Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 24:
Symbolic Model Checking 2, Spin

Matt Fredrikson
mfredrik@cs.cmu.edu

November 29, 2016

Matt Fredrikson Symbolic Model Checking

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

» le, forany s,s’ € S where s #s', L(s) # L(s)

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

» le, forany s,s’ € S where s #s', L(s) # L(s)
» Thenif L(s) = p1,...,pn, We'll refer to s by writing:
J ZWARRERAY 7%

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

» le, forany s,s’ € S where s #s', L(s) # L(s)
» Thenif L(s) = p1,...,pn, We'll refer to s by writing:

J ZWARRERAY 7%
» If ¢ is a formula over atomic propositions, then
preferstotheset {s€ S| sk ¢}

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

» le, forany s,s’ € S where s #s', L(s) # L(s)
» Thenif L(s) = p1,...,pn, We'll refer to s by writing:

J ZWARRERAY 7%
» If ¢ is a formula over atomic propositions, then
preferstotheset {s€ S| sk ¢}

Recall: this is similar to how we treated assertions in Hoare logic

Matt Fredrikson Symbolic Model Checking 2/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates

Matt Fredrikson Symbolic Model Checking 3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates

Transitions reference ordered pairs of states (s, s)

Matt Fredrikson Symbolic Model Checking 3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

Matt Fredrikson Symbolic Model Checking 3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:

Matt Fredrikson Symbolic Model Checking

3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols

Matt Fredrikson Symbolic Model Checking

3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols
» So the predicate (p; A —p2) A (p] A ph):

Matt Fredrikson Symbolic Model Checking

3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols
» So the predicate (p1 A =p2) A (p1 A p3):
1. Begins in the state where p, is true and p; is false

Matt Fredrikson Symbolic Model Checking

3/43

Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols
» So the predicate (p; A —p2) A (p] A ph):

1. Begins in the state where p, is true and p; is false
2. Ends in the state where both p; and p» are true

Matt Fredrikson Symbolic Model Checking

3/43

Example: Symbolic Representation

Symbolic transitions:
(vo=0Av; =0AV,=0AV]
Vo (vg=0Av;=1Av =1A]
V o (vp=1Av;=0Av =1A]
V o (vp=1Avi=1A0vi=0A]

I
O = O =
N NN N

Initial state: vg =0 A vy =1

The transitions are a predicate

wR(Uo,UhUé,Ui)

44

Matt Fredrikson Symbolic Model Checking 4/43

Example: Symbolic Representation

Symbolic transitions:
(vo=0Av; =0AV,=0AV]
Vo (vg=0Av;=1Av =1A]
V o (vp=1Av;=0Av =1A]
V o (vp=1Avi=1A0vi=0A]

I
O = O =
N NN N

Initial state: vg =0 A vy =1

The transitions are a predicate

wR(Uo,UhUé,Ui)

. » Over four Boolean {0, 1} variables
_)

Matt Fredrikson Symbolic Model Checking 4/43

Example: Symbolic Representation

Symbolic transitions:
(vo=0Av; =0AV,=0AV]
Vo (vg=0Av;=1Av =1A]
V o (vp=1Av;=0Av =1A]
V o (vp=1Avi=1A0vi=0A]

I
O = O =
N NN N

Initial state: vg =0 A vy =1

The transitions are a predicate

wR(Uo,UhUé,Ui)

» Over four Boolean {0, 1} variables
—
. » Variables completely determine state
of system

Same for the initial state: v (vo, v1)

Matt Fredrikson Symbolic Model Checking 4/43

Let 7 : 2° — 25 be a predicate transfomer
» 7 is monotonic iff P C @ implies 7(P) C 7(Q)
» A fixpoint of 7 is a predicate (set) Z where 7(Z) = Z

» A least fixpoint of =, written uZ.7(2), is:

1. Afixpoint of 7, so 7(uZ.7(2)) = Z
2. A subset of any other fixpoint

» A greatest fixpoint of 7, written vZ.7(2), is:

1. Afixpoint of 7, so T(vZ.7(2)) = Z
2. A superset of any other fixpoint

Matt Fredrikson Symbolic Model Checking 5/43

Computing Fixpoints

We have a simple algorithm that gives us fixpoints

Matt Fredrikson Symbolic Model Checking 6/43

Computing Fixpoints

We have a simple algorithm that gives us fixpoints

function /fp(7) {
Q := false;
Q' =71(Q);
while(Q # Q') {
Q:=Q
Q=7(Q");
¥

return Q;

}

Matt Fredrikson Symbolic Model Checking 6/43

Computing Fixpoints

We have a simple algorithm that gives us fixpoints

function /fp(7) {
Q := false;
Q' =71(Q);
while(Q # Q') {
Q:=Q
Q=7(Q");
¥

return Q;

function gfp(7) {
Q := true;
Q' =71(Q);
while(Q # Q') {
Q:=Q
} Q:=7(Q");

return Q;

}

Matt Fredrikson

Symbolic Model Checking

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

» Greatest fixpoints correspond to global assertions

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

» Greatest fixpoints correspond to global assertions

Identify a CTL formula f with the predicate {s € S | M,s E f}

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

» Greatest fixpoints correspond to global assertions

Identify a CTL formula f with the predicate {s € S | M,s E f}

Our “base” operator is EX ¢, given by the predicate transformer:
T(V) = IV .p(V') A R(V,V)

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities
» Greatest fixpoints correspond to global assertions
Identify a CTL formula f with the predicate {s € S | M,s E f}

Our “base” operator is EX ¢, given by the predicate transformer:
T(V) = IV .p(V') A R(V,V)

Then we define a sufficient set of operators using fixpoints:

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities
» Greatest fixpoints correspond to global assertions
Identify a CTL formula f with the predicate {s € S | M,s E f}

Our “base” operator is EX ¢, given by the predicate transformer:
T(V) = IV .p(V') A R(V,V)

Then we define a sufficient set of operators using fixpoints:
» EGop=vZ.o NEXZ

Matt Fredrikson Symbolic Model Checking 7/43

Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

» Greatest fixpoints correspond to global assertions

Identify a CTL formula f with the predicate {s € S | M,s E f}

Our “base” operator is EX ¢, given by the predicate transformer:
T(V) = IV .p(V') A R(V,V)

Then we define a sufficient set of operators using fixpoints:
» EGop=vZ.o NEXZ

> E (1 U o) =puZp2V (61 NEX 2Z)

Matt Fredrikson Symbolic Model Checking 7/43

Example: E (p U q)

Matt Fredrikson

T(Z)=qV (p NEX Z)

) @ {a}

Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (p NEX Z)

) @ {a}

First compute 7(false) = 7(2)

Matt Fredrikson Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (p NEX Z)

wE @

{p} (50) {}

Then 71 (false) = 7({s2})

Matt Fredrikson Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (p NEX Z)

HosioXt

{p} (50) {}

Then 72(false) = 7({s1, s2})

Matt Fredrikson Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (pNEX Z)

WO Ow

{r} (%) é 0

Then 73(false) = 7({so, 51, 52})

Matt Fredrikson Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (pNEX Z)

WO Ow

{r} (%) é 0

Then 74(false) = 7({so, s1, 52}) = 73(false)

Matt Fredrikson Symbolic Model Checking

Example: E (p U q)

T(Z)=qV (pNEX Z)
(v} \/@ {a}
{r} (%) é 0

Then 74(false) = 7({so, s1, 52}) = 73(false)

We’ve reached the fixpoint uZ.7(2)

Matt Fredrikson Symbolic Model Checking 8/43

Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward

Matt Fredrikson Symbolic Model Checking 9/43

Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward

Recall: We want to know if an initial state I satisfies EX ¢

Matt Fredrikson Symbolic Model Checking 9/43

Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward
Recall: We want to know if an initial state I satisfies EX ¢

Our predicate transformer was: Iv'.¢(v') A R(v, V')

Matt Fredrikson Symbolic Model Checking 9/43

Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward
Recall: We want to know if an initial state I satisfies EX ¢
Our predicate transformer was: Iv'.¢(v') A R(v, V')

Then we check that the following formula is satisfiable:

(V) A (FV.0(V) A R(v,V))

Matt Fredrikson Symbolic Model Checking 9/43

Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward
Recall: We want to know if an initial state I satisfies EX ¢
Our predicate transformer was: Iv'.¢(v') A R(v, V')

Then we check that the following formula is satisfiable:

(V) A (FV.0(V) A R(v,V))

If it is, then the corresponding set is non-empty, and ¢ holds

Matt Fredrikson Symbolic Model Checking 9/43

Symbolic Model Checking (EX): Example

. Suppose we want to check EX vg = 1

—)‘—)
U1 (U(),’U1) Svg=0Av =

Yr(vo, v1, v, V1) &
(vo=0Av=0AVy=0AV] =1)
V(vg=0Avy=1Av)=1A0v]=0)
V(p=1Avy=0Avg=1Av] =1)
V(vp=1Avy=1Av)=0Av] =0)

Matt Fredrikson Symbolic Model Checking 10/43

Symbolic Model Checking (EX): Example

. Suppose we want to check EX vg = 1

We apply the transformer for EX :
_) .

Yr (U(),’U1)<:>’U0—0/\1}1—

Yr(vo,v1,vp,v1)
(vo=0Av=0AVy=0AV] =1)
V(vg=0Avy=1Av)=1A0v]=0)
V(p=1Avy=0Avg=1Av] =1)
V(vp=1Avy=1Av)=0Av] =0)

Matt Fredrikson Symbolic Model Checking 10/43

Symbolic Model Checking (EX): Example

We apply the transformer for EX :

! ! A ! !
Fu, vi.vh =1 A Yg(ve, v, vy, v])

. Suppose we want to check EX vg = 1

—)‘—)
Yr (U(),’U1) Svg=0Av; =

Yr(vo,v1,vp,v1)
(vo=0Av=0AVy=0AV] =1)
V(vg=0Avy=1Av)=1A0v]=0)
V(p=1Avy=0Avg=1Av] =1)
V(vp=1Avy=1Av)=0Av] =0)

Matt Fredrikson Symbolic Model Checking 10/43

Symbolic Model Checking (EX): Example

We apply the transformer for EX :
g, vivg = 1A Ygr(vo, v1, 05, V)

Then conjoin the initial states:

. Suppose we want to check EX vg = 1

_>‘—>

Pr(vo,v1) & v9=0Avy =

vg =0A v =0A

! ! ! / !
Fvy, v1.v5 = 1 A Yr(vo,v1,v5,v7)

Yr(vo, v1, v, V1) &
(vo=0Av=0AVy=0AV] =1)
V(vg=0Avy=1Av)=1A0v]=0)
V(p=1Avy=0Avg=1Av] =1)
V(vp=1Avy=1Av)=0Av] =0)

Matt Fredrikson Symbolic Model Checking 10/43

Symbolic Model Checking (EX): Example

We apply the transformer for EX :
g, vivg = 1A Ygr(vo, v1, 05, V)

Then conjoin the initial states:

. Suppose we want to check EX vg = 1

_>‘—>

Pr(vo,v1) & v9=0Avy =

vg =0A v =0A

! ! ! / !
Fvy, v1.v5 = 1 A Yr(vo,v1,v5,v7)

Gr(vo, v1,v),v)) < This formula is false, so there are no
(vo=0Av =0Av;=0Av] =1) states that satisfy
V(p=0Avy=1Avi=1Av]=0
V(p=1Avy=0Av;=1Av =1
V(p=1Avy=1Avi=0Av] =0

===

Matt Fredrikson Symbolic Model Checking 10/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

We know that we can compute greatest fixpoints by:

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true

2. Repeating, until the predicate doesn’t change

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true

2. Repeating, until the predicate doesn’t change

But before we can do this, must show vZ.¢ A EX Z is monotonic

Matt Fredrikson Symbolic Model Checking 11/43

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)

Matt Fredrikson Symbolic Model Checking

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)

We proceed exactly as we did for EG , but compute /fp instead

Matt Fredrikson Symbolic Model Checking 12/43

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
We proceed exactly as we did for EG , but compute /fp instead

Notice: this algorithm is very similar to the explicit-state one

Matt Fredrikson Symbolic Model Checking 12/43

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
We proceed exactly as we did for EG , but compute /fp instead

Notice: this algorithm is very similar to the explicit-state one
1. Compute the set of states satisfying the CTL formula

Matt Fredrikson Symbolic Model Checking 12/43

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
We proceed exactly as we did for EG , but compute /fp instead

Notice: this algorithm is very similar to the explicit-state one
1. Compute the set of states satisfying the CTL formula

2. Check that an initial state is in the result

Matt Fredrikson Symbolic Model Checking 12/43

Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
We proceed exactly as we did for EG , but compute /fp instead

Notice: this algorithm is very similar to the explicit-state one
1. Compute the set of states satisfying the CTL formula

2. Check that an initial state is in the result

But what have we gained by doing it this way?

Matt Fredrikson Symbolic Model Checking 12/43

Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}

An ordered binary decision tree consists of:

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,

» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,
» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

» Edges corresponding to Boolean values of z;

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(x1,...,x,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,

» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

» Edges corresponding to Boolean values of z;

Given a fixed ordering of x4, ..., z,, these are canonical

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(x1,...,x,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,
» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

» Edges corresponding to Boolean values of z;

Given a fixed ordering of x4, ..., z,, these are canonical
» Isomorphic trees 711, T> = Equivalent predicates ¢, ¢-

Matt Fredrikson Symbolic Model Checking 13/43

Efficient Propositional Encodings

Given a predicate ¢(x1,...,x,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,

» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

» Edges corresponding to Boolean values of z;

Given a fixed ordering of x4, ..., z,, these are canonical
» Isomorphic trees 711, T> = Equivalent predicates ¢, ¢-

This gives us an easy way to test fixpoints

Matt Fredrikson Symbolic Model Checking 13/43

Ordered Binary Decision Trees

Consider the two-bit comparator:
(1,22, y1,92) = (21 ¢ Y1) A (T2 > Y2)

Matt Fredrikson Symbolic Model Checking 14/43

Ordered Binary Decision Trees

Consider the two-bit comparator:
(1,22, y1,92) = (21 ¢ Y1) A (T2 > Y2)

12 12 12 12 12 12 12 12
1 [o]ofr][efe][efo]efo]lefo][+]o][o]x]

Matt Fredrikson Symbolic Model Checking

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

» Eliminate redundant internal nodes: if both edges give same
result, redirect incoming edges to successors

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

» Eliminate redundant internal nodes: if both edges give same
result, redirect incoming edges to successors

» Remove duplicate internal nodes: two nodes for same variable,
whose successors give same result

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

» Eliminate redundant internal nodes: if both edges give same
result, redirect incoming edges to successors

» Remove duplicate internal nodes: two nodes for same variable,
whose successors give same result

The result is no longer a tree, but a DAG

Matt Fredrikson Symbolic Model Checking 15/43

More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

» Eliminate redundant internal nodes: if both edges give same
result, redirect incoming edges to successors

» Remove duplicate internal nodes: two nodes for same variable,
whose successors give same result

The result is no longer a tree, but a DAG

These are called Ordered Binary Decision Diagrams (OBDDs)

Matt Fredrikson Symbolic Model Checking 15/43

Ordered Binary Decision Trees

12 12 12 12 12 12 12 12
L [o]ofr][efe][efo]lefo]lefo]l+]o]lo]x]

Matt Fredrikson Symbolic Model Checking 16/43

Ordered Binary Decision Trees

1

Matt Fredrikson Symbolic Model Checking 16/43

Ordered Binary Decision Trees

Matt Fredrikson Symbolic Model Checking

Ordered Binary Decision Trees

Matt Fredrikson Symbolic Model Checking 16/43

Ordered Binary Decision Trees

1701 01

Matt Fredrikson Symbolic Model Checking 16/43

Ordered Binary Decision Diagrams

Matt Fredrikson Symbolic Model Checking 17/43

OBDDs and Ordering

Variable ordering matters for OBDD size

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

> T1,%2, .-, Yn—1,Yn: 3 X 2" — 1 vertices

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

> T1,%2, .-, Yn—1,Yn: 3 X 2" — 1 vertices

Some predicates have exponential size for any ordering

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

> T1,%2, .-, Yn—1,Yn: 3 X 2" — 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space

Matt Fredrikson Symbolic Model Checking 18/43

OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

> T1,%2, .-, Yn—1,Yn: 3 X 2" — 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
» ~ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18/43

Introduction to Spin

Spin is a prominent model checking tool & simulator

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

» Applied to Mars Rovers, Deep Impact, Cassini, Toyota control
software, medical devices, ...

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

» Applied to Mars Rovers, Deep Impact, Cassini, Toyota control
software, medical devices, ...

» Accepts LTL, converts to Buchi automata

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

» Applied to Mars Rovers, Deep Impact, Cassini, Toyota control
software, medical devices, ...

» Accepts LTL, converts to Buchi automata

» Implements partial order reduction, on-the-fly checking, state
compression, BDD-like representations

Matt Fredrikson Symbolic Model Checking 19/43

Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

» Applied to Mars Rovers, Deep Impact, Cassini, Toyota control
software, medical devices, ...

» Accepts LTL, converts to Buchi automata

» Implements partial order reduction, on-the-fly checking, state
compression, BDD-like representations

Tool you'll use for the final homework

Matt Fredrikson Symbolic Model Checking 19/43

Why Spin?

Mature implementation
1. Under development since 1980, freely-available since 1991

2. Winner of ACM Software Systems Award (others include Unix,
TCP/IP, GCC, LLVM, make, ...)

3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: w-automata and LTL

Matt Fredrikson Symbolic Model Checking 20/43

Why Spin?

Mature implementation
1. Under development since 1980, freely-available since 1991

2. Winner of ACM Software Systems Award (others include Unix,
TCP/IP, GCC, LLVM, make, ...)

3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: w-automata and LTL

Good documentation
1. Several books (see Holzmann 2003, Ben-Ari 2008)
2. Annual workshops since 1995
3. Used extensively in other courses
4. Google turns up many hits when looking for specific info

Matt Fredrikson Symbolic Model Checking 20/43

Spin

model
name.pml

correctness
properties

a

random/ interactive/ guided

verifier

pan.c

simulation

Image credit: Bernhard Beckert and Vladimir Klebanov

Matt Fredrikson

failing
run

name.pml.trail

Symbolic Model Checking

executable
verifier

errors: 0

21/43

Promela

Process Meta Language

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin
» Just a few statement types

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin
» Just a few statement types
» Multi-threaded interleaving semantics

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin
» Just a few statement types
» Multi-threaded interleaving semantics
» Synchronization and message passing facilities

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin

v

Just a few statement types

Multi-threaded interleaving semantics
Synchronization and message passing facilities
Support for finite data structures

v vy

Matt Fredrikson Symbolic Model Checking 22/43

Promela

Process Meta Language

Modeling language used by Spin

Just a few statement types

Multi-threaded interleaving semantics
Synchronization and message passing facilities
Support for finite data structures

v

v vy

Not an implementation language
» No libraries
» No pointers
» No standard input
| 4

Matt Fredrikson Symbolic Model Checking 22/43

Promela: Hello World

active proctype P() {
printf ()
}

Matt Fredrikson Symbolic Model Checking 23/43

Promela: Hello World

active proctype P() {
printf ()
}

1. proctype declares a new process named P

Matt Fredrikson Symbolic Model Checking 23/43

Promela: Hello World

active proctype P() {
printf ()
}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes

Matt Fredrikson Symbolic Model Checking 23/43

Promela: Hello World

active proctype P() {
printf ()

}

1. proctype declares a new process named P
2. Promela programs consist of a finite set of concurrent processes

3. active denotes that P is run immediately

Matt Fredrikson Symbolic Model Checking 23/43

Promela: Hello World

active proctype P() {
printf ()
}

proctype declares a new process hamed P
Promela programs consist of a finite set of concurrent processes

active denotes that P is run immediately

PO Db~

C-like printf for debugging

Matt Fredrikson Symbolic Model Checking 23/43

Promela: Hello World

active proctype P() {
printf ()
}

proctype declares a new process hamed P
Promela programs consist of a finite set of concurrent processes

active denotes that P is run immediately

PO Db~

C-like printf for debugging

To run:

> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23/43

Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2731..2731-1]

#define N 10
byte arrayl[N];
array[0] = array[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Matt Fredrikson Symbolic Model Checking 24/43

Data types

bit {o,1} Basic types
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2°31..2°31-1]

#define N 10
byte arrayl[N];
array[0] = array[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Matt Fredrikson Symbolic Model Checking 24/43

Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2731..2731-1]

#define N 10
byte arrayl[N];
array [0] = arrayl[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Matt Fredrikson

Basic types

C-style preprocessor directives

Symbolic Model Checking

24/43

Data types

Lonls: 10,1} Basic types

bool {0,1}

byte [0..255]

short [-2715..2715-1]

int [-2°31..2°31-1]

#define N 10 C-style preprocessor directives
byte array[N]; array declarations

array [0] = arrayl[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Matt Fredrikson Symbolic Model Checking 24/43

Data types

bit {o,1} Basic types

bool {0,1}

byte [0..255]

short [-2°15..2715-1]

int [-2°31..2°31-1]

4define N 10 C-style preprocessor directives
byte array[N]; array declarations

array [0] = arrayl[1]; array access

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Matt Fredrikson Symbolic Model Checking 24/43

Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2731..2731-1]

#define N 10
byte arrayl[N];
array [0] = arrayl[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Basic types

C-style preprocessor directives
array declarations
array access

structured data

Matt Fredrikson Symbolic Model Checking 24/43

Basic Statements

Expressions are statements

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning

» X =X *x b5;

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning
» x =x * 5;

» Promela supports increment ++ and decrement -- assignments

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning
» x =x * 5;

» Promela supports increment ++ and decrement -- assignments

The no-op statment skip is supported

Matt Fredrikson Symbolic Model Checking 25/43

Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning
» x =x * 5;

» Promela supports increment ++ and decrement -- assignments

The no-op statment skip is supported

Control transfer via goto label is supported

Matt Fredrikson Symbolic Model Checking 25/43

Compound Statements

Sequential composition via the usual semicolon ; syntax

Matt Fredrikson Symbolic Model Checking 26/43

Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement

Matt Fredrikson Symbolic Model Checking 26/43

Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case

Matt Fredrikson Symbolic Model Checking 26/43

Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case
» Can be non-deterministic by omitting guard

Matt Fredrikson Symbolic Model Checking 26/43

Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case
» Can be non-deterministic by omitting guard

if
(a == b) -> state = state + 1

: else -> state = state - 1

fi

if

t:x =0

crox =1

fi

Matt Fredrikson Symbolic Model Checking 26/43

Blocking

All statements are either blocked or enabled

Matt Fredrikson Symbolic Model Checking 27/43

Blocking

All statements are either blocked or enabled

If an expression-statement evaluates to 0, then it is blocked

Matt Fredrikson Symbolic Model Checking 27/43

Blocking

All statements are either blocked or enabled

If an expression-statement evaluates to 0, then it is blocked

byte state = 1;

proctype A(Q)

{ byte tmp;
(state==1) -> tmp =

}

proctype B()

{ byte tmp;
(state==1) -> tmp =

}

init
{ run AQ); run BQ)
}

state; tmp tmp+1;

state; tmp = tmp-1;

state

state

tmp

tmp

Matt Fredrikson

Symbolic Model Checking

27/43

Repetition

Syntax for repetition is similar to if .. fi

Matt Fredrikson Symbolic Model Checking 28/43

Repetition

Syntax for repetition is similar to if .. fi
Keyword do .. od denote repetition block

Can also have non-deterministic behavior by omitting guards

Matt Fredrikson Symbolic Model Checking 28/43

Repetition

Syntax for repetition is similar to if .. fi
Keyword do .. od denote repetition block

Can also have non-deterministic behavior by omitting guards

proctype Euclid(int x, y)

do
(x>y) >x=x -3
(x <y) >y=y -x
: (x == y) -> break
od;
}

Matt Fredrikson Symbolic Model Checking 28/43

More on guards

guard -> command

When this appears in if or do:

Matt Fredrikson Symbolic Model Checking 29/43

More on guards

guard -> command

When this appears in if or do:
» command is optional: can write :: guard;

Matt Fredrikson Symbolic Model Checking 29/43

More on guards

guard -> command

When this appears in if or do:
» command is optional: can write :: guard;

» Guards can overlap: any alternative that is true is
non-deterministically selected

Matt Fredrikson Symbolic Model Checking 29/43

More on guards

: guard -> command

When this appears in if or do:
» command is optional: can write :: guard;

» Guards can overlap: any alternative that is true is
non-deterministically selected

» When no guards are true, the statement (and process) block
until one becomes true

Matt Fredrikson Symbolic Model Checking 29/43

Communication Channels

Processes can communicate by passing messages

Matt Fredrikson Symbolic Model Checking 30/43

Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

Matt Fredrikson Symbolic Model Checking 30/43

Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

» Synchronously via rendez-vous ports

Can declare an enumerated message type mtype

Matt Fredrikson Symbolic Model Checking 30/43

Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

» Synchronously via rendez-vous ports

Can declare an enumerated message type mtype
» One mtype per program

Matt Fredrikson Symbolic Model Checking 30/43

Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

» Synchronously via rendez-vous ports

Can declare an enumerated message type mtype
» One mtype per program

» Useful for abstract protocol specifications

Matt Fredrikson Symbolic Model Checking 30/43

Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

» Synchronously via rendez-vous ports

Can declare an enumerated message type mtype
» One mtype per program

» Useful for abstract protocol specifications

mtype = {ack, err, accept};

[16] of { mtype }; // store up to 16 messages
[16] of { int, mtype }; // two fields per message

chan cli
chan c2

// rendez-vous channel for synchronous communication
// size 0: can transmit but not store a message
chan port = [0] of { short };

Matt Fredrikson Symbolic Model Checking 30/43

Process Communications

Sending a message: channel!expr

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2
» Reads the head of channel into var

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2
» Reads the head of channel into var

» If channel is empty, statement blocks

Matt Fredrikson Symbolic Model Checking 31/43

Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2
» Reads the head of channel into var

» If channel is empty, statement blocks

The expression len(channel) returns # of messages on channel

Matt Fredrikson Symbolic Model Checking 31/43

Channels: Example

#define msgtype 33

chan name = [0] of { byte, byte };

active proctype A(Q)

{ name!msgtype,124;
// synchronous channel, no second receive in B
// process will block here forever
name !msgtype,121;

}

active proctype B()
{ byte state;
name?msgtype (state)

}

Matt Fredrikson Symbolic Model Checking 32/43

Atomicity

Basic statements execute atomically
» Assignments, expressions, goto, skip

Matt Fredrikson Symbolic Model Checking 33/43

Atomicity

Basic statements execute atomically
» Assignments, expressions, goto, skip

Guarded commands are not atomic

Matt Fredrikson Symbolic Model Checking 33/43

Atomicity

Basic statements execute atomically
» Assignments, expressions, goto, skip

Guarded commands are not atomic

int a, b, c;

active proctype P1() {
a=1; b = 5;
if
a !'=0->c
else -> ¢ =

= b / a; // this can be #divO0!
b;

fi
}

active proctype P2() {
a = 0;

}

Matt Fredrikson Symbolic Model Checking 33/43

Atomicity

Use an atomic block to prevent bad interleavings

Matt Fredrikson Symbolic Model Checking 34/43

Atomicity

Use an atomic block to prevent bad interleavings

int a, b, c;

active proctype P1() {
a=1; b = 5;

atomic {
if
al=0->c=D>b/ a;
else -> c = b;
fi
}

}

active proctype P2() {
a = 0;

}

Matt Fredrikson Symbolic Model Checking 34/43

Stating Correctness Properties: assert

Option 1: assert statements

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
flag[_pid] = true;
turn = _pid;
(flag[1i-_pid] == false || turn == 1-_pid);

@m@Earr

crit: assert(cnt == 1); // critical section
cnt--;

flag[_pid] = false;
}

Matt Fredrikson Symbolic Model Checking 35/43

Checking the property

model
name.pml

——

correctness
properties

e —

-a | verifier
pan.c

random/ interactive/ guided
simulation

Matt Fredrikson

failing
run
name.pml.trail

Symbolic Model Checking

executable
verifier

“errors: 0”

36/43

Checking the property

model
name.pml

——

correctness
properties

e —

—-a | verifier
pan.c

failing

random/ interactive/ guided run
simulation name.pml.trail

Step 1: Generate a verifier

> spin -a mutex.pml

Matt Fredrikson

Symbolic Model Checking

executable
verifier

“errors: 0

// spin generates pan.c

36/43

Checking the property

model
name.pml

7a

——

correctness
properties

e —

verifier

pan.c

random/ interactive/ guided
simulation

Step 2: Compile the verifier

> gcc -0 pan pan.c

Matt Fredrikson

failing
run
name.pml.trail

executable
verifier

“errors: 0”

// output in pan

Symbolic Model Checking

36/43

Checking the property

model
name.pml

7a

——

correctness
properties

e —

verifier

pan.c

random/ interactive/ guided
simulation

executable
verifier

run

name.pml.trail

failing

“errors: 0"

Step 3: Run the verifier to do exhaustive model checking

> ./pan

Matt Fredrikson

Symbolic Model Checking

36/43

Verification Results

(Spin Version 6.4.5 -- 1 January 2016)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)

invalid end states +

State-vector 28 byte, depth reached 16, errors: 0
56 states, stored
21 states, matched
77 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.003 equivalent memory usage for states
0.292 actual memory usage for states
128.000 memory used for hash table (-w24)

0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

unreached in proctype user
(0 of 8 states)

Matt Fredrikson Symbolic Model Checking 37/43

Stating Correctness Properties: LTL

Option 2: Write an LTL formula

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
flag[_pid] = true;
turn = _pid;
(flag[1i-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flagl[_pid] = false;
}

1tl mutex { [] (!pl[0]@crit || !pl[1]@crit) }

Matt Fredrikson Symbolic Model Checking 38/43

LTL in Spin

Grammar :
1tl ::= opd | (1tl) | 1tl binop 1tl | unop 1tl

Operands (opd):
true, false, user-defined names starting with a lower-case letter,
or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):
[1 (the temporal operator always)
<> (the temporal operator eventually)
! (the boolean operator for negation)

Binary Operators (binop):
U (the temporal operator strong until)
W (the temporal operator weak until
v (the dual of U): (p V q) means !(!p U !q))
&% (the boolean operator for logical and)
|l (the boolean operator for logical or)
/\ (alternative form of &&)
\/ (alternative form of ||)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)

Matt Fredrikson Symbolic Model Checking 39/43

Counterexamples

Let’s introduce the bug from the previous homework

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
turn = _pid;
flag[_pid] = true;
(flag[1i-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flagl[_pid] = false;
}

1tl mutex { [] (!pl[0]@crit || !pl[1]@crit) }

Matt Fredrikson Symbolic Model Checking 40/43

Generating counterexmaples

> spin -a mutex.pml; gcc -o pan pan.c; ./pan
> spin -t -p -1 mutex.pml

using statement merging
1: proc 1 (user:1) mutex.pml:8 (state 1) [turn = _pid]
2: proc O (user:1) mutex.pml:8 (state 1) [turn = _pid]
3: proc O (user:1) mutex.pml:9 (state 2) [flagl[_pid] = 1]
4: proc O (user:1) mutex.pml:10 (state 3) [(((flagl[(1-_pid)I==0)|I(
turn==(1-_pid))))]
5: proc 1 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
6: proc 1 (user:1) mutex.pml:10 (state 3) [(((flagl[(1-_pid)]1==0)11(
turn==(1-_pid))))]
7: proc 1 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
8: proc 1 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
9: proc O (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
spin: mutex.pml:13, Error: assertion violated
spin: text of failed assertion: assert((cnt==1))
10: proc O (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
spin: trail ends after 10 steps
#processes: 2

flag[0] = 1
flag[1] = 1
turn = 0
cnt = 2

10: proc 1 (user:1) mutex.pml:14 (state 6)
10: proc O (user:1) mutex.pml:14 (state 6)
2 processes created

Matt Fredrikson Symbolic Model Checking 41/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

Matt Fredrikson Symbolic Model Checking 42/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail

Matt Fredrikson Symbolic Model Checking 42/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail

» -t option tells Spin to use mutex.pml.trail to guide simulation

Matt Fredrikson Symbolic Model Checking 42/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail
» -t option tells Spin to use mutex.pml.trail to guide simulation

» Basically, inject the discovered fault into execution

Matt Fredrikson Symbolic Model Checking 42/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail
» -t option tells Spin to use mutex.pml.trail to guide simulation
» Basically, inject the discovered fault into execution

» —p option prints all statements in the execution

Matt Fredrikson Symbolic Model Checking 42/43

Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail

» -t option tells Spin to use mutex.pml.trail to guide simulation
» Basically, inject the discovered fault into execution

» —p option prints all statements in the execution

» -1 option prints the values of local variables

Matt Fredrikson Symbolic Model Checking 42/43

Next Lecture

Last assignment goes out today
Due at midnight on last day of classes

Next class: Software Model Checking

Matt Fredrikson Symbolic Model Checking 43/43

