Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 20:
Explicit-State Model Checking, Part 2

Matt Fredrikson
mfredrik@cs.cmu.edu

November 17, 2016

Matt Fredrikson Model Checking Techniques

Today’s Lecture

LTL Model Checking

Matt Fredrikson Model Checking Techniques 2/33

Today’s Lecture

LTL Model Checking

Algorithm based on automata operations

Matt Fredrikson Model Checking Techniques 2/33

Today’s Lecture

LTL Model Checking

Algorithm based on automata operations
» Refresher on basic automata theory

Matt Fredrikson Model Checking Techniques 2/33

Today’s Lecture

LTL Model Checking

Algorithm based on automata operations
» Refresher on basic automata theory
» Introduce automata for languages of infinite words

Matt Fredrikson Model Checking Techniques 2/33

Today’s Lecture

LTL Model Checking

Algorithm based on automata operations
» Refresher on basic automata theory
» Introduce automata for languages of infinite words
» See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):
» (is afinite set of states; () initial states, F’ final

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):
» (is afinite set of states; () initial states, F’ final

» X is a finite alphabet

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):
» (is afinite set of states; () initial states, F’ final

» X is a finite alphabet

» 0 C Q x X x Q is the transition relation

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):
» (is afinite set of states; () initial states, F’ final

» X is a finite alphabet

» 0 C Q x X x Q is the transition relation

An automaton is deterministic (a DFA) if:
Va € X.(q,a,q") €A (q,a,¢") €d=q=q"

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q, X, 6, Qo, F):
» (is afinite set of states; () initial states, F’ final

» X is a finite alphabet

» 0 C Q x X x Q is the transition relation

An automaton is deterministic (a DFA) if:
Va € X.(q,a,q") €A (q,a,¢") €d=q=q"

—>$L
a,b

Q= {quq1}72 = {avb}vQO = {QO}aF = {‘h}

Example:

Matt Fredrikson Model Checking Techniques 3/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

A run for w in A is a finite sequence of states ¢ . .. ¢,—1 Where:

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

A run for w in A is a finite sequence of states ¢ . .. ¢,—1 Where:
> qo € Qo

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

A run for w in A is a finite sequence of states ¢ . . . g,—1 Where:
> qo0 € Qo
> (g5 ai,qis1) €S forall0<i<n

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

A run for w in A is a finite sequence of states ¢ . . . g,—1 Where:
> qo0 € Qo
> (g5 ai,qis1) €S forall0<i<n

Arun is accepting if it ends in a final state, e.g., ¢, € F

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word

A run for w in A is a finite sequence of states ¢ . . . g,—1 Where:
> qo0 € Qo
> (g5 ai,qis1) €S forall0<i<n

Arun is accepting if it ends in a final state, e.g., ¢, € F

The word w is accepted by A if it has an accepting run

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word
A run for w in A is a finite sequence of states ¢ . .. ¢,—1 Where:

> qo € Qo

> (qi,ai,qiﬂ) codforall0<i<n
Arun is accepting if it ends in a final state, e.g., ¢, € F

The word w is accepted by A if it has an accepting run

The language of A, denoted L(A), is the subset of ¥* it accepts:
L(A) = {w € ¥* | 3 accepting run for w}

Matt Fredrikson Model Checking Techniques 4/33

Finite Automata & Languages

Let A=(Q,%,0,Qo, F) bean NFA, w =qag...a, € X* a finite word
A run for w in A is a finite sequence of states ¢ . .. ¢,—1 Where:

> qo € Qo

> (qi,ai,qiﬂ) codforall0<i<n
Arun is accepting if it ends in a final state, e.g., ¢, € F

The word w is accepted by A if it has an accepting run

The language of A, denoted L(A), is the subset of ¥* it accepts:
L(A) = {w € ¥* | 3 accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaq is

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted

abababaa is

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted

abababaa is accepted

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted
abababaa is accepted

aaaaaaab is

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted
abababaa is accepted

aaaaaaab is rejected

Matt Fredrikson Model Checking Techniques 5/33

_)

a,b

Q={q,01},X={a,b},Q0 ={q}, F ={a1}

aaaaaaaa is accepted
abababaa is accepted

aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5/33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

Matt Fredrikson Model Checking Techniques 6/33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness problem

Matt Fredrikson Model Checking Techniques 6/33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness problem

Given an NFA A, decide whether L(A4) = @

Matt Fredrikson Model Checking Techniques 6/33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness problem
Given an NFA A, decide whether L(A4) = @

This is equivalent to reachability:
L(A) # o iff 3qo, gr.qy reachable from g

Matt Fredrikson Model Checking Techniques 6/33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness problem
Given an NFA A, decide whether L(A4) = @

This is equivalent to reachability:
L(A) # o iff 3qo, gr.qy reachable from g

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6/33

Regular Languages

The languages recognized by NFAs are called regular

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite words

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:
» o is the RE denoting the empty language

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:
» o is the RE denoting the empty language
» ¢ is the RE denoting the language with the empty word

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:
» o is the RE denoting the empty language
» ¢ is the RE denoting the language with the empty word
» If £ is an RE, then E* denotes the finite repetitions of £

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:
» o is the RE denoting the empty language
» ¢ is the RE denoting the language with the empty word
» If £ is an RE, then E* denotes the finite repetitions of £
» If F1, E> are REs, then E; + E> denotes union of their languages

Matt Fredrikson Model Checking Techniques 7/33

Regular Languages

The languages recognized by NFAs are called regular
Regular languages contain finite words

Regular languages are also represented by regular expressions:
» o is the RE denoting the empty language
» ¢ is the RE denoting the language with the empty word
» If £ is an RE, then E* denotes the finite repetitions of £
» If F1, E> are REs, then E; + E> denotes union of their languages
» If £, F5 are REs, then E; F> denotes their concatenation

Matt Fredrikson Model Checking Techniques 7/33

%ﬁ
a,b
Q={q, 0}, X =1{a,b},Qo={q}, F={q1}

The language of this automaton is:

Matt Fredrikson Model Checking Techniques 8/33

%ﬁ
a,b
Q={q, 0}, X =1{a,b},Qo={q}, F={q1}

The language of this automaton is:
L(A)=(a+b)a

Matt Fredrikson Model Checking Techniques 8/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
L D

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» Fq+ Es:

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» [E4 + E5: closed under union

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» [E4 + E5: closed under union
» FEs:

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» [E4 + E5: closed under union

» FiFs: closed under concatenation

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» [E4 + E5: closed under union

» FiFs: closed under concatenation

They’re also closed under intersection and complement
If L, L, Ly are regular languages, so are L1 N Lo, X"\ L

Matt Fredrikson Model Checking Techniques 9/33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
» E*: closed under finite repetition

» [E4 + E5: closed under union

» FiFs: closed under concatenation

They’re also closed under intersection and complement
If L, L, Ly are regular languages, so are L1 N Lo, X"\ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors

We’ll describe such behaviors using w-regular languages

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors
We’ll describe such behaviors using w-regular languages

These can be described by w-regular expressions of the form:
E\FP +---+ E F?

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors
We’ll describe such behaviors using w-regular languages

These can be described by w-regular expressions of the form:
E\FP +---+ E F?

» E; and F; are regular expressions, ¢ ¢ L(F;)

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors
We’ll describe such behaviors using w-regular languages

These can be described by w-regular expressions of the form:
E\FP +---+ E F?

» E; and F; are regular expressions, ¢ ¢ L(F;)
» Union and concatenation work as they did before

Matt Fredrikson Model Checking Techniques 10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors

We’ll describe such behaviors using w-regular languages

These can be described by w-regular expressions of the form:

E\FP +---+ E F?

» E; and F; are regular expressions, ¢ ¢ L(F;)
» Union and concatenation work as they did before
» w denotes infinite repetition

Matt Fredrikson Model Checking Techniques

10/33

Languages of Infinite Words

NFAs and REs describe languages containing finite words
Our transition systems describe infinite behaviors
We’ll describe such behaviors using w-regular languages

These can be described by w-regular expressions of the form:
E\FP +---+ E F?

» E; and F; are regular expressions, ¢ ¢ L(F;)

» Union and concatenation work as they did before
» w denotes infinite repetition

» Like Kleene x, but ad infinitum

Matt Fredrikson Model Checking Techniques 10/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €?

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €? ¢ = ¢

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €? ¢ = ¢

Given an infinite word w, w* =

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €? ¢ = ¢

Given an infinite word w, w* = w

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €? ¢ = ¢
Given an infinite word w, w* = w

We'll lift w to finite languages L C ¥* as well:

L¥ = {wywaws ... |w; € L}

Matt Fredrikson Model Checking Techniques 11/33

Infinite Repetition w

For a word ab, we know that (ab)* denotes the set
{ab, abab, ababab, . . .}

What does (ab)“ denote?
(ab)® = {ababababab ...}

What about the empty word €? ¢ = ¢
Given an infinite word w, w* = w

We'll lift w to finite languages L C ¥* as well:

L¥ = {wywaws ... |w; € L}

If L doesn’t contain ¢, L is an infinite language

Matt Fredrikson Model Checking Techniques 11/33

How do we write mutual exclusion as an w-regular expression?

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold
» Setting ¥ = 27 (the atomic propositions) seems reasonable

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold
» Setting ¥ = 27 (the atomic propositions) seems reasonable
» In this case, P = {crity, crita}

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold
» Setting ¥ = 27 (the atomic propositions) seems reasonable
» In this case, P = {crity, crita}

Then symbols are {}, {crit, }, {crit,, crits}, . ..

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold
» Setting ¥ = 27 (the atomic propositions) seems reasonable
» In this case, P = {crity, crita}

Then symbols are {}, {crit, }, {crit,, crits}, . ..

Our expression is:

Matt Fredrikson Model Checking Techniques 12/33

How do we write mutual exclusion as an w-regular expression?

Recall, this was the safety property (invariant):
G _'Cfitl \Y _\Cl'itQ

First, we need to define the alphabet
» Need to reason about the set of all propositions that might hold
» Setting ¥ = 27 (the atomic propositions) seems reasonable
» In this case, P = {crity, crita}

Then symbols are {}, {crit, }, {crit,, crits}, . ..

Our expression is:

({} + {crit:} + {crita })*

Matt Fredrikson Model Checking Techniques 12/33

Automata on Infinite Words

NFA : Regular :: : w-Regular

Matt Fredrikson Model Checking Techniques 13/33

Automata on Infinite Words

NFA : Regular :: Nondeterministic Buchi Automata : w-Regular

Nondeterministic Buchi Automaton (NBA)

A NBA M is a tuple (3, Q, Qq, F,d), where:
» X is an alphabet
» (is afinite set of states
» Qo C Q is the set of initial states
» [C Q is the set of accepting states
» § C @ x X x Q is the transition function

Matt Fredrikson Model Checking Techniques

13/33

Automata on Infinite Words

NFA : Regular :: Nondeterministic Buchi Automata : w-Regular

Nondeterministic Buchi Automaton (NBA)

A NBA M is a tuple (3, Q, Qq, F,d), where:
» X is an alphabet
» (is afinite set of states
» Qo C Q is the set of initial states
» [C Q is the set of accepting states
» § C @ x X x Q is the transition function

The “syntax” is the same as NFAs; obviously the semantics is
different

Matt Fredrikson Model Checking Techniques 13/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

Matt Fredrikson Model Checking Techniques 14/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

A run for w in A is an infinite sequence of states ¢ . . . ¢,—1 where:

Matt Fredrikson Model Checking Techniques 14/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

A run for w in A is an infinite sequence of states ¢ . . . ¢,—1 where:
> qo € Qo

Matt Fredrikson Model Checking Techniques 14/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

A run for w in A is an infinite sequence of states ¢ . . . ¢,—1 where:
> qo € Qo
> (¢i,ai,qis1) €6 forall0<i<n

Matt Fredrikson Model Checking Techniques 14/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

A run for w in A is an infinite sequence of states ¢ . . . ¢,—1 where:
> qo € Qo
> (¢i,ai,qis1) €6 forall0<i<n

A run is accepting if ¢; € F' for infinitely many indices i:
{¢eQ|Vi>0,3j>iq=q¢)NF#2

Matt Fredrikson Model Checking Techniques 14/33

Buchi Automata: Infinite Runs & Acceptance

Let w = aqga; . .. be an infinite word in ¢

A run for w in A is an infinite sequence of states ¢ . . . ¢,—1 where:
> qo € Qo
> (¢i,ai,qis1) €6 forall0<i<n

A run is accepting if ¢; € F' for infinitely many indices i:
{¢eQ|Vi>0,3j>iq=q¢)NF#2

A language is w-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14/33

c b

b

Matt Fredrikson Model Checking Techniques 15/33

c b

b

What runs does the word ¢ have?

Matt Fredrikson Model Checking Techniques 15/33

What runs does the word ¢ have?
q

Matt Fredrikson Model Checking Techniques 15/33

What runs does the word ¢ have?
q

What about ab*?

Matt Fredrikson Model Checking Techniques 15/33

c b

b

What runs does the word ¢ have?
q

What about ab*?
q142 CJ?,J

Matt Fredrikson Model Checking Techniques 15/33

c b

b

What runs does the word ¢ have?
q

What about ab*?
q142 CJ?,J

Is (cabb)* accepted?

Matt Fredrikson Model Checking Techniques 15/33

c b

b

What runs does the word ¢ have?
q

What about ab*?
q142 CJ?,J

Is (cabb)* accepted? What is its run?

Matt Fredrikson Model Checking Techniques 15/33

c b

b

What runs does the word ¢ have?

@y
What about ab*?
719295
Is (cabb)* accepted? What is its run?
(@1919293)”

Matt Fredrikson Model Checking Techniques 15/33

a,b b

—(q b @

What w-regular expression does this accept?

Matt Fredrikson Model Checking Techniques 16/33

a,b b

—(q b @

What w-regular expression does this accept?
(a+0b)*d”

Matt Fredrikson Model Checking Techniques 16/33

a,b b

—(q b @

What w-regular expression does this accept?
(a+0b)*d”

What does it mean?

Matt Fredrikson Model Checking Techniques 16/33

a,b b

—(2 b @

What w-regular expression does this accept?
(a+0b)*d”

What does it mean? a occurs only finitely many times

Matt Fredrikson Model Checking Techniques 16/33

Example: No send after read

Suppose we want to describe a safety property:

The client must never send a packet after reading a classified file

Matt Fredrikson Model Checking Techniques 17/33

Example: No send after read

Suppose we want to describe a safety property:
The client must never send a packet after reading a classified file

Let P = {Send, Read}

Matt Fredrikson Model Checking Techniques 17/33

Example: No send after read

Suppose we want to describe a safety property:
The client must never send a packet after reading a classified file

Let P = {Send, Read}

Technically, our 3 should be: {{}, {Send}, {Read}, {Send, Read}}

Matt Fredrikson Model Checking Techniques 17/33

Example: No send after read

Suppose we want to describe a safety property:
The client must never send a packet after reading a classified file

Let P = {Send, Read}
Technically, our 3 should be: {{}, {Send}, {Read}, {Send, Read}}

We’ll be a bit sloppy, and let X be formulas over Send, Read

Matt Fredrikson Model Checking Techniques 17/33

Example: No send after read

Then we can write an w-regular expression:

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)“

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)“

And we can encode this as an NBA:

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)“

And we can encode this as an NBA:

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)~

And we can encode this as an NBA:

)

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)~

And we can encode this as an NBA:

—Read

)

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)~

And we can encode this as an NBA:

—Read

®

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)” + (Read)(—Send)~

And we can encode this as an NBA:

—Read

/{% Read
0
_/

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)“ + (Read)(—Send)*

And we can encode this as an NBA:

—Read

B

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)“ + (Read)(—Send)*

And we can encode this as an NBA:

—Read —-Send

& B

Matt Fredrikson Model Checking Techniques 18/33

Example: No send after read

Then we can write an w-regular expression:
(—Read)“ + (Read)(—Send)“

And we can encode this as an NBA:

—Read —-Send

~O—=

Matt Fredrikson Model Checking Techniques 18/33

Example: Partial correctness

Now a more complicated example:

Whenever the precondition is satisfied and the program terminates,
the postcondition must be satisfied

Matt Fredrikson Model Checking Techniques 19/33

Example: Partial correctness

Now a more complicated example:

Whenever the precondition is satisfied and the program terminates,
the postcondition must be satisfied

Our alphabet: formulas over {Pre, Post, Done}

Matt Fredrikson Model Checking Techniques 19/33

Example: Partial correctness

Now a more complicated example:

Whenever the precondition is satisfied and the program terminates,
the postcondition must be satisfied

Our alphabet: formulas over {Pre, Post, Done}

What’s our w-regular expression?

Matt Fredrikson Model Checking Techniques 19/33

Example: Partial correctness

Now a more complicated example:

Whenever the precondition is satisfied and the program terminates,
the postcondition must be satisfied

Our alphabet: formulas over {Pre, Post, Done}

What’s our w-regular expression?
—Pretrue* + Pre-~Done® + Pre—=Done"* (Done A Post)“

Matt Fredrikson Model Checking Techniques 19/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—=Done" + Pre—Done"(Done A Post)*

And a corresponding NBA:

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—Done" + Pre—Done”*(Done A Post)*

And a corresponding NBA:

@

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—Done" + Pre—Done”*(Done A Post)*

And a corresponding NBA:

@

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—Done" + Pre—Done”*(Done A Post)*

And a corresponding NBA:

@

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—Done" + Pre—Done”*(Done A Post)*

And a corresponding NBA:

@ Pre A —=Done
—

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done

—

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done

Pre A —=Done
—(90 q1

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done

Pre A —=Done Done A Post
—(90 q1

—Pre

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done

p Pre A —=Done }(}\ Done A Post
& \J

—Pre

()

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done Done A Post
p Pre A —=Done }(}\ Done A Post
& \J

—Pre

()

true

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done Done A Post
Pre A —~Done }1\ Done A Post
— N

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—-Done" + Pre—Done"(Done A Post)®

And a corresponding NBA:

—Done Done A Post
Pre A —~Done }1\ Done A Post
— N

Pre N\ Done A Post
—Pre

Matt Fredrikson Model Checking Techniques 20/33

Example: Partial correctness

What’s our w-regular expression?
—Pretrue“ + Pre—=Done" + Pre—Done™* (Done A Post)*

And a corresponding NBA:

—Done Done A Post
Pre N —=Done % Done A Post
o/

Pre A Done A Post

Matt Fredrikson Model Checking Techniques 20/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

» E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

» E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

» Complement is tricky: NBAs aren’t closed under determinization

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

» E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

» Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time

Matt Fredrikson Model Checking Techniques 21/33

w-Regular Closure Properties, Complexity

Like regular languages, w-regular enjoy closure properties
» Union
» Intersection
» Complement
» Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

» E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

» Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
» This is important for model checking, as we'll see

Matt Fredrikson Model Checking Techniques 21/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification
» A, describes the allowed traces

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification
» A, describes the allowed traces

» Its language corresponds to “good” computations

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification
» A, describes the allowed traces

» Its language corresponds to “good” computations

Then A satisfies the specification A, exactly when:

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification
» A, describes the allowed traces

» Its language corresponds to “good” computations

Then A satisfies the specification A, exactly when:
L(A) C L(Ay)

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let A, be an NBA representing the specification
» A, describes the allowed traces

» Its language corresponds to “good” computations

Then A satisfies the specification A, exactly when:
L(A) C L(Ay)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22/33

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited

We can use closed NBA operations + emptiness check to do MC

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited
We can use closed NBA operations + emptiness check to do MC

What about counterexamples?

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited
We can use closed NBA operations + emptiness check to do MC

What about counterexamples?

» L(A)N L(As) # @ gives an w-regular language

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited
We can use closed NBA operations + emptiness check to do MC

What about counterexamples?

» L(A)N L(As) # @ gives an w-regular language
» Any word in this language is a prohibited trace

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic Model Checking

How do we check that L(A) C L(A)?
L(A) CL(S) & L(A)NL(Ay) =@

In other words, A satisfies A, if none of its traces is prohibited
We can use closed NBA operations + emptiness check to do MC

What about counterexamples?

» L(A)N L(As) # @ gives an w-regular language
» Any word in this language is a prohibited trace

» We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques PRYACK]

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

Matt Fredrikson Model Checking Techniques 24/33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

To do this, we’ll need to represent M and ¢ as NBAs

Matt Fredrikson Model Checking Techniques 24/33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

To do this, we’ll need to represent M and ¢ as NBAs

Intuitively, this should pose no problem

Matt Fredrikson Model Checking Techniques 24/33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

To do this, we’ll need to represent M and ¢ as NBAs

Intuitively, this should pose no problem
» M is a nondeterministic system over infinite paths

Matt Fredrikson Model Checking Techniques 24/33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

To do this, we’ll need to represent M and ¢ as NBAs

Intuitively, this should pose no problem
» M is a nondeterministic system over infinite paths

» We’ve seen NBAs that “look like” LTL properties

Matt Fredrikson Model Checking Techniques 24/33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given a Kripke structure M and LTL formula ¢, decide whether
M, | ¢ for each « starting in an initial state.

To do this, we’ll need to represent M and ¢ as NBAs

Intuitively, this should pose no problem
» M is a nondeterministic system over infinite paths

» We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24/33

Modeling Systems as NBA

Kripke structure

A Kripke structure M = (P, S, 1, L, R) consists of:
» Set of atomic propositions P

States S

Initial states I C S

Labeling L : S + 2F

Transition relation R C S x S

v

v vV Vv

Matt Fredrikson Model Checking Techniques PLYACK]

Modeling Systems as NBA

Kripke structure

A Kripke structure M = (P, S, 1, L, R) consists of:
» Set of atomic propositions P

States S

Initial states I C S

Labeling L : S + 2F

Transition relation R C S x S

v

v vV Vv

Recalling this definition, the main difference seems to be:

Matt Fredrikson Model Checking Techniques

25/33

Modeling Systems as NBA

Kripke structure

A Kripke structure M = (P, S, 1, L, R) consists of:
» Set of atomic propositions P
» States S
» Initial states I C S
» Labeling L : S ~ 2F
» Transition relation R C S x S

Recalling this definition, the main difference seems to be:
» Transitions have no labels

Matt Fredrikson Model Checking Techniques

25/33

Modeling Systems as NBA

Kripke structure

A Kripke structure M = (P, S, 1, L, R) consists of:
» Set of atomic propositions P
» States S
» Initial states I C S
» Labeling L : S ~ 2F
» Transition relation R C S x S

Recalling this definition, the main difference seems to be:

» Transitions have no labels
» The “natural” alphabet P labels states, not transitions

Matt Fredrikson Model Checking Techniques

25/33

Modeling Systems as NBA

Kripke structure

A Kripke structure M = (P, S, 1, L, R) consists of:
» Set of atomic propositions P
» States S
» Initial states I C S
» Labeling L : S ~ 2F
» Transition relation R C S x S

Recalling this definition, the main difference seems to be:
» Transitions have no labels
» The “natural” alphabet P labels states, not transitions
» There are no accepting states

Matt Fredrikson Model Checking Techniques 25/33

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (%, Q, Qo, F, 9) {po,p2}
where:

{po, p1}

{p1, p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (3, Q, Qo, I, 6) {po,p2} {po,p1}
where: .
> 2 = QP
{p1, p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (2, Q, Qq, F, 0) {po,p2}
where:

> 2=2P
> (qonq) € 5
1. (¢,¢) € Rand L(¢') =«

{pmpl}
{P07p1

{po,p2} {p1,p2}

{p1,p2}

{p1,p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (2, Q, Qo, F, 6)
where:
» X =2F {po,p2}
> (¢,a,¢) €dif:
1. (¢,¢) € Rand L(¢) = a
2. q=t¢ elTand L(¢) = a

{po,p1}

{po,pQ} {p17p2}

{p1,p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (%, Q, Qo, F, 9)
where:
» =27 {po,p2}
> (q,a,¢') €4if:
1. (¢,¢') e Rand L(¢') = «
2. g=t,gd elTand L(¢') =«
» SoQ=SU{{},a
distinguished initial state

{po,p1}

{po,pQ} {p17p2}

{p1,p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (%, Q, Qo, F, 9)
where:
» X =2F {po,p2}
> (¢, a.q) €5
1. (¢,¢) € Rand L(¢') =«
2. g=t,gd elTand L(¢') =«
» SoQ=SU{{},a
distinguished initial state
» What about F'? {p1.p2}

{po,p1}

{po,pQ} {p17p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (%, Q, Qo, F, 9)
where:
» X =2F {po,p2}
> (¢, a.q) €5
1. (¢,¢) € Rand L(¢') =«
2. g=t,gd elTand L(¢') =«
» SoQ=SU{{},a
distinguished initial state
» What about F'? {p1.p2}

» Every execution “accepted”
by the system, so F = Q

{po,p1}

{po,pQ} {p17p2}

Matt Fredrikson Model Checking Techniques PLYACK]

Kripke Structure — NBA

We’re given a Kripke structure
M= (P,S,I,L,R)

We want NBA A = (%, Q, Qo, F, 9)
where:
| 4 Z = QP
> (q,a,¢') €4if:
1. (¢,¢) € Rand L(¢') =«
2. g=t,gd elTand L(¢') =«
» SoQ=SU{{},a
distinguished initial state
» What about F'?

» Every execution “accepted”
by the system, so F = Q

@%

{po, p2}
{po,p1}

{P07P2} {p17p2}

{p1,p2}

Matt Fredrikson Model Checking Techniques PLYACK]

NBA for LTL Formulas

The final piece: converting LTL to NBA

Matt Fredrikson Model Checking Techniques 27/33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P

Matt Fredrikson Model Checking Techniques 27/33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
GF(pvg) G(-e1V-c2) G((p—Fgq)

Matt Fredrikson Model Checking Techniques 27/33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
GF(pvg) G(-e1V-c2) G((p—Fgq)

We’'ll use formulas over P to represent alphabet symbolically

Matt Fredrikson Model Checking Techniques 27/33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
GF(pvg) G(-e1V-c2) G((p—Fgq)

We’'ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

Po V p1
()

Matt Fredrikson Model Checking Techniques 27/33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
GF(pvg) G(-e1V-c2) G((p—Fgq)

We’'ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

Po V p1
()

Then this is shorthand for:

{po}

% {p1}

{p():pl}

Matt Fredrikson Model Checking Techniques 27/33

LTL to NBA: Example (X operator)

Let’s start with the next operator

P any any any

v O OO OO

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (X operator)

Let’s start with the next operator

any p any any any
()
x> —O—0—0—0—0

What is the corresponding NBA?

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (X operator)

Let’s start with the next operator

any p any any any
()
x> —O—0—0—0—0

What is the corresponding NBA?

true

0 @@

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (X operator)

Let’s start with the next operator
p

any any any any
> —O—0—0—0—0

What is the corresponding NBA?

true

0 @@

» |t doesn’t matter what the current state is

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (X operator)

Let’s start with the next operator
p

any any any any
> —O—0—0—0—0

What is the corresponding NBA?

true

0 @@

» |t doesn’t matter what the current state is

» The next state must satisfy p

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (X operator)

Let’s start with the next operator
p

any any any any
> —O—0—0—0—0

What is the corresponding NBA?

true

0 @@

» |t doesn’t matter what the current state is
» The next state must satisfy p

» After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28/33

LTL to NBA: Example (U operator)

Now the until operator

P1 P1 P1 p2
nvn —O—0O0—0—0—0

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Example (U operator)

Now the until operator

P1 p1 P1 p2
nup OO O—O—O

What is the corresponding NBA?

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Example (U operator)

Now the until operator

P1 p1 P1 P2
nur —O—0O—0O—0—0
What is the corresponding NBA?

p1 N\ —p2 true

P2
p1 U p2 HL

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Example (U operator)

Now the until operator

P1 p1 P1 P2
nur —O—0O—0O—0—0
What is the corresponding NBA?

p1 N\ —p2 true

P2
p1 U p2 HL

» p; holds arbitrarily long in the beginning

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Example (U operator)

Now the until operator

P1 p1 P1 P2
nur —O—0O—0O—0—0
What is the corresponding NBA?

p1 N\ —p2 true

P2
p1 U p2 HL

» p; holds arbitrarily long in the beginning
» To pass into accepting, po must hold at some point

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Example (U operator)

Now the until operator

P1 p1 P1 P2
nur —O—0O—0O—0—0
What is the corresponding NBA?

p1 N\ —p2 true

P2
p1 U p2 HL

» p; holds arbitrarily long in the beginning
» To pass into accepting, po must hold at some point

» Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

» p1 Rpe & —(—p1 U —p2)

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

» p1 Rpe & —(—p1 U —p2)

However, composing temporal operators is expensive in general

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

» p1 Rpe & —(—p1 U —p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |¢|!

Matt Fredrikson Model Checking Techniques 30/33

LTL to NBA: Remaining Operators

X and U are sufficient to express F,G, R
» FpetrueUp

» p1 Rp2 & =(=p1 U —p2)
However, composing temporal operators is expensive in general
In the worst case, the size of the NBA is exponential in |¢|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)
4. If not empty, return a word (prefix) w € L(AN Ay)

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)
4. If not empty, return a word (prefix) w € L(AN Ay)

Worst case complexity: O(|M]| - 2/¢!)

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)
4. If not empty, return a word (prefix) w € L(AN Ay)

Worst case complexity: O(|M]| - 2/¢!)
» Intersection 4; N A; produces automaton of size |A4;| - |As]

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)
4. If not empty, return a word (prefix) w € L(AN Ay)

Worst case complexity: O(|M]| - 2/¢!)
» Intersection 4; N A; produces automaton of size |A4;| - |As]
» LTL to NBA produces A, of size 2/%!

Matt Fredrikson Model Checking Techniques 31/33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ¢:
1. Convert M into Buchi automaton A, ¢ into A4

2. Negate ¢ by building complement A,
» Note: Complement can blow up exponentially!
» In practice, negate ¢ before building NBA

3. Check emptiness of L(AN A,)
4. If not empty, return a word (prefix) w € L(AN Ay)

Worst case complexity: O(|M]| - 2/¢!)
» Intersection A; N A, produces automaton of size |A;| - |As|
» LTL to NBA produces A, of size 2/%!
» Emptiness check is depth-first search — linear time

Matt Fredrikson Model Checking Techniques 31/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4

Once we have the NBA, all we do is depth-first search

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

2. Begin taking intersection at initial states of A

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

2. Begin taking intersection at initial states of A

3. Perform DFS incrementally at each step

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step

4. Whenever DFS needs a state that hasn’t been built, add it

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step

4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

Matt Fredrikson Model Checking Techniques 32/33

On-the-fly model checking

The expensive part of this algorithm is in constructing AN A4
Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton A, first

2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find — software is buggy!

Matt Fredrikson Model Checking Techniques 32/33

Next Lecture

» Symbolic model checking
» If time: introduce a model-checking tool

Matt Fredrikson Model Checking Techniques 33/33

