p0) (€1,p0) (L2, —po)

i

We had —Pred(0 < z < 1,{po}) = true

...and —pg = true

ﬁ

How do we fix it?
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Cause and Refinement

by 1:=1;
¢ : while(0<z<1){ l

by d:=i—1; l
l3: x:=x+1; ‘o
Po —po
}

What caused this? $ @
(¢o,p0) (€1,p0) (L2, —po)

We had —Pred(0 < x < 1, {po}) = true @

...and —pg = true

How do we fix it? @ $
E={0<i0<z<1}
N N——

Po p1
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Example: Abstraction Refinement

(7
-
-
-

by i =15
61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,P1 Po,P1 Po;P1 Po, P1
l3: z:=x+1;
} 2 2 12 5}
Do, PL Po,P1 Po, P1 Po,p1
E={0si0=sz<l} f "t g &
Po pP1 po,P1 Po,P1 Dpo,P1 Po,P1
U3 U3 l3 l3
P0,PL P0,P1 Po,P1 Do, P1

Matt Fredrikson Symbolic Model Checking 15/31



Example: Abstraction Refinement

(7
-
-
-

by i =15
61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,P1 Po,P1 Po;P1 Po, P1
l3: z:=x+1;
} 2 2 12 5}
Do, PL Po,P1 Po, P1 Po,p1
E={0si0=sz<l} f "t g &
Po pP1 po,P1 Po,P1 Dpo,P1 Po,P1
U3 U3 l3 l3
P0,PL P0,P1 Po,P1 Do, P1

Matt Fredrikson Symbolic Model Checking 15/31



Example: Abstraction Refinement

by i :=1; J l

61 Whlle(o S T < 1) { Lo Lo Lo Lo
by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

—
—

l3: z:=x+1;

/ }k' 151 41 1% 1%
e ‘SKIp o, L 70, P1 o, P1 P0, 1

E={0<i0<z<1} 0 42 o
Po P1 po,P1 DPo,Pp1 Po,P1

l3 l3
Po,P1 Do, P1
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Example: Abstraction Refinement

by i :=1; J l l l
41 :while(0 <z < 1) { £o Lo £ »
by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

l3: x:=x+1;

; }k' 151 12 12 4y

e ‘SKIp o, L 70, P1 o, P1 P0, 1

E={0=i0=z<1} ‘. ‘. & o
Po 1 Po, D1 Po,DP1 Po,P1 Do, P1

Do, P1

)

Matt Fredrikson Symbolic Model Checking 15/31



Example: Abstraction Refinement

by i :=1; l
¢, :while(0 <z < 1) { )
byt ii=i—1; po,PL Do, P1
£y
Po,P1L

l3: z:=x+1;

}
l. :skip
E={0<i0<z<1} n
N N—— €
Po p1 Po,P1
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Example: Abstraction Refinement

(7
-
-
-

by i =15

61 Whlle(o S T < 1) { Lo Lo Lo Lo

by ii=i—1; Po,PL Po,P1 Po, P1 Do, p1

l3: z:=x+1;

} . 2 0
E={0<i0<z<1} . “ "
Po p1 Po,PL Po,P1 Do, P1

Is there a
counterexample? ts Le
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Example: Abstraction Refinement

by i1 :=1;
41 :while(0 <z < 1) {
by di:=1—1; } } } }
lb3: x:=x+1; o_ 0 0 _0
) Po;P1 Po,P1 Po; 1 Po,P1
/. :skip
151
E={0<i0<a<1} P, BT
~— ——
Po p1
Le
Po,P1
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Example: Abstraction Refinement

by i1 :=1;
41 :while(0 <z < 1) {

by di:=1—1; } J 7 }
lb3: x:=x+1; o_ 0 0 _0
) po, D1 Po, D1 Po, D1 o, D1

/. :skip

E={0<i0<z<1} P0, D1
N N——
Po pP1
Is this valid? be
{0§i/\0§$<1} po,;P1
1:=1;
assume(0 <z < 1)
1:=1—1;

{i<0A0<az<1}

Matt Fredrikson Symbolic Model Checking 16 /31



Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
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Lazy Abstraction

After the second counterexample, it seems x = 1 is relevant
We should really add this to our abtraction set £

This is turning into a lot of work!
» Now we have 8 initial states...
» #loc x 2|F| states in general

» There must be a better way!

Idea: Don’t refine error-free parts of the abstraction

Matt Fredrikson Symbolic Model Checking

17/31



Example: Lazy Abstraction

by i :=1;
4y :while(0 <z < 1) { J l l l

by di:=1—1;
l3: x:=x+1; bo _fo bo o
} Ppo,P1 po,P1 Po,P1 Po,P1
L. :skip /
) 51 El
E={0<i0<z<1} Po, PL 0, P1

Po P1
le 15 . 43
Po,P1 Ppo,P1 Po,P1
’\/ P
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4y :while(0 <z < 1) { J l l l

by di:=1—1;
l3: x:=x+1; bo _fo bo o
} Ppo,P1 po,P1 Po,P1 Po,P1
L. :skip /
) 51 El
E={0<i0<z<1} Po, PL 0, P1

Po p1
Don’t need to be LN _ ([ 0
update left side with Lo, P 2o P1 Lo, P
paei=1
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Example: Lazy Abstraction

by i =15
4y :while(0 <z < 1) { l l l l
by di:=1—1;
l3: x:=x+1; bo _fo b b
} Ppo,P1 po,P1 Po,P1,P2 Ppo,P1,pP2
L. :skip
) 51 El
E={0<i0<z<1} Po, PL PO, P1, P2
Po p1
Don’t need to be b -
update left side with Dbo, P1 Po,P1, P2 Po,P1, P2
ppei=1
43 Le
p07p17p72 pi07p717p72
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Example: Lazy Abstraction

by i :=1;
4y :while(0 <z < 1) { l

by di:=1—1; l
l3: x:=x+1; ) _fo b b
} Ppo,P1 po,P1 Po,P1,P2 Ppo,P1,pP2

o~ ~
’ ’
'

L. :skip

. El

E={0<40<z<1} Po, PL PO, P1, P2
Po P1

Don’t need to e £

update left side with Lo, P Po, p1, P2
ppei=1

l3

Do, P1,D2
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Example: Lazy Abstraction

by i =15
4y :while(0 <z < 1) { l l l l
by di:=1—1;
l3: x:=x+1; bo _fo b b
} Po,P1 Po,P1 Po,;P1,P2 Po,;P1,P2
L. :skip
) 51 El
E={0<i0<z<1} Po, P1 PO, P1, P2
Po P1
Don’t need to be £
update left side with Lo, P Po, p1, P2
P2 <= =1
l3
Now there’s no P0,P1, P2
counterexample
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More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
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More on Lazy Abstraction

Lazy abstraction was developed by Henzinger et al, 2002
Combines on-demand search with “refinement where necessary”

Key data structure: reachability tree
1. Pick an abstract initial state

2. Add children by computing abstract transitions
3. Only refine subtrees that could contain errors

In practice, this approach gives drastic performance improvements

Matt Fredrikson Symbolic Model Checking 19/31



Proofs from Abstractions

by =15 } l l l
wrhi . ¢ ‘ 4

by .\N.hl|e.(0 sz < 1) { 170707 Pom(zam Po;P1:P2

by d:=1—1;

l3: x:=x+1;

} [1 el
Po,PL PO, P1, P2

l. :skip '

E={0<i0<z<1j=1} be t2
e — N Po,P1 Po,P1; P2
Po p1 p2
L3
P0,P1, P2
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Proofs from Abstractions

{true} | |
Lo i :=1; P
(1 :while(0 <z < 1) {
by i:=1—1;
l3: x:=x+1;
}
/. :skip

E={0<i0<z<1,i=1}
N N — NN

Po P1 p2
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Proofs from Abstractions

{true}
by i1 :=1; l }
0<ini-1)
4, :while(0 <z < 1) {
by i:=1—1;
l3: x:=x+1;
}
/. :skip

E={0<i0<z<l,i=1}
N N—— N

Po P1 p2
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Proofs from Abstractions

{true}

60 Z.—].,
{0<ini=1} l l l
4y :while(0 <z < 1) {
{0<in0<z<lAi=1}
by i:=1—1;
{0<inD<z<1}
l3: v:=x+1;
}
L. :skip

E={0<i0<z<1l,i=1}
N ——

Po P1 b2

Matt Fredrikson Symbolic Model Checking 20/31



Proofs from Abstractions

{true}
lo i :=1;
{o<ini=1} | | | |
4y :while(0 <z < 1) { ) ‘%
{0<in0<z<1Ai=1} $
by i:=1—1;
¢

{0<ino<z<1} ) o
by x:=x+1; Po; P Po.P1,P2

{0<iA=(0<z<1)}

} Ze ZZ
L. :skip Po; P, P0,P1,P2

E={0<i0<z<1i=1} .
Po;P1,P2

Po P1 b2
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Proofs from Abstractions

{true}
b =15
{0<ini=1}
£y :while(0 <z < 1) {
{0<in0<z<lAi=1}
by i:=1—1;
{0<iNO<z<1lAi#1}
l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2
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Proofs from Abstractions

{true} These annotations are sufficient to
Lo l{ (1)=<1;‘ =1} prove the property
<iA1=

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}

}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2
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Proofs from Abstractions

{true} These annotations are sufficient to
by =15 prove the property
{(0<ini=1}
£y :while(0 <z < 1) { Suppose we wanted to verify
{0<in0<z<iAi=1} {true} Prog {0 < i}
by i:=1—1;

{0<iNO<z<1lAi#1}
l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}

}
L. :skip

E={0<i0<z<l,i=1}
e ——

Po P1 b2
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by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}

by i:=1—1;
{0<iNO<z<1lAi#1}

l3: z:=x+1;
{0<in=(0<xz<1)AiF#1}
}

L. :skip

E={0<i0<z<1,i=1}
—— ——

Po P1 P2

These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?
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by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}
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Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?

(0<ini=1)
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by i :=1;
{0<ini=1}

£y :while(0 <z < 1) {
{0<in0<z<lAi=1}
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These annotations are sufficient to
prove the property

Suppose we wanted to verify
{true} Prog {0 < i}

What is our loop invariant?
(0<ini=1)

Y (0<in0<z<1lAi=1)
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Proofs from Abstractions

{true} These annotations are sufficient to
by =15 prove the property
{0<ini=1}
£y :while(0 <z < 1) { Suppose we wanted to verify
{0<in0<z<iAi=1} {true} Prog {0 < i}
by i:=1—1;
{0<in0<z<1Ai#1} What is our loop invariant?

l3: z:=x+1;

. . 0<ini=1)
< =0 <
iOJA O=z<DAiZ1} | <ino<ao<ini=1)
. Vo (0<iA0<z<1Ai#l)
e SKIP Vo (0<iA-(0<z<1)Ai#])
E={0<i0<z<1,i=1} <
—— ——— =~ 0<1

Po P1 b2

CEGAR automatically constructs deductive proofs!
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Suppose we wanted to verify:

{true}
Ly i :=10;
¢1 :while(0 < z < 10) {
by d:=1i—1;
l3: x:=x+1;
}
l. :skip
{0<i}
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Suppose we wanted to verify: How would we do it by hand?

{true}
Ly i :=10;
¢1 :while(0 < z < 10) {
by d:=1i—1;
l3: x:=x+1;
}
l. :skip
{0<i}
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How would we do it by hand?
» Find the invariant 0 <i —«
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How would we do it by hand?
» Find the invariant 0 <i —«

Suppose we wanted to verify:

{true} .
0 i 1= 10; How would CEGAR do it?
¢1 :while(0 < z < 10) { » Findi=10,2=9
by di:=1—1; » Find:=10,2 =8
l3: x:=x+1; .
0 :ikip » Findi=9

{O < z} > .

Finding the right predicates early is crucial
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Learning Predicates

Before, we found new predicates by intuition
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Learning Predicates

Before, we found new predicates by intuition
Model checkers must do it automatically

Key tool: SMT solver
» Given counterexample ({1, 1), ..., ({n, ¢n) generate ¢patn
> Gpath is sat iff (41, ¢1), ..., (¢n, ¢n) NOt spurious
» If ¢patn Unsat, extract predicates from “witness”

Intuitively,
> ¢path Simulates executing the counterexample path

» If execution completes without error, path is valid
counterexample

» Otherwise, take an observation that explains why the path won’t
execute

Matt Fredrikson Symbolic Model Checking 23/31



SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
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SSA Form

To build ¢path, We’'ll put path in static single-assignment (SSA) form
Assume we’re given a path with only assign, assume, assert

Each variable is only assigned once:
1. Attach subscripts to vars, starting at 0
2. Each time a variable is assigned, increment its subscript
3. All reads of the variable use the must recent subscript
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

assert 0 < assert 0 < 49

7:=1 i1:=1

assert 0 < assert 0 < iy
assume 0 <z <1 assume 0 < xg <1
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1i=1—1 i9 =141 — 1
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

assert 0 < assert 0 < 49 assert 0 < 49

7:=1 i1:=1 assume i; =1
assert 0 < assert 0 < iy assert 0 < i
assume 0 <z <1 assume 0 < xg <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i) assert (0 < i1)
1:=7—1 20 =11 — 1 assume i =71 — 1
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 < assert 0 < 49 assert 0 < 49
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Building Path Formulas

We're given a path (¢1,¢1),. .., (b, dn)
1. Build an annotated path by including ¢, ..., ¢, as assertions
2. Convert the path into SSA form

3. Replace assignments with assume over equality

4. Compute weakest precondition of path wrt. true

assert 0 < assert 0 < 49 assert 0 < 49

7:=1 i1:=1 assume i; =1
assert 0 < assert 0 < iy assert 0 < i
assume 0 <z <1 assume 0 < xg <1 assume 0 < xg <1
assert —(0 < 1) assert (0 < i) assert (0 < i1)
1:=7—1 20 =11 — 1 assume i =71 — 1

Wp(. .. ,true) =0 <oA1 = 1IN0 <110 < 2 < 1/\ﬁ(0 < il)AiQ =11—1

Matt Fredrikson Symbolic Model Checking 25/31



Path Validity

We have a counterexample, path formula pair
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Path Validity

We have a counterexample, path formula pair

(i :=1,true)
(assume 0 < z < 1,0 < 19)
(i:=i—1,-(0 <))
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Path Validity

We have a counterexample, path formula pair

(i :=1,true)
(assume 0 < x < 1,0 <)
(i=1—1,-(0 <))

Is the path formula satisfiable?

No. We already knew this path was invalid

Matt Fredrikson

Symbolic Model Checking

0<ig A
i1=1A
0<51 A
0<zo<1A
ﬁ(OSil)/\
i9 =11 — 1
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Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?
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» Dropping any element of C* makes it satisfiable
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1. Drop [ from C to build C’
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Learning New Predicates: Unsat Cores

How do we automatically find such an explanation?

Recall: An unsatisfiable core C* is a subset of C:
» C* is still unsatisfiable

» Dropping any element of C* makes it satisfiable

To generate: For each literal [ in C"
1. Drop [ from C to build C’

2. If C’ is still unsatisfiable, then let C := C’
3. Otherwise, keep original C

We’ll modify this slightly:
1. First, enumerate every [,I’ € C where | # 1’

2. If | = U’, then remove I

Matt Fredrikson Symbolic Model Checking 27/31



Example: Learning New Predicates

Initial formula:

0<ip A
11 =1 AN
0 <11 A
0<zy <1l A
—\(0§i1) AN
g =11 — 1
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Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0 <10 A 0<1o A i1=1 A
i =1 A =1 A 0<zo<l A
0< 4 A 0<zo<1l A =(0 <41) A
0<zo<1l A -(0<id1) A io=ip — 1
—\(Ogil) A\ o =19 — 1
ig =19 —1

3: Remove 0 < 29 < 1

i1=1 A
-(0<4) A
g =11 — 1
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Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0<% A 0<1 N i1 =1 A
11 =1 A i1=1 A 0<zo<1l A
0<1i A 0<zo<1l A -(0<4) A
0<zo<1 A -(0<i1) A ig=d1 — 1
-(0<41) A ig =11 — 1
i =19 — 1
3: Remove 0 < zg <1 4: Remove iz =41 — 1

i1=1 A i1=1 A
-(0<d1) A -(0<i) A
g =11 — 1
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Example: Learning New Predicates

Initial formula: 1: Remove 0 < iy (i1 =1 =0 <14y) 2: Remove 0 < o
0<% A 0<1 N i1 =1 A
11 =1 A i1=1 A 0<zo<1l A
0<1i A 0<zo<1l A -(0<4) A
0<zo<1 A -(0<i1) A ig=d1 — 1
-(0<41) A ig =11 — 1
i =19 — 1
3: Remove 0 < zg <1 4: Remove iz =41 — 1

i1=1 A i1=1 A
-(0<d1) A -(0<i) A
g =11 — 1

i1 = 1 wasn’t previously in our set, so we refine by adding it
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Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
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Bounded Model Checking

Path formulas give us a way to check invariants on individual paths
1. Given an invariant property G ¢,

2. Enumerate a sequence of statements ¢4,...,¢,

3. Create the “counterexample” (¢4, true),. .., (€., true), (skip, —¢)
4. Generate the path formula ¢patn

5. Check ¢path for satisfiability

The results tell us everything:
» If unsat, there’s no way to execute /4, ..., ¢, satisfying —¢

» If sat, then this path is a valid counterexample

sat assignment to initial SSA variables is an input to the program
» When run on these inputs, the property will be violated
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Bounded Model Checking: Example

by i :=1;
4, :while(0 < z < 2) {
by i:=1—1;

l3: v:=x+1;

}

L, :assert(0 < i)
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Bounded Model Checking: Example

by i :=1;
4, :while(0 < z < 2) {
by di:=1—1;
l3: v:=x+1;
¥

L, :assert(0 < i)

We suspect the path:

1:=1;

assume(0 < z < 2)
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)
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Bounded Model Checking: Example

by i :=1;
(1 :while(0 <z < 2) { After SSA, assumption encoding:
by di:=1—1;
b x:=x+1; assume i1 = 1;
} assume 0 < zg < 2;

assume i; = i1 — 1;
assume r; = xg + 1;
assume 0 < z; < 2;

L, :assert(0 < i)

We suspect the path: assume iz = i — 1;
‘ assume x> = 1 + 1;
i=1 assume —(0 < x5 < 2);
assume(0 < z < 2) = ’
aesr assert 0 < i3;
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)
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Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by di:=1—1; =1 A
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1;
assume(0 < z < 2)
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)
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Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1; ) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1;
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)
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by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1; ) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1; i1=1,x0=0,i2=0,l’1=1,’1:3=—1,£L'2=2
Ti=x+1;

assume(—(0 < z < 2))
assert(0 < i)
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Bounded Model Checking: Example

by i=1;
4, :while(0 < z < 2) { Path formula:
by i:=1—1; =1 N
l3: x:=x+1; 0<z0<2 A
} o=1 — 1 A
L, :assert(0 < i) 1=z +1 A
0<x1 <2 A
We suspect the path: ig =12 — 1 A
ro=x1+1 A
=1 S(0<z2<2) A
assume(0 < z < 2) 0<is
i:=1—1;
Ti=x+1; ) o
assume(0 < z < 2) Is this satisfiable?
i:=1—1; i1=1,x0=0,i2=0,l’1=1,’1:3=—1,£L'2=2
Ti=x+1;

assume(—(0 < z < 2))

X We can use z = 0 as an initial test case
assert(0 < i)
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Next Lecture

Go over homeworks
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Next Lecture

Go over homeworks

Review for the final
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Next Lecture

Go over homeworks
Review for the final

Last homework due on Friday evening, 11:59
» No late days!
» University policy...
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