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Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

» Safety: Properties which require that “nothing bad should ever
happen”

» Liveness: Require that “something good always happens” in
the future

» Fairness: Precludes “degenerate” infinite behaviors

These are inherently linear-time properties
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Safety: Invariants

An important class of safety properties describes invariant behavior
Invariants state that some property over states holds at all times

» Mutual exclusion

» Deadlock freedom

» Well-formedness of data structures
If ¢ is a propositional formula over P, then the LTL formula

G
is an invariant property
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Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢? P; and P, can’t be simultaneously critical
¢ < ey V —es

Algorithmically, invariant checking is a reachability problem

To see if G ¢ holds, check for a state —¢ reachable from I

Matt Fredrikson Explicit-State MC 4/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we'’re interested in more than simple reachability

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

¢ is a safety property iff every path that violates ¢ has a bad prefix

Matt Fredrikson Explicit-State MC 5/34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

¢ is a safety property iff every path that violates ¢ has a bad prefix

Think of a bad prefix as a witness of a violating instance
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Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do nothing
Usually this isn’t what we want, and liveness properties address this
Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:
» Safety properties are violated in finite time

» Liveness properties can only be violated in infinite time
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Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

» o is an infinite path extension if 5o satisfies ¢

¢ is a liveness property iff every finite prefix has an infinite extension
Put differently: a liveness property does not rule out any finite prefix

This implies that there are no finite withesses for liveness

Matt Fredrikson Explicit-State MC 7/34
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Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often
GF GA GF Co

Another: each waiting process eventually enters its critical;

Any finite prefix can always be extended to satisfy these properties
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Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

» Often these choices are unrealistic in practice

To prove liveness, we want to rule out unfair paths from the model
We accomplish this by ruling out unfair paths when checking liveness

Fairness constraints allow us to do this
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Fairness Constraints

There are several different types of fairness

» Unconditional fairness: Every process is executed infinitely
often.
foralli,GF P;

» Strong fairness: Every process that is enabled infinitely often
gets its turn infinitely often when it is enabled
for all ¢, (G F enabled;) — (G F P;)

» Weak fairness: Every process that is at some point
continuously enabled gets its turn infinitely often

for all 7, (F G enabled;) — (GF F;)

“Enabled” means “able to execute” a particular transition
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Example: Weak Fairness

Consider the mutual exclusion example

A process is enabled if able to enter its critical section immediately
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Example: Weak Fairness

Consider the mutual exclusion example

A process is enabled if able to enter its critical section immediately

ni,n,y =1

ny,wo,y =1
s W2,

ny,c2,y=0

Does this satisfy G (w; — F ¢;) under weak fairness?

wy,wo,y =1
s W2,

ci,n2,y=0
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Example: Weak Fairness

l

ny,n1,y =1

ni,wa,y =1

wi,n2,y =1

c1,n2,y=0 wy,wa,y =1 ni,c2,y=0

wi,c2,y=0

No, G (w; — F ¢;) isn’t satisfied under weak fairness
Whenever P, enters critical, P, is not enabled
The antecedent that P, be enabled continuously is false
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Example: Strong Fairness
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Example: Strong Fairness

Does this satisfy G (w; — F ¢;) under strong fairness?
Yes, both processes enabled infinitely often along all paths

So a strongly-fair scheduler lets both execute infinitely often
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Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i, G F P,

Yes. It held for strong fairness, which was:
Strong Fairness : for all ¢, (G F enabled;) — (G F F;)

So we see that unconditional fairness implies strong fairness

In fact, we can say that:
Unconditional Fairness = Strong Fairness =—- Weak Fairness
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Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:
1. Compute Sat(¢), the set of all states that satisfy ¢

2. Check to make sure that I C Sat(¢)

This is stronger than model checking: know all states that satisfy ¢

Sometimes called “global” model checking
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Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:
» Sat(true) = S
> Sat(p) = {s € S|p € L(s)}
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Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}
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For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}

Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # &}

In other words, the set of states satisfying EX ¢ are:
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Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}
Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # o}

In other words, the set of states satisfying EX ¢ are:
1. States with at least one direct successor s,

2. Where s is in the states that satisfy ¢
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Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
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Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

2. have at least one successor that satisfies EG ¢

Note the recursion: Sat(EG ¢) is the largest set T satisfying:
T = {s € Sat(¢) | Post(s) NT # &}
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Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

2. have at least one successor that satisfies EG ¢

Note the recursion: Sat(EG ¢) is the largest set T satisfying:
T = {s € Sat(¢) | Post(s) NT # &}

We say T is a greatest fixed point solution of the above equation
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Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
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Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
1. T C Sat(vy)

2. s € Sat(¢) and Post(s) N T # @ impliesthat s € T

We can give a similar fixed-point characterization here:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

In this case, T is a least fixed point solution
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Example

Consider the formula EX (a > ¢)

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|
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Example: EX (a <> ¢)

First label the nodes that satisfy a < ¢

{ec} Z

ST
{av b7 C} ° J/ @ {a}
a {0} {a,c}
I

{b, c} S2 {a,b}
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Example: EX (a <> ¢)

First label the nodes that satisfy a <> ¢
{c}
() /@
a<b
{a,b,c} ( so J @ {a}

a<b
{a7 C}
{b, c} S2 {a,b}

Matt Fredrikson Explicit-State MC 23/34




Example: EX (a <> ¢)

Then the nodes that satisfy EX (a < ¢)

EX (a < b) a+b
{c} @

o :
E

a<b
{a,b,c}

lEX(aHb) EX (a < b)
a<b asb
{v} {a,c}

EX(a<~ Db
{b, c} S2 {a,b}
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Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?
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Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:
1. First, label the states that satisfy ¢ and v

2. Anything labeled v is also labeled E (¢ U )
3. Then, work backwards using the transition relation

4. Label states that can be reached by a path labeled ¢
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Example

Consider the formula E ((b — a) U ¢)

{c} %]
() .
e (=) l (=)
{a,c}
{b, c} S2 {a,b}
|
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Example

First label states by b — a and ¢

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|
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Example

First label states by b — a and ¢

E(U))
b—a,c b—a
{c} )
S6
baac
{abc} {a}
b—>a
b—>ac
{b} {a,c}
{bc} 52 {a, b}
b—a
(U)
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Example

Then work backwards from states labeled E ((b — a) U ¢)

E(U-)
b—a,c b—a
{c} @
S6
baac
{abc} {a}
b—>a
b—>ac
{b} {a,c}
{bc} 52 {a, b}
b—a
(U)
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Example

Start with s
E(U)
b—a,c b—a
{c} )
S6
E(U)
b — a, c
{abc} {a}
b—>a
b—>a c
{b} {a,c}
{b c} {a,b}
b—a
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Start with sg Then s3

E(U)
b—a,c b—a
{c} 2
S6 s7
E(U
b—>ac
{a,b,c}

{b c}

AN
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Then s3
E(U) E(U)
b—a,c b—a
{c} 2
S6 s7
E(U)
b — a, c
{a,b,c}

%d

KN,
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Nothing left to label but sy4; it isn’t in Sat

E(.U.) E(.U.)
b—a,c b—a
{c} )
S6 ST

b—>ac
{abc}
E(U)
b—a,c
{b} {a,c}
{bc} 52 {a, b}
b—a
E( U ) E(U.)
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Computing Sat(EG ¢)

This algorithm is based on strongly-connected components
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» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢
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This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C
» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Then M, s E EG ¢ iff:
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Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Then M, s E EG ¢ iff:
» se 5 (i.e., M,s E 9¢)
» There is a path in M’ from s to some ¢ in a nontrivial SCC

Matt Fredrikson Explicit-State MC 26/34



Example

Consider the formula EG (a V (b <+ ¢))

{c} %]
& :
e (=) l (=)
{a,c}
{b, c} S2 {a,b}
|
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Example

First delete everything not satisfying a vV (b + ¢)

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|
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First delete everything not satisfying a vV (b + ¢)

{a,b,c} ° @ {a}

{a,c}

{b,c} 52 {a, b}
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Then find the strongly-connected components

{a,b,c} ° @ {a}

{a,c}

{b, c} S2 {a,b}
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Then find the strongly-connected components

{av b, C} S0 )€ @ {a}

{a,c}

{b,c} { s2 » s1 ) {a,b}
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Then label everything that reaches an SCC

{av b, C} S0 )€ @ {a}

{a,c}

{b,c} { s2 » s1 ) {a,b}

Matt Fredrikson Explicit-State MC 27/34



Then label everything that reaches an SCC

EG (aV (b ¢) G (aV (b))
{a,b,c} [ so )¢ @ {a}

EG ()
{a,c}

{b, c} ED) » s1 {a,b}
EG (aV (b+ ¢) G (aV (b+c))
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Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
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Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

E (¢ U)isalso O(|S| + |R|)
EG ¢ requires computing strongly-connected components
Tarjan’s algorithm has complexity O(|S| + |R|)

Therefore, checking CTL is done in time O(|| - (|S] + |R]))

Matt Fredrikson Explicit-State MC 28/34



Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
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Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

» Ending in a single cycle traversal (with —¢)

What is a counterexample for a formula beginning in E ?
» In this case, the answer “no” might suffice

» When E ¢ holds, we can provide a withess

Matt Fredrikson Explicit-State MC 29/34



Counterexamples and Witnesses: X operator

This is the simplest case
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Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

A witness for EX ¢ is a pair of states (s, s’) where:
1. sel

2. s’ € Post(s)
3. M,s' E¢

Matt Fredrikson Explicit-State MC 30/34



Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
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Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN )
2.0rM,m E(p A=) U (mdp A

In the first case, the prefix should be of the form:

/

/
8181 ..-8Sn—15nS1 .5,

cycle

satisfy pA—Y

In the second, the prefix should be:
$181 .- 8n—1 8, With M, s, E—¢ A ¢
N—————’

satisfy gAY
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Counterexamples and Witnesses: U operator

A witness for A (¢ U ) is a prefix of some = where:
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A witness for A (¢ U ) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Witnesses are generated by backward search from ¢ states

Counterexamples are generated by backwards search from:
1. SCCs satisfying ¢ A =)

2. Or —p A\
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Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,
2. M,s;E¢forall0<i<n
3. M, s, E ¢

A witness for EG ¢ is a prefix of the form:

/
T

5081 ...5,8)...5. where s, =s.

satisfies ¢

Counterexamples are found by backward search

Witnesses are found by looking for cycles that satisfy ¢, backward

search
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Next Lecture

v

Continue discussing model checking

Infinite automata

v

v

LTL model checking

v

Dealing with state explosion

Matt Fredrikson Explicit-State MC 34/34



