
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 20:
Explicit-State Model Checking, Part 2

Matt Fredrikson
mfredrik@cs.cmu.edu

November 17, 2016

Matt Fredrikson Model Checking Techniques 1 / 33

Today’s Lecture

LTL Model
Checking

Algorithm based on automata operations
▶ Refresher on basic automata theory
▶ Introduce automata for languages of infinite words
▶ See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2 / 33

Today’s Lecture

LTL Model
Checking

Algorithm based on automata operations

▶ Refresher on basic automata theory
▶ Introduce automata for languages of infinite words
▶ See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2 / 33

Today’s Lecture

LTL Model
Checking

Algorithm based on automata operations
▶ Refresher on basic automata theory

▶ Introduce automata for languages of infinite words
▶ See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2 / 33

Today’s Lecture

LTL Model
Checking

Algorithm based on automata operations
▶ Refresher on basic automata theory
▶ Introduce automata for languages of infinite words

▶ See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2 / 33

Today’s Lecture

LTL Model
Checking

Algorithm based on automata operations
▶ Refresher on basic automata theory
▶ Introduce automata for languages of infinite words
▶ See how to apply them to model checking

Matt Fredrikson Model Checking Techniques 2 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):

▶ Q is a finite set of states; Q0 initial states, F final
▶ Σ is a finite alphabet
▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):
▶ Q is a finite set of states; Q0 initial states, F final

▶ Σ is a finite alphabet
▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):
▶ Q is a finite set of states; Q0 initial states, F final
▶ Σ is a finite alphabet

▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):
▶ Q is a finite set of states; Q0 initial states, F final
▶ Σ is a finite alphabet
▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):
▶ Q is a finite set of states; Q0 initial states, F final
▶ Σ is a finite alphabet
▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata: Refresher

A Nondeterministic Finite Automaton (NFA) is a tuple (Q,Σ, δ,Q0, F):
▶ Q is a finite set of states; Q0 initial states, F final
▶ Σ is a finite alphabet
▶ δ ⊆ Q× Σ×Q is the transition relation

An automaton is deterministic (a DFA) if:
∀a ∈ Σ.(q, a, q′) ∈ δ ∧ (q, a, q′′) ∈ δ ⇒ q = q′′

Example:

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

Matt Fredrikson Model Checking Techniques 3 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:

▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Finite Automata & Languages

Let A = (Q,Σ, δ,Q0, F) be an NFA, w = a0 . . . an ∈ Σ∗ a finite word

A run for w in A is a finite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if it ends in a final state, e.g., qn ∈ F

The word w is accepted by A if it has an accepting run

The language
of A, denoted L(A), is the subset of Σ∗ it accepts:
L(A) = {w ∈ Σ∗ | ∃ accepting run for w}

Every NFA can be converted to a DFA accepting the same language

Matt Fredrikson Model Checking Techniques 4 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is

accepted
abababaa is accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted

abababaa is accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is

accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is accepted

aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is accepted
aaaaaaab is

rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

aaaaaaaa is accepted
abababaa is accepted
aaaaaaab is rejected

The language of this automaton is:
L(A) = {w | wcontains arbitrary sequence of a, b ending with a}

Matt Fredrikson Model Checking Techniques 5 / 33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness
problem

Given an NFA A, decide whether L(A) = ∅

This is equivalent to reachability:
L(A) ̸= ∅ iff ∃q0, qf .qf reachable from q0

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6 / 33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness
problem

Given an NFA A, decide whether L(A) = ∅

This is equivalent to reachability:
L(A) ̸= ∅ iff ∃q0, qf .qf reachable from q0

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6 / 33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness
problem

Given an NFA A, decide whether L(A) = ∅

This is equivalent to reachability:
L(A) ̸= ∅ iff ∃q0, qf .qf reachable from q0

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6 / 33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness
problem

Given an NFA A, decide whether L(A) = ∅

This is equivalent to reachability:
L(A) ̸= ∅ iff ∃q0, qf .qf reachable from q0

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6 / 33

Equivalence & Emptiness

When two NFAs represent the same language, we say they’re
equivalent

A central issue in automata theory is the emptiness
problem

Given an NFA A, decide whether L(A) = ∅

This is equivalent to reachability:
L(A) ̸= ∅ iff ∃q0, qf .qf reachable from q0

This can be decided in O(|A|) by depth-first search

Matt Fredrikson Model Checking Techniques 6 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:

▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language

▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word

▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E

▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages

▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Regular Languages

The languages recognized by NFAs are called regular

Regular languages contain finite
words

Regular languages are also represented by regular
expressions:
▶ ∅ is the RE denoting the empty language
▶ ϵ is the RE denoting the language with the empty word
▶ If E is an RE, then E∗ denotes the finite repetitions of E
▶ If E1, E2 are REs, then E1 + E2 denotes union of their languages
▶ If E1, E2 are REs, then E1E2 denotes their concatenation

Matt Fredrikson Model Checking Techniques 7 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

The language of this automaton is:

L(A) = (a + b)∗a

Matt Fredrikson Model Checking Techniques 8 / 33

Example

q0 q1
a

a, b

Q = {q0, q1},Σ = {a, b}, Q0 = {q0}, F = {q1}

The language of this automaton is:
L(A) = (a + b)∗a

Matt Fredrikson Model Checking Techniques 8 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts

▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗:

closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition

▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2:

closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union

▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2:

closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Properties of Regular Languages

The syntax of regular expressions implies several useful facts
▶ E∗: closed under finite repetition
▶ E1 + E2: closed under union
▶ E1E2: closed under concatenation

They’re also closed under intersection and complement
If L,L1, L2 are regular languages, so are L1 ∩ L2,Σ

∗ \ L

Given NFAs representing a language, we can construct NFAs
corresponding to the application of these operations

Matt Fredrikson Model Checking Techniques 9 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before

▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition

▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Languages of Infinite Words

NFAs and REs describe languages containing finite words

Our transition systems describe infinite behaviors

We’ll describe such behaviors using ω-regular
languages

These can be described by ω-regular
expressions of the form:
E1F

ω
1 + · · · + EnF

ω
n

▶ Ei and Fi are regular expressions, ϵ ̸∈ L(Fi)

▶ Union and concatenation work as they did before
▶ ω denotes infinite
repetition
▶ Like Kleene ∗, but ad infinitum

Matt Fredrikson Model Checking Techniques 10 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?

(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ?

ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω =

w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Infinite Repetition ω

For a word ab, we know that (ab)∗ denotes the set
{ab, abab, ababab, . . .}

What does (ab)ω denote?
(ab)ω = {ababababab . . .}

What about the empty word ϵ? ϵω = ϵ

Given an infinite word w, wω = w

We’ll lift ω to finite languages L ⊆ Σ∗ as well:
Lω = {w1w2w3 . . . | wi ∈ L}

If L doesn’t contain ϵ, Lω is an infinite language

Matt Fredrikson Model Checking Techniques 11 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet

▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold

▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable

▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:

({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Example

How do we write mutual exclusion as an ω-regular expression?

Recall, this was the safety property (invariant):
G ¬crit1 ∨ ¬crit2

First, we need to define the alphabet
▶ Need to reason about the set of all propositions that might hold
▶ Setting Σ = 2P (the atomic propositions) seems reasonable
▶ In this case, P = {crit1, crit2}

Then symbols are {}, {crit1}, {crit1, crit2}, . . .

Our expression is:
({} + {crit1} + {crit2})ω

Matt Fredrikson Model Checking Techniques 12 / 33

Automata on Infinite Words

NFA : Regular ::

Nondeterministic
Buchi
Automata

: ω-Regular

Nondeterministic Buchi Automaton (NBA)
A NBA M is a tuple (Σ, Q,Q0, F, δ), where:

▶ Σ is an alphabet
▶ Q is a finite set of states
▶ Q0 ⊆ Q is the set of initial states
▶ F ⊆ Q is the set of accepting states
▶ δ ⊆ Q× Σ×Q is the transition function

The “syntax” is the same as NFAs; obviously the semantics is
different

Matt Fredrikson Model Checking Techniques 13 / 33

Automata on Infinite Words

NFA : Regular :: Nondeterministic
Buchi
Automata : ω-Regular

Nondeterministic Buchi Automaton (NBA)
A NBA M is a tuple (Σ, Q,Q0, F, δ), where:

▶ Σ is an alphabet
▶ Q is a finite set of states
▶ Q0 ⊆ Q is the set of initial states
▶ F ⊆ Q is the set of accepting states
▶ δ ⊆ Q× Σ×Q is the transition function

The “syntax” is the same as NFAs; obviously the semantics is
different

Matt Fredrikson Model Checking Techniques 13 / 33

Automata on Infinite Words

NFA : Regular :: Nondeterministic
Buchi
Automata : ω-Regular

Nondeterministic Buchi Automaton (NBA)
A NBA M is a tuple (Σ, Q,Q0, F, δ), where:

▶ Σ is an alphabet
▶ Q is a finite set of states
▶ Q0 ⊆ Q is the set of initial states
▶ F ⊆ Q is the set of accepting states
▶ δ ⊆ Q× Σ×Q is the transition function

The “syntax” is the same as NFAs; obviously the semantics is
different

Matt Fredrikson Model Checking Techniques 13 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:

▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Buchi Automata: Infinite Runs & Acceptance

Let w = a0a1 . . . be an infinite word in Σω

A run for w in A is an infinite sequence of states q0 . . . qn−1 where:
▶ q0 ∈ Q0

▶ (qi, ai, qi+1) ∈ δ for all 0 ≤ i ≤ n

A run is accepting if qi ∈ F for infinitely
many
indices i:
{q ∈ Q | ∀i ≥ 0, ∃j ≥ i.qj = q} ∩ F ̸= ∅

A language is ω-regular language iff it is recognizable by an NBA

Matt Fredrikson Model Checking Techniques 14 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?

qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?

q1q2q
ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted?

What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?

(q1q1q2q3)
ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1 q2

c

a b

b

b

What runs does the word cω have?
qω1

What about abω?
q1q2q

ω
3

Is (cabb)ω accepted? What is its run?
(q1q1q2q3)

ω

Matt Fredrikson Model Checking Techniques 15 / 33

Example

q0 q1
b

a, b b

What ω-regular expression does this accept?

(a + b)∗bω

What does it mean? a occurs
only
finitely
many
times

Matt Fredrikson Model Checking Techniques 16 / 33

Example

q0 q1
b

a, b b

What ω-regular expression does this accept?
(a + b)∗bω

What does it mean? a occurs
only
finitely
many
times

Matt Fredrikson Model Checking Techniques 16 / 33

Example

q0 q1
b

a, b b

What ω-regular expression does this accept?
(a + b)∗bω

What does it mean?

a occurs
only
finitely
many
times

Matt Fredrikson Model Checking Techniques 16 / 33

Example

q0 q1
b

a, b b

What ω-regular expression does this accept?
(a + b)∗bω

What does it mean? a occurs
only
finitely
many
times

Matt Fredrikson Model Checking Techniques 16 / 33

Example: No send after read

Suppose we want to describe a safety property:

The
client
must
never
send
a
packet
after
reading
a
classified
file

Let P = {Send,Read}

Technically, our Σ should be: {{}, {Send}, {Read}, {Send,Read}}

We’ll be a bit sloppy, and let Σ be formulas over Send,Read

Matt Fredrikson Model Checking Techniques 17 / 33

Example: No send after read

Suppose we want to describe a safety property:

The
client
must
never
send
a
packet
after
reading
a
classified
file

Let P = {Send,Read}

Technically, our Σ should be: {{}, {Send}, {Read}, {Send,Read}}

We’ll be a bit sloppy, and let Σ be formulas over Send,Read

Matt Fredrikson Model Checking Techniques 17 / 33

Example: No send after read

Suppose we want to describe a safety property:

The
client
must
never
send
a
packet
after
reading
a
classified
file

Let P = {Send,Read}

Technically, our Σ should be: {{}, {Send}, {Read}, {Send,Read}}

We’ll be a bit sloppy, and let Σ be formulas over Send,Read

Matt Fredrikson Model Checking Techniques 17 / 33

Example: No send after read

Suppose we want to describe a safety property:

The
client
must
never
send
a
packet
after
reading
a
classified
file

Let P = {Send,Read}

Technically, our Σ should be: {{}, {Send}, {Read}, {Send,Read}}

We’ll be a bit sloppy, and let Σ be formulas over Send,Read

Matt Fredrikson Model Checking Techniques 17 / 33

Example: No send after read

Then we can write an ω-regular expression:

(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

¬ReadRead¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬ReadRead¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬ReadRead¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬ReadRead¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read

¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read

¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read

¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: No send after read

Then we can write an ω-regular expression:
(¬Read)ω + (Read)(¬Send)ω

And we can encode this as an NBA:

q0 q1

¬Read

Read

¬Send

Matt Fredrikson Model Checking Techniques 18 / 33

Example: Partial correctness

Now a more complicated example:

Whenever
the
precondition
is
satisfied
and
the
program
terminates,
the
postcondition
must
be
satisfied

Our alphabet: formulas over {Pre,Post,Done}

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

Matt Fredrikson Model Checking Techniques 19 / 33

Example: Partial correctness

Now a more complicated example:

Whenever
the
precondition
is
satisfied
and
the
program
terminates,
the
postcondition
must
be
satisfied

Our alphabet: formulas over {Pre,Post,Done}

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

Matt Fredrikson Model Checking Techniques 19 / 33

Example: Partial correctness

Now a more complicated example:

Whenever
the
precondition
is
satisfied
and
the
program
terminates,
the
postcondition
must
be
satisfied

Our alphabet: formulas over {Pre,Post,Done}

What’s our ω-regular expression?

¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

Matt Fredrikson Model Checking Techniques 19 / 33

Example: Partial correctness

Now a more complicated example:

Whenever
the
precondition
is
satisfied
and
the
program
terminates,
the
postcondition
must
be
satisfied

Our alphabet: formulas over {Pre,Post,Done}

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

Matt Fredrikson Model Checking Techniques 19 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3

Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3

Pre ∧ ¬Done¬DoneDone ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre
true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3

Pre ∧ ¬Done¬DoneDone ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3

Pre ∧ ¬Done¬DoneDone ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3

Pre ∧ ¬Done¬DoneDone ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬DoneDone ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ PostDone ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post
Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post

¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

Example: Partial correctness

What’s our ω-regular expression?
¬Pretrueω + Pre¬Doneω + Pre¬Done∗(Done ∧ Post)ω

And a corresponding NBA:

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

true

Matt Fredrikson Model Checking Techniques 20 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties

▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union

▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection

▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement

▶ Each of these corresponds to operations on NBA
But these aren’t necessarily the same operations as for NFAs

▶ E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs

▶ E.g., for intersection, word needs to go through both sets of
accepting states infinitely often

▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often

▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time

▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

ω-Regular Closure Properties, Complexity

Like regular languages, ω-regular enjoy closure properties
▶ Union
▶ Intersection
▶ Complement
▶ Each of these corresponds to operations on NBA

But these aren’t necessarily the same operations as for NFAs
▶ E.g., for intersection, word needs to go through both sets of

accepting states infinitely often
▶ Complement is tricky: NBAs aren’t closed under determinization

Emptiness is decidable in linear time
▶ This is important for model checking, as we’ll see

Matt Fredrikson Model Checking Techniques 21 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification

▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces

▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:

L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

Let A be an NBA representing some computation

Let Aϕ be an NBA representing the specification
▶ Aϕ describes the allowed
traces
▶ Its language corresponds to “good” computations

Then A satisfies the specification Aϕ exactly when:
L(A) ⊆ L(Aϕ)

The set of traces in A is contained in the set of “good” computations

Matt Fredrikson Model Checking Techniques 22 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?
▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language
▶ Any word in this language is a prohibited trace
▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?
▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language
▶ Any word in this language is a prohibited trace
▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?

▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language
▶ Any word in this language is a prohibited trace
▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?
▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language

▶ Any word in this language is a prohibited trace
▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?
▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language
▶ Any word in this language is a prohibited trace

▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic Model Checking

How do we check that L(A) ⊆ L(Aϕ)?
L(A) ⊆ L(S) ⇔ L(A) ∩ L(Aϕ) = ∅

In other words, A satisfies Aϕ if none
of
its
traces
is
prohibited

We can use closed NBA operations + emptiness check to do MC

What about counterexamples?
▶ L(A) ∩ L(Aϕ) ̸= ∅ gives an ω-regular language
▶ Any word in this language is a prohibited trace
▶ We pick an aribtrary word, find an appropriate prefix

Matt Fredrikson Model Checking Techniques 23 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem
▶ M is a nondeterministic system over infinite paths
▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem
▶ M is a nondeterministic system over infinite paths
▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem

▶ M is a nondeterministic system over infinite paths
▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem
▶ M is a nondeterministic system over infinite paths

▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem
▶ M is a nondeterministic system over infinite paths
▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Automata-Theoretic LTL Checking

We would like to solve the LTL model checking problem:

Given
a
Kripke
structure M and
LTL formula ϕ, decide
whether
M,π |= ϕ for
each π starting
in
an
initial
state.

To do this, we’ll need to represent M and ϕ as NBAs

Intuitively, this should pose no problem
▶ M is a nondeterministic system over infinite paths
▶ We’ve seen NBAs that “look like” LTL properties

However, this is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 24 / 33

Modeling Systems as NBA

Kripke structure
A Kripke structure M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

Recalling this definition, the main difference seems to be:
▶ Transitions have no labels
▶ The “natural” alphabet P labels states, not transitions
▶ There are no accepting states

Matt Fredrikson Model Checking Techniques 25 / 33

Modeling Systems as NBA

Kripke structure
A Kripke structure M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

Recalling this definition, the main difference seems to be:

▶ Transitions have no labels
▶ The “natural” alphabet P labels states, not transitions
▶ There are no accepting states

Matt Fredrikson Model Checking Techniques 25 / 33

Modeling Systems as NBA

Kripke structure
A Kripke structure M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

Recalling this definition, the main difference seems to be:
▶ Transitions have no labels

▶ The “natural” alphabet P labels states, not transitions
▶ There are no accepting states

Matt Fredrikson Model Checking Techniques 25 / 33

Modeling Systems as NBA

Kripke structure
A Kripke structure M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

Recalling this definition, the main difference seems to be:
▶ Transitions have no labels
▶ The “natural” alphabet P labels states, not transitions

▶ There are no accepting states

Matt Fredrikson Model Checking Techniques 25 / 33

Modeling Systems as NBA

Kripke structure
A Kripke structure M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

Recalling this definition, the main difference seems to be:
▶ Transitions have no labels
▶ The “natural” alphabet P labels states, not transitions
▶ There are no accepting states

Matt Fredrikson Model Checking Techniques 25 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α

2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s0 s1

s2

{p0, p2} {p0, p1}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α

2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s0 s1

s2

{p0, p2} {p0, p1}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α

2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s0 s1

s2

{p0, p2} {p0, p1}

{p1, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α
2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s1

s2

s0

ℓ

{p0, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α
2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s1

s2

s0

ℓ

{p0, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α
2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?

▶ Every execution “accepted”
by the system, so F = Q

s1

s2

s0

ℓ

{p0, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α
2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s1

s2

s0

ℓ

{p0, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

Kripke Structure 7→ NBA

We’re given a Kripke structure
M = (P, S, I, L,R)

We want NBA A = (Σ, Q,Q0, F, δ)
where:

▶ Σ = 2P

▶ (q, α, q′) ∈ δ if:
1. (q, q′) ∈ R and L(q′) = α
2. q = ℓ, q′ ∈ I and L(q′) = α

▶ So Q = S ∪ {ℓ}, a
distinguished initial state

▶ What about F?
▶ Every execution “accepted”

by the system, so F = Q

s0

ℓ

s1

s2

{p0, p2}

{p0, p1}

{p1, p2}
{p0, p2}

{p1, p2}

Matt Fredrikson Model Checking Techniques 26 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P

G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

NBA for LTL Formulas

The final piece: converting LTL to NBA

The “leaves” of LTL formulas are propositional formulas over P
G F (p ∨ q) G (¬c1 ∨ ¬c2) G (p → F q)

We’ll use formulas over P to represent alphabet symbolically

For example, if we have a transition:

q0 q1
p0 ∨ p1

Then this is shorthand for:

q0 q1
{p1}

{p0}

{p0, p1}

Matt Fredrikson Model Checking Techniques 27 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is
▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is
▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is
▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is

▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is
▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (X operator)

Let’s start with the next operator

· · ·

any p any any any

X p

What is the corresponding NBA?

q0 q1 q2
true p

true

X p

▶ It doesn’t matter what the current state is
▶ The next state must satisfy p

▶ After that, any path suffices for acceptance

Matt Fredrikson Model Checking Techniques 28 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning
▶ To pass into accepting, p2 must hold at some point
▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning
▶ To pass into accepting, p2 must hold at some point
▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning
▶ To pass into accepting, p2 must hold at some point
▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning

▶ To pass into accepting, p2 must hold at some point
▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning
▶ To pass into accepting, p2 must hold at some point

▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Example (U operator)

Now the until operator

· · ·

p1 p1 p1 p2 any

p1 U p2

What is the corresponding NBA?

q0 q1
p2

p1 ∧ ¬p2 true

p1 U p2

▶ p1 holds arbitrarily long in the beginning
▶ To pass into accepting, p2 must hold at some point
▶ Afterwards, anything goes

Matt Fredrikson Model Checking Techniques 29 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R

▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p

▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

LTL to NBA: Remaining Operators

X and U are sufficient to express F ,G , R
▶ F p ⇔ true U p

▶ G p ⇔ ¬F ¬p
▶ p1 R p2 ⇔ ¬(¬p1 U ¬p2)

However, composing temporal operators is expensive in general

In the worst case, the size of the NBA is exponential in |ϕ|!

This is the source of complexity in LTL model checking

Matt Fredrikson Model Checking Techniques 30 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:

1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!

▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)

▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|

▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

Summary: Automata-Based LTL Model Checking

Given a Kripke structure M and LTL ϕ:
1. Convert M into Buchi automaton A, ϕ into Aϕ

2. Negate ϕ by building complement Aϕ

▶ Note: Complement can blow up exponentially!
▶ In practice, negate ϕ before building NBA

3. Check emptiness of L(A ∩Aϕ)

4. If not empty, return a word (prefix) w ∈ L(A ∩Aϕ)

Worst case complexity: O(|M | · 2|ϕ|)
▶ Intersection A1 ∩A2 produces automaton of size |A1| · |A2|
▶ LTL to NBA produces Aϕ of size 2|ϕ|

▶ Emptiness check is depth-first search – linear time

Matt Fredrikson Model Checking Techniques 31 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction

1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first

2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A

3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step

4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

On-the-fly model checking

The expensive part of this algorithm is in constructing A ∩Aϕ

Once we have the NBA, all we do is depth-first search

In practice, the search can proceed with the construction
1. Construct property automaton Aϕ first
2. Begin taking intersection at initial states of A
3. Perform DFS incrementally at each step
4. Whenever DFS needs a state that hasn’t been built, add it

In many cases, counterexamples are found early before DFS
backtracks too much

This works because bugs are often easy to find – software is buggy!

Matt Fredrikson Model Checking Techniques 32 / 33

Next Lecture

▶ Symbolic model checking
▶ If time: introduce a model-checking tool

Matt Fredrikson Model Checking Techniques 33 / 33

