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Symbolic Transition Systems (Recap)

We’ll represent states by their atomic propositions:

» Need to assume that states are uniquely determined by their
propositions

» le, forany s,s’ € S where s #s', L(s) # L(s)
» Thenif L(s) = p1,...,pn, We'll refer to s by writing:

J ZWARRERAY 7%
» If ¢ is a formula over atomic propositions, then
preferstotheset {s€ S| sk ¢}

Recall: this is similar to how we treated assertions in Hoare logic
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We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols
» So the predicate (p1 A =p2) A (p1 A p3):
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Symbolic Transition Systems (Recap)

We also represent transitions as predicates
Transitions reference ordered pairs of states (s, s)

The transition relation is just a set of these pairs, so as a predicate,
R(s,s')=1%(s,8) € R

We’ll represent transition predicates using atomic propositions:
» To refer to “next state”, prime the proposition symbols
» So the predicate (p; A —p2) A (p] A ph):

1. Begins in the state where p, is true and p; is false
2. Ends in the state where both p; and p» are true

Matt Fredrikson Symbolic Model Checking

3/43



Example: Symbolic Representation

Symbolic transitions:
(vo=0Av; =0AV,=0AV]
Vo (vg=0Av;=1Av =1A]
V o (vp=1Av;=0Av =1A]
V o (vp=1Avi=1A0vi=0A]

I
O = O =
N NN N

Initial state: vg =0 A vy =1

The transitions are a predicate

wR(Uo,UhUé,Ui)
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Example: Symbolic Representation

Symbolic transitions:
(vo=0Av; =0AV,=0AV]
Vo (vg=0Av;=1Av =1A]
V o (vp=1Av;=0Av =1A]
V o (vp=1Avi=1A0vi=0A]

I
O = O =
N NN N

Initial state: vg =0 A vy =1

The transitions are a predicate

wR(Uo,UhUé,Ui)

» Over four Boolean {0, 1} variables
—
. » Variables completely determine state
of system

Same for the initial state: v (vo, v1)
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Let 7 : 2° — 25 be a predicate transfomer
» 7 is monotonic iff P C @ implies 7(P) C 7(Q)
» A fixpoint of 7 is a predicate (set) Z where 7(Z) = Z

» A least fixpoint of =, written uZ.7(2), is:

1. Afixpoint of 7, so 7(uZ.7(2)) = Z
2. A subset of any other fixpoint

» A greatest fixpoint of 7, written vZ.7(2), is:

1. Afixpoint of 7, so T(vZ.7(2)) = Z
2. A superset of any other fixpoint
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Computing Fixpoints

We have a simple algorithm that gives us fixpoints
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Computing Fixpoints

We have a simple algorithm that gives us fixpoints

function /fp(7) {
Q := false;
Q' =71(Q);
while(Q # Q') {
Q:=Q
Q=7(Q");
¥

return Q;

function gfp(7) {
Q := true;
Q' =71(Q);
while(Q # Q') {
Q:=Q
} Q:=7(Q");

return Q;

}

Matt Fredrikson
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Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers
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Fixpoint Semantics of CTL

We can define the semantics of CTL in terms of fixpoints and
predicate transformers

» Least fixpoints correspond to eventualities

» Greatest fixpoints correspond to global assertions

Identify a CTL formula f with the predicate {s € S | M,s E f}

Our “base” operator is EX ¢, given by the predicate transformer:
T(V) = IV .p(V') A R(V,V)

Then we define a sufficient set of operators using fixpoints:
» EGop=vZ.o NEXZ

> E (1 U o) =puZp2V (61 NEX 2Z)
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Example: E (p U q)

Matt Fredrikson

T(Z)=qV (p NEX Z)

) @ {a}
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Example: E (p U q)

T(Z)=qV (p NEX Z)

) @ {a}

First compute 7(false) = 7(2)
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Example: E (p U q)

T(Z)=qV (p NEX Z)

wE @

{p} (50) {}

Then 71 (false) = 7({s2})
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Example: E (p U q)

T(Z)=qV (p NEX Z)

HosioXt

{p} (50) {}

Then 72(false) = 7({s1, s2})
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Example: E (p U q)

T(Z)=qV (pNEX Z)

WO Ow

{r} (%) é 0

Then 73(false) = 7({so, 51, 52})
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Example: E (p U q)

T(Z)=qV (pNEX Z)

WO Ow

{r} (%) é 0

Then 74(false) = 7({so, s1, 52}) = 73(false)
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Example: E (p U q)

T(Z)=qV (pNEX Z)
(v} \/@ {a}
{r} (%) é 0

Then 74(false) = 7({so, s1, 52}) = 73(false)

We’ve reached the fixpoint uZ.7(2)
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Symbolic Model Checking (EX)
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Symbolic Model Checking (EX)

Checking EX ¢ is fairly straightforward
Recall: We want to know if an initial state I satisfies EX ¢
Our predicate transformer was: Iv'.¢(v') A R(v, V')

Then we check that the following formula is satisfiable:

(V) A (FV.0(V) A R(v,V))

If it is, then the corresponding set is non-empty, and ¢ holds
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Symbolic Model Checking (EX ): Example

. Suppose we want to check EX vg = 1

—)‘—)
U1 (U(),’U1) Svg=0Av =

Yr(vo, v1, v, V1) &
(vo=0Av=0AVy=0AV] =1)
V(vg=0Avy=1Av)=1A0v]=0)
V(p=1Avy=0Avg=1Av] =1)
V(vp=1Avy=1Av)=0Av] =0)
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. Suppose we want to check EX vg = 1

We apply the transformer for EX :
_) .

Yr (U(),’U1)<:>’U0—0/\1}1—

Yr(vo,v1,vp,v1)
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Symbolic Model Checking (EX ): Example

We apply the transformer for EX :

! ! A ! !
Fu, vi.vh =1 A Yg(ve, v, vy, v])

. Suppose we want to check EX vg = 1

—)‘—)
Yr (U(),’U1) Svg=0Av; =

Yr(vo,v1,vp,v1)
(vo=0Av=0AVy=0AV] =1)
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Symbolic Model Checking (EX ): Example

We apply the transformer for EX :
g, vivg = 1A Ygr(vo, v1, 05, V)

Then conjoin the initial states:

. Suppose we want to check EX vg = 1

_>‘—>

Pr(vo,v1) & v9=0Avy =

vg =0A v =0A

! ! ! / !
Fvy, v1.v5 = 1 A Yr(vo,v1,v5,v7)

Yr(vo, v1, v, V1) &
(vo=0Av=0AVy=0AV] =1)
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Symbolic Model Checking (EX ): Example

We apply the transformer for EX :
g, vivg = 1A Ygr(vo, v1, 05, V)

Then conjoin the initial states:

. Suppose we want to check EX vg = 1

_>‘—>

Pr(vo,v1) & v9=0Avy =

vg =0A v =0A

! ! ! / !
Fvy, v1.v5 = 1 A Yr(vo,v1,v5,v7)

Gr(vo, v1,v),v)) < This formula is false, so there are no
(vo=0Av =0Av;=0Av] =1) states that satisfy
V(p=0Avy=1Avi=1Av]=0
V(p=1Avy=0Av;=1Av =1
V(p=1Avy=1Avi=0Av] =0

===
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Symbolic Model Checking (EG)

We have that EG ¢ = vZ.0 NEX Z

So to check EG ¢:
1. Find the fixpointof r =vZ.¢ NEX Z

2. Conjoin v
3. Check for satisfiability

We know that we can compute greatest fixpoints by:
1. Applying the predicate transformer to true

2. Repeating, until the predicate doesn’t change

But before we can do this, must show vZ.¢ A EX Z is monotonic
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Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
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Symbolic Model Checking (E (¢1 U ¢»))
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Symbolic Model Checking (E (¢1 U ¢»))

We have that E (¢1 U ¢3) = uZ.¢2 V (¢1 NEX Z)
We proceed exactly as we did for EG , but compute /fp instead

Notice: this algorithm is very similar to the explicit-state one
1. Compute the set of states satisfying the CTL formula

2. Check that an initial state is in the result

But what have we gained by doing it this way?
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Efficient Propositional Encodings

Given a predicate ¢(z1,...,2,) — {0,1}
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Efficient Propositional Encodings

Given a predicate ¢(x1,...,x,) — {0,1}

An ordered binary decision tree consists of:
» Internal nodes corresponding to variables z1, ..., x,

» Leaf nodes corresponding to Boolean values of ¢(z1,...,x,)

» Edges corresponding to Boolean values of z;

Given a fixed ordering of x4, ..., z,, these are canonical
» Isomorphic trees 711, T> = Equivalent predicates ¢, ¢-

This gives us an easy way to test fixpoints
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Ordered Binary Decision Trees

Consider the two-bit comparator:
(1,22, y1,92) = (21 ¢ Y1) A (T2 > Y2)
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Ordered Binary Decision Trees

Consider the two-bit comparator:
(1,22, y1,92) = (21 ¢ Y1) A (T2 > Y2)

12 12 12 12 12 12 12 12
1 [o]ofr][efe][efo]efo]lefo][+]o][o]x]
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More efficient representations

Ordered binary trees are canonical, but as large as truth tables

Idea: remove redundant information
» Merge duplicate leaves: only one terminal with each label

» Eliminate redundant internal nodes: if both edges give same
result, redirect incoming edges to successors

» Remove duplicate internal nodes: two nodes for same variable,
whose successors give same result

The result is no longer a tree, but a DAG

These are called Ordered Binary Decision Diagrams (OBDDs)
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Ordered Binary Decision Trees

12 12 12 12 12 12 12 12
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Ordered Binary Decision Trees
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Ordered Binary Decision Trees
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Ordered Binary Decision Diagrams
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Variable ordering matters for OBDD size
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OBDDs and Ordering

Variable ordering matters for OBDD size

For an n-bit comparator:
> 2T1,Y1,---,%n, Ynt 3N + 2 vertices

> T1,%2, .-, Yn—1,Yn: 3 X 2" — 1 vertices

Some predicates have exponential size for any ordering

OBDDs typically introduce drastic savings on time and space
» ~ order of magnitude savings on many real examples
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Introduction to Spin

Spin is a prominent model checking tool & simulator
» Simple Promela Interpreter

» Gerard Holzmann at Bell Labs’ Unix group, starting c. 1980

» Applied to Mars Rovers, Deep Impact, Cassini, Toyota control
software, medical devices, ...

» Accepts LTL, converts to Buchi automata

» Implements partial order reduction, on-the-fly checking, state
compression, BDD-like representations

Tool you'll use for the final homework
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Why Spin?

Mature implementation
1. Under development since 1980, freely-available since 1991

2. Winner of ACM Software Systems Award (others include Unix,
TCP/IP, GCC, LLVM, make, ...)

3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: w-automata and LTL
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Why Spin?

Mature implementation
1. Under development since 1980, freely-available since 1991

2. Winner of ACM Software Systems Award (others include Unix,
TCP/IP, GCC, LLVM, make, ...)

3. Lots of real applications and successes (see previous slide)
4. Several projects extend Spin with frontends and other utilities
5. Based on concepts we’ve covered: w-automata and LTL

Good documentation
1. Several books (see Holzmann 2003, Ben-Ari 2008)
2. Annual workshops since 1995
3. Used extensively in other courses
4. Google turns up many hits when looking for specific info
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Spin

model
name.pml

correctness
properties

a

random/ interactive/ guided

verifier

pan.c

simulation

Image credit: Bernhard Beckert and Vladimir Klebanov
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Promela

Process Meta Language
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Promela

Process Meta Language

Modeling language used by Spin

Just a few statement types

Multi-threaded interleaving semantics
Synchronization and message passing facilities
Support for finite data structures

v

v vy

Not an implementation language
» No libraries
» No pointers
» No standard input
| 4
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Promela: Hello World

active proctype P() {
printf ( )
}
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proctype declares a new process hamed P
Promela programs consist of a finite set of concurrent processes
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Promela: Hello World

active proctype P() {
printf ( )
}

proctype declares a new process hamed P
Promela programs consist of a finite set of concurrent processes

active denotes that P is run immediately

PO Db~

C-like printf for debugging

To run:

> spin hellow.pml
Hello world!

Matt Fredrikson Symbolic Model Checking 23/43



Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2731..2731-1]

#define N 10
byte arrayl[N];
array[0] = array[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;
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Data types

Lonls: 10,1} Basic types

bool {0,1}

byte [0..255]

short [-2715..2715-1]

int [-2°31..2°31-1]

#define N 10 C-style preprocessor directives
byte array[N]; array declarations

array [0] = arrayl[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;
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Data types

bit {o,1} Basic types

bool {0,1}

byte [0..255]

short [-2°15..2715-1]

int [-2°31..2°31-1]

4define N 10 C-style preprocessor directives
byte array[N]; array declarations

array [0] = arrayl[1]; array access

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;
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Data types

bit {0,1}
bool {0,1}
byte [0..255]
short [-2715..2715-1]
int [-2731..2731-1]

#define N 10
byte arrayl[N];
array [0] = arrayl[1];

typedef Msg {
byte header[16];
int payload;

}

Msg x;

x.payload = 1;

Basic types

C-style preprocessor directives
array declarations
array access

structured data
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Basic Statements

Expressions are statements
» No side effects
» Standard arithmetic operations
» Conditional expression: (x >= 0 -> x : -x)

Assignments have the usual meaning
» x =x * 5;

» Promela supports increment ++ and decrement -- assignments

The no-op statment skip is supported

Control transfer via goto label is supported
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Compound Statements

Sequential composition via the usual semicolon ; syntax

Matt Fredrikson Symbolic Model Checking 26/43



Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement

Matt Fredrikson Symbolic Model Checking 26/43



Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case

Matt Fredrikson Symbolic Model Checking 26/43



Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case
» Can be non-deterministic by omitting guard

Matt Fredrikson Symbolic Model Checking 26/43



Compound Statements

Sequential composition via the usual semicolon ; syntax
» The arrow -> can be used interchangably with ;

Selection via the computing if..fi statement
» Expressions guard each case
» Can be non-deterministic by omitting guard

if
(a == b) -> state = state + 1

: else -> state = state - 1

fi

if

t:x =0

crox =1

fi
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Blocking

All statements are either blocked or enabled
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Blocking

All statements are either blocked or enabled

If an expression-statement evaluates to 0, then it is blocked

byte state = 1;

proctype A(Q)

{ byte tmp;
(state==1) -> tmp =

}

proctype B()

{ byte tmp;
(state==1) -> tmp =

}

init
{ run AQ); run BQ)
}

state; tmp tmp+1;

state; tmp = tmp-1;

state

state

tmp

tmp

Matt Fredrikson
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Repetition

Syntax for repetition is similar to if .. fi
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Repetition

Syntax for repetition is similar to if .. fi
Keyword do .. od denote repetition block

Can also have non-deterministic behavior by omitting guards

proctype Euclid(int x, y)

do
(x>y) >x=x -3
(x <y) >y=y -x
: (x == y) -> break
od;
}
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More on guards

guard -> command

When this appears in if or do:
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More on guards

: guard -> command

When this appears in if or do:
» command is optional: can write :: guard;

» Guards can overlap: any alternative that is true is
non-deterministically selected

» When no guards are true, the statement (and process) block
until one becomes true
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Communication Channels

Processes can communicate by passing messages
» Asynchronously via a buffered FIFO queue

» Synchronously via rendez-vous ports

Can declare an enumerated message type mtype
» One mtype per program

» Useful for abstract protocol specifications

mtype = {ack, err, accept};

[16] of { mtype }; // store up to 16 messages
[16] of { int, mtype }; // two fields per message

chan cli
chan c2

// rendez-vous channel for synchronous communication
// size 0: can transmit but not store a message
chan port = [0] of { short };
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Process Communications

Sending a message: channel!expr
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Process Communications
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» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2
» Reads the head of channel into var
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Process Communications

Sending a message: channel!expr
» Can specify multiple fields with channel!expri,expr2
» Appends the value of expr to the end of channel

» If channel is full, statement blocks

Receiving a message: channel?var
» Can specify multiple fields with channel?exprl,expr2
» Reads the head of channel into var

» If channel is empty, statement blocks

The expression len(channel) returns # of messages on channel
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Channels: Example

#define msgtype 33

chan name = [0] of { byte, byte };

active proctype A(Q)

{ name!msgtype,124;
// synchronous channel, no second receive in B
// process will block here forever
name !msgtype,121;

}

active proctype B()
{ byte state;
name?msgtype (state)

}
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Basic statements execute atomically
» Assignments, expressions, goto, skip
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Atomicity

Basic statements execute atomically
» Assignments, expressions, goto, skip

Guarded commands are not atomic

int a, b, c;

active proctype P1() {
a=1; b = 5;
if
a !'=0->c
else -> ¢ =

= b / a; // this can be #divO0!
b;

fi
}

active proctype P2() {
a = 0;

}
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Atomicity

Use an atomic block to prevent bad interleavings
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Atomicity

Use an atomic block to prevent bad interleavings

int a, b, c;

active proctype P1() {
a=1; b = 5;

atomic {
if
al=0->c=D>b/ a;
else -> c = b;
fi
}

}

active proctype P2() {
a = 0;

}
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Stating Correctness Properties: assert

Option 1: assert statements

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
flag[_pid] = true;
turn = _pid;
(flag[1i-_pid] == false || turn == 1-_pid);

@m@Earr

crit: assert(cnt == 1); // critical section
cnt--;

flag[_pid] = false;
}
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correctness
properties

e —
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random/ interactive/ guided
simulation
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Checking the property

model
name.pml

——

correctness
properties

e —

—-a | verifier
pan.c

failing

random/ interactive/ guided run
simulation name.pml.trail

Step 1: Generate a verifier

> spin -a mutex.pml
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Checking the property

model
name.pml

7a

——

correctness
properties

e —

verifier

pan.c

random/ interactive/ guided
simulation

Step 2: Compile the verifier

> gcc -0 pan pan.c

Matt Fredrikson
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run
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executable
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“errors: 0”
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Checking the property

model
name.pml

7a

——

correctness
properties

e —

verifier

pan.c

random/ interactive/ guided
simulation

executable
verifier

run

name.pml.trail

failing

“errors: 0"

Step 3: Run the verifier to do exhaustive model checking

> ./pan

Matt Fredrikson
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Verification Results

(Spin Version 6.4.5 -- 1 January 2016)
+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)

invalid end states +

State-vector 28 byte, depth reached 16, errors: 0
56 states, stored
21 states, matched
77 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.003 equivalent memory usage for states
0.292 actual memory usage for states
128.000 memory used for hash table (-w24)

0.534 memory used for DFS stack (-m10000)
128.730 total actual memory usage

unreached in proctype user
(0 of 8 states)
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Stating Correctness Properties: LTL

Option 2: Write an LTL formula

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
flag[_pid] = true;
turn = _pid;
(flag[1i-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flagl[_pid] = false;
}

1tl mutex { [] (!pl[0]@crit || !pl[1]@crit) }
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LTL in Spin

Grammar :
1tl ::= opd | ( 1tl ) | 1tl binop 1tl | unop 1tl

Operands (opd):
true, false, user-defined names starting with a lower-case letter,
or embedded expressions inside curly braces, e.g.,: { a+b>n }.

Unary Operators (unop):
[1 (the temporal operator always)
<> (the temporal operator eventually)
! (the boolean operator for negation)

Binary Operators (binop):
U (the temporal operator strong until)
W (the temporal operator weak until
v (the dual of U): (p V q) means !(!p U !q))
&% (the boolean operator for logical and)
|l (the boolean operator for logical or)
/\ (alternative form of &&)
\/ (alternative form of ||)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)
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Counterexamples

Let’s introduce the bug from the previous homework

bool flagl([2];
bool turn;
byte cnt = 0;

active [2] proctype user()
{
turn = _pid;
flag[_pid] = true;
(flag[1i-_pid] == false || turn == 1-_pid);

crit: skip; // critical section

flagl[_pid] = false;
}

1tl mutex { [] (!pl[0]@crit || !pl[1]@crit) }
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Generating counterexmaples

> spin -a mutex.pml; gcc -o pan pan.c; ./pan
> spin -t -p -1 mutex.pml

using statement merging
1: proc 1 (user:1) mutex.pml:8 (state 1) [turn = _pid]
2: proc O (user:1) mutex.pml:8 (state 1) [turn = _pid]
3: proc O (user:1) mutex.pml:9 (state 2) [flagl[_pid] = 1]
4: proc O (user:1) mutex.pml:10 (state 3) [(((flagl[(1-_pid)I==0)|I(
turn==(1-_pid))))]
5: proc 1 (user:1) mutex.pml:9 (state 2) [flag[_pid] = 1]
6: proc 1 (user:1) mutex.pml:10 (state 3) [(((flagl[(1-_pid)]1==0)11(
turn==(1-_pid))))]
7: proc 1 (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
8: proc 1 (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
9: proc O (user:1) mutex.pml:12 (state 4) [cnt = (cnt+1)]
spin: mutex.pml:13, Error: assertion violated
spin: text of failed assertion: assert((cnt==1))
10: proc O (user:1) mutex.pml:13 (state 5) [assert((cnt==1))]
spin: trail ends after 10 steps
#processes: 2

flag[0] = 1
flag[1] = 1
turn = 0
cnt = 2

10: proc 1 (user:1) mutex.pml:14 (state 6)
10: proc O (user:1) mutex.pml:14 (state 6)
2 processes created
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Generating counterexmaples

> spin -t -p -1 mutex.pml
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Generating counterexmaples

> spin -t -p -1 mutex.pml

» Failed verification produces mutex.pml.trail

» -t option tells Spin to use mutex.pml.trail to guide simulation
» Basically, inject the discovered fault into execution

» —p option prints all statements in the execution

» -1 option prints the values of local variables
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Next Lecture

Last assignment goes out today
Due at midnight on last day of classes

Next class: Software Model Checking
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