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Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

▶ Need to assume that states are uniquely determined by their
propositions

▶ I.e., for any s, s′ ∈ S where s ̸= s′, L(s) ̸= L(s′)
▶ Then if L(s) = p1, . . . , pn, we’ll refer to s by writing:

p1 ∧ · · · ∧ pn
▶ If ϕ is a formula over atomic propositions, then

ϕ refers to the set {s ∈ S | s |= ϕ}

Recall: this is similar to how we treated assertions in Hoare logic
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Symbolic Transition Systems (Recap)

We also represent transitions as predicates

Transitions reference ordered
pairs of states (s, s′)

The transition relation is just a set of these pairs, so as a predicate,
R(s, s′) = 1 ⇔ (s, s′) ∈ R

We’ll represent transition predicates using atomic propositions:
▶ To refer to “next state”, prime the proposition symbols
▶ So the predicate (p1 ∧ ¬p2) ∧ (p′1 ∧ p′2):

1. Begins in the state where p1 is true and p2 is false
2. Ends in the state where both p1 and p2 are true
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Example: Symbolic Representation

00 01

1011

Symbolic transitions:
(v0 = 0 ∧ v1 = 0 ∧ v′0 = 0 ∧ v′1 = 1)

∨ (v0 = 0 ∧ v1 = 1 ∧ v′0 = 1 ∧ v′1 = 0)
∨ (v0 = 1 ∧ v1 = 0 ∧ v′0 = 1 ∧ v′1 = 1)
∨ (v0 = 1 ∧ v1 = 1 ∧ v′0 = 0 ∧ v′1 = 0)

Initial state: v0 = 0 ∧ v0 = 1

The transitions are a predicate
ψR(v0, v1, v

′
0, v

′
1)

▶ Over four Boolean {0, 1} variables
▶ Variables completely determine state

of system

Same for the initial state: ψI(v0, v1)
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Fixpoints

Let τ : 2S 7→ 2S be a predicate transfomer

▶ τ is monotonic iff P ⊆ Q implies τ(P ) ⊆ τ(Q)

▶ A fixpoint of τ is a predicate (set) Z where τ(Z) = Z

▶ A least
fixpoint of τ , written µZ.τ(Z), is:

1. A fixpoint of τ , so τ(µZ.τ(Z)) = Z

2. A subset of any other fixpoint

▶ A greatest
fixpoint of τ , written νZ.τ(Z), is:

1. A fixpoint of τ , so τ(νZ.τ(Z)) = Z

2. A superset of any other fixpoint
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Computing Fixpoints

We have a simple algorithm that gives us fixpoints

function lfp(τ) {
Q := false;
Q′ := τ(Q);
while(Q ̸= Q′) {
Q := Q′;
Q := τ(Q′);

}
return Q;

}

function gfp(τ) {
Q := true;
Q′ := τ(Q);
while(Q ̸= Q′) {
Q := Q′;
Q := τ(Q′);

}
return Q;

}
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Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

▶ Least fixpoints correspond to eventualities
▶ Greatest fixpoints correspond to global
assertions

Identify a CTL formula f with the predicate {s ∈ S |M, s |= f}

Our “base” operator is EX ϕ, given by the predicate transformer:
τ(v) = ∃v′.ϕ(v′) ∧R(v, v′)

Then we define a sufficient set of operators using fixpoints:
▶ EG ϕ = νZ.ϕ ∧ EX Z
▶ E (ϕ1 U ϕ2) = µZ.ϕ2 ∨ (ϕ1 ∧ EX Z)
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Example: E (p U q)

τ(Z) = q ∨ (p ∧ EX Z)

s0

s1 s2

s3{p}

{p} {q}

{}

We’ve reached the fixpoint µZ.τ(Z)
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Example: E (p U q)

τ(Z) = q ∨ (p ∧ EX Z)

s0

s1 s2

s3{p}

{p} {q}

{}

First compute τ(false) = τ(∅)

We’ve reached the fixpoint µZ.τ(Z)
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Example: E (p U q)

τ(Z) = q ∨ (p ∧ EX Z)
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s3{p}

{p} {q}

{}
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Example: E (p U q)

τ(Z) = q ∨ (p ∧ EX Z)

s0

s1 s2

s3{p}

{p} {q}

{}

Then τ2(false) = τ({s1, s2})

We’ve reached the fixpoint µZ.τ(Z)

Matt Fredrikson Symbolic Model Checking 8 / 43



Example: E (p U q)
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Example: E (p U q)

τ(Z) = q ∨ (p ∧ EX Z)

s0

s1 s2

s3{p}

{p} {q}

{}

Then τ4(false) = τ({s0, s1, s2}) = τ3(false)

We’ve reached the fixpoint µZ.τ(Z)
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Symbolic Model Checking (EX )

Checking EX ϕ is fairly straightforward

Recall: We want to know if an initial state I satisfies EX ϕ

Our predicate transformer was: ∃v′.ϕ(v′) ∧R(v, v′)

Then we check that the following formula is satisfiable:
ψI(v) ∧ (∃v′.ϕ(v′) ∧R(v, v′))

If it is, then the corresponding set is non-empty, and ϕ holds
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Symbolic Model Checking (EX ): Example

00 01

1011

ψI(v0, v1) ⇔ v0 = 0 ∧ v1 = 0

ψR(v0, v1, v
′
0, v

′
1) ⇔

(v0 = 0 ∧ v1 = 0 ∧ v′0 = 0 ∧ v′1 = 1)
∨ (v0 = 0 ∧ v1 = 1 ∧ v′0 = 1 ∧ v′1 = 0)
∨ (v0 = 1 ∧ v1 = 0 ∧ v′0 = 1 ∧ v′1 = 1)
∨ (v0 = 1 ∧ v1 = 1 ∧ v′0 = 0 ∧ v′1 = 0)

Suppose we want to check EX v0 = 1

We apply the transformer for EX :
∃v′0, v′1.v′0 = 1 ∧ ψR(v0, v1, v

′
0, v

′
1)

Then conjoin the initial states:

v0 = 0 ∧ v1 = 0∧
∃v′0, v′1.v′0 = 1 ∧ ψR(v0, v1, v

′
0, v

′
1)

This formula is false, so there are no
states that satisfy
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Symbolic Model Checking (EG )

We have that EG ϕ = νZ.ϕ ∧ EX Z

So to check EG ϕ:
1. Find the fixpoint of τ = νZ.ϕ ∧ EX Z
2. Conjoin ψI

3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true
2. Repeating, until the predicate doesn’t change

But before we can do this, must show νZ.ϕ ∧ EX Z is monotonic
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Symbolic Model Checking (E (ϕ1 U ϕ2))

We have that E (ϕ1 U ϕ2) = µZ.ϕ2 ∨ (ϕ1 ∧ EX Z)

We proceed exactly as we did for EG , but compute lfp instead

Notice: this algorithm is very similar to the explicit-state one
1. Compute the set of states satisfying the CTL formula
2. Check that an initial state is in the result

But what have we gained by doing it this way?
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Efficient Propositional Encodings

Given a predicate ϕ(x1, . . . , xn) 7→ {0, 1}

An ordered
binary
decision
tree consists of:
▶ Internal nodes corresponding to variables x1, . . . , xn
▶ Leaf nodes corresponding to Boolean values of ϕ(x1, . . . , xn)
▶ Edges corresponding to Boolean values of xi

Given a fixed ordering of x1, . . . , xn, these are canonical
▶ Isomorphic trees T1, T2 =⇒ Equivalent predicates ϕ1, ϕ2

This gives us an easy way to test fixpoints
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Ordered Binary Decision Trees

Consider the two-bit comparator:
ϕ(x1, x2, y1, y2) = (x1 ↔ y1) ∧ (x2 ↔ y2)
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More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
▶ Merge duplicate leaves: only one terminal with each label
▶ Eliminate redundant internal nodes: if both edges give same

result, redirect incoming edges to successors
▶ Remove duplicate internal nodes: two nodes for same variable,

whose successors give same result

The result is no longer a tree, but a DAG

These are called Ordered
Binary
Decision
Diagrams (OBDDs)
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Ordered Binary Decision Trees
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Ordered Binary Decision Diagrams
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OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:

▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices

▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space

▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
▶ x1, y1, . . . , xn, yn: 3n + 2 vertices
▶ x1, x2, . . . , yn−1, yn: 3× 2n − 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
▶ ∼ order of magnitude savings on many real examples

Matt Fredrikson Symbolic Model Checking 18 / 43



Introduction to Spin

Spin is a prominent model checking tool & simulator

▶ Simple Promela Interpreter
▶ Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980
▶ Applied to Mars Rovers, Deep Impact, Cassini, Toyota control

software, medical devices, …
▶ Accepts LTL, converts to Buchi automata
▶ Implements partial order reduction, on-the-fly checking, state

compression, BDD-like representations

Tool you’ll use for the final homework
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Why Spin?

Mature implementation
1. Under development since 1980, freely-available since 1991
2. Winner of ACM Software Systems Award (others include Unix,

TCP/IP, GCC, LLVM, make, …)
3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: ω-automata and LTL

Good documentation
1. Several books (see Holzmann 2003, Ben-Ari 2008)
2. Annual workshops since 1995
3. Used extensively in other courses
4. Google turns up many hits when looking for specific info
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Spin

Image credit: Bernhard Beckert and Vladimir Klebanov
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Promela

Process Meta Language

Modeling language used by Spin
▶ Just a few statement types
▶ Multi-threaded interleaving semantics
▶ Synchronization and message passing facilities
▶ Support for finite data structures

Not an implementation language
▶ No libraries
▶ No pointers
▶ No standard input
▶ ...
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Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes

3. active denotes that P is run immediately
4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately

4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Promela: Hello World

active proctype P() {
printf("Hello world!");

}

1. proctype declares a new process named P

2. Promela programs consist of a finite set of concurrent processes
3. active denotes that P is run immediately
4. C-like printf for debugging

To run:
> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23 / 43



Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2^15..2^15-1]
int [-2^31..2^31-1]

#define N 10
byte array[N];
array[0] = array[1];

typedef Msg {
byte header[16];
int payload;

}
Msg x;
x.payload = 1;

Basic types

C-style preprocessor directives
array declarations
array access

structured data
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Basic Statements

Expressions are statements

▶ No side effects
▶ Standard arithmetic operations
▶ Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning
▶ x = x * 5;
▶ Promela supports increment ++ and decrement -- assignments

The no-op statment skip is supported

Control transfer via goto label is supported
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Compound Statements

Sequential
composition via the usual semicolon ; syntax

▶ The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
▶ Expressions guard each case
▶ Can be non-deterministic by omitting guard

if
:: (a == b) -> state = state + 1
:: else -> state = state - 1
fi

if
:: x = 0
:: x = 1
fi
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Blocking

All statements are either blocked or enabled

If an expression-statement evaluates to 0, then it is blocked

byte state = 1;

proctype A()
{ byte tmp;

(state==1) -> tmp = state; tmp = tmp+1; state = tmp
}

proctype B()
{ byte tmp;

(state==1) -> tmp = state; tmp = tmp-1; state = tmp
}

init
{ run A(); run B()
}
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Repetition

Syntax for repetition is similar to if .. fi

Keyword do .. od denote repetition block

Can also have non-deterministic behavior by omitting guards

proctype Euclid(int x, y)
{

do
:: (x > y) -> x = x - y
:: (x < y) -> y = y - x
:: (x == y) -> break
od;

}
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More on guards

:: guard -> command

When this appears in if or do:

▶ command is optional: can write :: guard;
▶ Guards can overlap: any alternative that is true is

non-deterministically selected
▶ When no guards are true, the statement (and process) block

until one becomes true
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Communication Channels

Processes can communicate by passing messages

▶ Asynchronously via a buffered FIFO queue
▶ Synchronously via rendez-vous ports

Can declare an enumerated message type mtype
▶ One mtype per program
▶ Useful for abstract protocol specifications

mtype = {ack, err, accept};

chan c1 = [16] of { mtype }; // store up to 16 messages
chan c2 = [16] of { int, mtype }; // two fields per message

// rendez-vous channel for synchronous communication
// size 0: can transmit but not store a message
chan port = [0] of { short };
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Process Communications

Sending a message: channel!expr

▶ Can specify multiple fields with channel!expr1,expr2
▶ Appends the value of expr to the end of channel
▶ If channel is full, statement blocks

Receiving a message: channel?var
▶ Can specify multiple fields with channel?expr1,expr2
▶ Reads the head of channel into var
▶ If channel is empty, statement blocks

The expression len(channel) returns # of messages on channel
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Channels: Example

#define msgtype 33

chan name = [0] of { byte, byte };

active proctype A()
{ name!msgtype ,124;

// synchronous channel , no second receive in B
// process will block here forever
name!msgtype ,121;

}

active proctype B()
{ byte state;

name?msgtype(state)
}
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Atomicity

Basic statements execute atomically
▶ Assignments, expressions, goto, skip

Guarded commands are not
atomic

int a, b, c;

active proctype P1() {
a = 1; b = 5;
if
:: a != 0 -> c = b / a; // this can be #div0!
:: else -> c = b;
fi

}

active proctype P2() {
a = 0;

}
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Atomicity

Use an atomic block to prevent bad interleavings

int a, b, c;

active proctype P1() {
a = 1; b = 5;
atomic {

if
:: a != 0 -> c = b / a;
:: else -> c = b;
fi

}
}

active proctype P2() {
a = 0;

}
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Stating Correctness Properties: assert

Option 1: assert statements
bool flag[2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{

flag[_pid] = true;
turn = _pid;
(flag[1-_pid] == false || turn == 1-_pid);

cnt++;
crit: assert(cnt == 1); // critical section

cnt--;

flag[_pid] = false;
}
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Checking the property
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Checking the property

Step 1: Generate a verifier
> spin -a mutex.pml // spin generates pan.c
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Checking the property

Step 2: Compile the verifier
> gcc -o pan pan.c // output in pan
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Checking the property

Step 3: Run the verifier to do exhaustive model checking
> ./pan
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Verification Results

(Spin Version 6.4.5 -- 1 January 2016)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 28 byte, depth reached 16, errors: 0
56 states, stored
21 states, matched
77 transitions (= stored+matched)

0 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.003 equivalent memory usage for states
0.292 actual memory usage for states

128.000 memory used for hash table (-w24)
0.534 memory used for DFS stack (-m10000)

128.730 total actual memory usage

unreached in proctype user
(0 of 8 states)
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Stating Correctness Properties: LTL

Option 2: Write an LTL formula
bool flag[2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{

flag[_pid] = true;
turn = _pid;
(flag[1-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flag[_pid] = false;
}

ltl mutex { [] (!p[0]@crit || !p[1]@crit) }
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LTL in Spin

Grammar:
ltl ::= opd | ( ltl ) | ltl binop ltl | unop ltl

Operands (opd):
true, false, user-defined names starting with a lower-case letter,
or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):
[] (the temporal operator always)
<> (the temporal operator eventually)
! (the boolean operator for negation)

Binary Operators (binop):
U (the temporal operator strong until)
W (the temporal operator weak until
V (the dual of U): (p V q) means !(!p U !q))
&& (the boolean operator for logical and)
|| (the boolean operator for logical or)
/\ (alternative form of &&)
\/ (alternative form of ||)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)
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Counterexamples

Let’s introduce the bug from the previous homework
bool flag[2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{

turn = _pid;
flag[_pid] = true;
(flag[1-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flag[_pid] = false;
}

ltl mutex { [] (!p[0]@crit || !p[1]@crit) }
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Generating counterexmaples
> spin -a mutex.pml; gcc -o pan pan.c; ./pan
> spin -t -p -l mutex.pml

using statement merging
1: proc 1 (user:1) mutex.pml:8 (state 1) [turn = _pid]
2: proc 0 (user:1) mutex.pml:8 (state 1) [turn = _pid]
3: proc 0 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
4: proc 0 (user:1) mutex.pml:10 (state 3) [(((flag[(1-_pid)]==0)||(

turn==(1-_pid))))]
5: proc 1 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
6: proc 1 (user:1) mutex.pml:10 (state 3) [(((flag[(1-_pid)]==0)||(

turn==(1-_pid))))]
7: proc 1 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
8: proc 1 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
9: proc 0 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]

spin: mutex.pml:13, Error: assertion violated
spin: text of failed assertion: assert((cnt==1))

10: proc 0 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
spin: trail ends after 10 steps
#processes: 2

flag[0] = 1
flag[1] = 1
turn = 0
cnt = 2

10: proc 1 (user:1) mutex.pml:14 (state 6)
10: proc 0 (user:1) mutex.pml:14 (state 6)

2 processes created
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Generating counterexmaples

> spin -t -p -l mutex.pml

▶ Failed verification produces mutex.pml.trail
▶ -t option tells Spin to use mutex.pml.trail to guide simulation
▶ Basically, inject the discovered fault into execution
▶ -p option prints all statements in the execution
▶ -l option prints the values of local variables
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Next Lecture

Last assignment goes out today

Due at midnight on last day of classes

Next
class: Software Model Checking
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