Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 20:
Explicit-State Model Checking, Part 1

Matt Fredrikson
mfredrik@cs.cmu.edu

November 15, 2016

Matt Fredrikson Explicit-State MC

Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

Matt Fredrikson Explicit-State MC 2/34

Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

» Safety: Properties which require that “nothing bad should ever
happen”

Matt Fredrikson Explicit-State MC 2/34

Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

» Safety: Properties which require that “nothing bad should ever
happen”

» Liveness: Require that “something good always happens” in
the future

Matt Fredrikson Explicit-State MC 2/34

Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

» Safety: Properties which require that “nothing bad should ever
happen”

» Liveness: Require that “something good always happens” in
the future

» Fairness: Precludes “degenerate” infinite behaviors

Matt Fredrikson Explicit-State MC 2/34

Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

» Safety: Properties which require that “nothing bad should ever
happen”

» Liveness: Require that “something good always happens” in
the future

» Fairness: Precludes “degenerate” infinite behaviors

These are inherently linear-time properties

Matt Fredrikson Explicit-State MC 2/34

Safety: Invariants

An important class of safety properties describes invariant behavior

Matt Fredrikson Explicit-State MC 3/34

Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times

Matt Fredrikson Explicit-State MC 3/34

Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times
» Mutual exclusion

Matt Fredrikson Explicit-State MC 3/34

Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times
» Mutual exclusion

» Deadlock freedom

Matt Fredrikson Explicit-State MC 3/34

Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times
» Mutual exclusion

» Deadlock freedom

» Well-formedness of data structures

Matt Fredrikson Explicit-State MC 3/34

Safety: Invariants

An important class of safety properties describes invariant behavior
Invariants state that some property over states holds at all times

» Mutual exclusion

» Deadlock freedom

» Well-formedness of data structures
If ¢ is a propositional formula over P, then the LTL formula

G
is an invariant property

Matt Fredrikson Explicit-State MC 3/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

Matt Fredrikson Explicit-State MC 4/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢?

Matt Fredrikson Explicit-State MC 4/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢? P; and P, can’t be simultaneously critical

Matt Fredrikson Explicit-State MC 4/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢? P; and P, can’t be simultaneously critical
¢ < ey V —es

Matt Fredrikson Explicit-State MC 4/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢? P; and P, can’t be simultaneously critical
¢ < ey V —es

Algorithmically, invariant checking is a reachability problem

Matt Fredrikson Explicit-State MC 4/34

Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P; and P,

What is ¢? P; and P, can’t be simultaneously critical
¢ < ey V —es

Algorithmically, invariant checking is a reachability problem

To see if G ¢ holds, check for a state —¢ reachable from I

Matt Fredrikson Explicit-State MC 4/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we'’re interested in more than simple reachability

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

¢ is a safety property iff every path that violates ¢ has a bad prefix

Matt Fredrikson Explicit-State MC 5/34

Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen
Generally, we'’re interested in more than simple reachability

General safety properties are defined in terms of bad path prefixes
» Let ¢ be a property over paths

» Let 5 be a prefix such that no path o = 6 - - - satisfies ¢

» Note: we require & to be finite

¢ is a safety property iff every path that violates ¢ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do nothing

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening
It’s easy to design systems that don’t do bad things: do nothing

Usually this isn’t what we want, and liveness properties address this

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening
It’s easy to design systems that don’t do bad things: do nothing
Usually this isn’t what we want, and liveness properties address this

Intuitively, “something good” will always happen in the future

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do nothing
Usually this isn’t what we want, and liveness properties address this
Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do nothing
Usually this isn’t what we want, and liveness properties address this
Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:
» Safety properties are violated in finite time

Matt Fredrikson Explicit-State MC 6/34

Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do nothing
Usually this isn’t what we want, and liveness properties address this
Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:
» Safety properties are violated in finite time

» Liveness properties can only be violated in infinite time

Matt Fredrikson Explicit-State MC 6/34

Liveness, Formally

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

» o is an infinite path extension if 5o satisfies ¢

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

» o is an infinite path extension if 5o satisfies ¢

¢ is a liveness property iff every finite prefix has an infinite extension

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

» o is an infinite path extension if 5o satisfies ¢

¢ is a liveness property iff every finite prefix has an infinite extension

Put differently: a liveness property does not rule out any finite prefix

Matt Fredrikson Explicit-State MC 7/34

Liveness, Formally

Liveness properties are defined in terms of infinite path extensions
» Let ¢ be a property over paths
» Let & be afinite path prefix

» o is an infinite path extension if 5o satisfies ¢

¢ is a liveness property iff every finite prefix has an infinite extension
Put differently: a liveness property does not rule out any finite prefix

This implies that there are no finite withesses for liveness

Matt Fredrikson Explicit-State MC 7/34

Liveness: Examples

Think of the mutual exclusion example

Matt Fredrikson Explicit-State MC 8/34

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often

Matt Fredrikson Explicit-State MC 8/34

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often
GF GA GF Co

Matt Fredrikson Explicit-State MC 8/34

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often
GF GA GF Co

Another: each waiting process eventually enters its critical;

Matt Fredrikson Explicit-State MC 8/34

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often
GF GA GF Co

Another: each waiting process eventually enters its critical;

Matt Fredrikson Explicit-State MC 8/34

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each P; enters critical; infinitely often
GF GA GF Co

Another: each waiting process eventually enters its critical;

Any finite prefix can always be extended to satisfy these properties

Matt Fredrikson Explicit-State MC 8/34

Liveness: “Repeated Eventually”

c1,m2,y=0 wi, w2,y =1 ny,c2,y=0

wi,c2,y =0

c1, w2,y =0

Matt Fredrikson Explicit-State MC 9/34

Liveness: “Repeated Eventually”

c1,m2,y=0 ny,c2,y=0

wi,c2,y =0

c1, w2,y =0

Does this satisfy GF ¢; AGF ¢3?

Matt Fredrikson Explicit-State MC 9/34

Liveness: “Repeated Eventually”

c1,m2,y=0 ny,c2,y=0

wi,c2,y =0

Does this satisfy G F ¢; A G F c2? No. What’s a counterexample?

c1, w2,y =0

Matt Fredrikson Explicit-State MC 9/34

Liveness: “Repeated Eventually”

c1,m2,y=0 ny,c2,y=0

Does this satisfy G F ¢; A G F c2? No. What’s a counterexample?

Matt Fredrikson Explicit-State MC 9/34

Liveness: Starvation Freedom

n1yni,y =1

wi,n2,y =1 ni,wa,y =1

c1,n2,y=0 w1, w2,y =1 ni,c2,y =0

Matt Fredrikson Explicit-State MC 10/34

Liveness: Starvation Freedom

n1yni,y =1

wi,n2,y =1 ni,wa,y =1

wy, w2,y =1

c1,n2,y=0 ni,c2,y =0

Does this satisfy G (w; — F ¢;)?

Matt Fredrikson Explicit-State MC 10/34

Liveness: Starvation Freedom

n1yni,y =1

wi,n2,y =1 ni,wa,y =1

wy, w2,y =1

c1,n2,y=0 ni,c2,y =0

Does this satisfy G (w; — F ¢;)? No. What’s a counterexample?

Matt Fredrikson Explicit-State MC 10/34

Liveness: Starvation Freedom

n1yni,y =1

wi,n2,y =1 ni,wa,y =1

wy, w2,y =1

c1,n2,y=0 ni,c2,y =0

Does this satisfy G (w; — F ¢;)? No. What’s a counterexample?

Matt Fredrikson Explicit-State MC 10/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

» Often these choices are unrealistic in practice

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

» Often these choices are unrealistic in practice

To prove liveness, we want to rule out unfair paths from the model

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

» Often these choices are unrealistic in practice

To prove liveness, we want to rule out unfair paths from the model

We accomplish this by ruling out unfair paths when checking liveness

Matt Fredrikson Explicit-State MC 11/34

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
» Choices that are globally biased against certain options

» Often these choices are unrealistic in practice

To prove liveness, we want to rule out unfair paths from the model
We accomplish this by ruling out unfair paths when checking liveness

Fairness constraints allow us to do this

Matt Fredrikson Explicit-State MC 11/34

Fairness Constraints

There are several different types of fairness

Matt Fredrikson Explicit-State MC 12/34

Fairness Constraints

There are several different types of fairness

» Unconditional fairness: Every process is executed infinitely
often.
foralli,GF P;

Matt Fredrikson Explicit-State MC 12/34

Fairness Constraints

There are several different types of fairness

» Unconditional fairness: Every process is executed infinitely

often.
foralli,GF P;

» Strong fairness: Every process that is enabled infinitely often
gets its turn infinitely often when it is enabled

for all ¢, (G F enabled;) — (GF F,)

Matt Fredrikson Explicit-State MC 12/34

Fairness Constraints

There are several different types of fairness

» Unconditional fairness: Every process is executed infinitely

often.
foralli,GF P;

» Strong fairness: Every process that is enabled infinitely often
gets its turn infinitely often when it is enabled
for all ¢, (G F enabled;) — (G F P;)
» Weak fairness: Every process that is at some point
continuously enabled gets its turn infinitely often
for all 7, (F G enabled;) — (GF F;)

Matt Fredrikson Explicit-State MC 12/34

Fairness Constraints

There are several different types of fairness

» Unconditional fairness: Every process is executed infinitely
often.
foralli,GF P;

» Strong fairness: Every process that is enabled infinitely often
gets its turn infinitely often when it is enabled
for all ¢, (G F enabled;) — (G F P;)

» Weak fairness: Every process that is at some point
continuously enabled gets its turn infinitely often

for all 7, (F G enabled;) — (GF F;)

“Enabled” means “able to execute” a particular transition

Matt Fredrikson Explicit-State MC 12/34

Example: Weak Fairness

Consider the mutual exclusion example

A process is enabled if able to enter its critical section immediately

Matt Fredrikson

ni,n,y =1

ni,wa,y =1

wy,wo,y =1
s W2,

nl?cz,y:o

Explicit-State MC 13/34

Example: Weak Fairness

Consider the mutual exclusion example

A process is enabled if able to enter its critical section immediately

ni,n,y =1

ny,wo,y =1
s W2,

ny,c2,y=0

Does this satisfy G (w; — F ¢;) under weak fairness?

wy,wo,y =1
s W2,

ci,n2,y=0

Matt Fredrikson Explicit-State MC 13/34

Example: Weak Fairness

l

ny,n1,y =1

ni,wa,y =1

wy,n2,y =1

c1,n2,y=0 wy,wa,y =1 ni,c2,y=0

wi,c2,y=0

No, G (w; — F ¢;) isn’t satisfied under weak fairness

Matt Fredrikson Explicit-State MC 14/34

Example: Weak Fairness

l

ny,n1,y =1

ni,wa,y =1

wy,n2,y =1

c1,n2,y=0 wy,wa,y =1 ni,c2,y=0

wi,c2,y=0

No, G (w; — F ¢;) isn’t satisfied under weak fairness

Whenever P, enters critical, P, is not enabled

Matt Fredrikson Explicit-State MC 14/34

Example: Weak Fairness

l

ny,n1,y =1

ni,wa,y =1

wi,n2,y =1

c1,n2,y=0 wy,wa,y =1 ni,c2,y=0

wi,c2,y=0

No, G (w; — F ¢;) isn’t satisfied under weak fairness
Whenever P, enters critical, P, is not enabled
The antecedent that P, be enabled continuously is false

Matt Fredrikson Explicit-State MC 14/34

Example: Strong Fairness

wi,wa,y =1

c1,n2,y=0 ni,c2,y=0

wi,c2,y=0

Does this satisfy G (w; — F ¢;) under strong fairness?

Matt Fredrikson Explicit-State MC 15/34

Example: Strong Fairness

Does this satisfy G (w; — F ¢;) under strong fairness?

Yes, both processes enabled infinitely often along all paths

Matt Fredrikson Explicit-State MC 15/34

Example: Strong Fairness

Does this satisfy G (w; — F ¢;) under strong fairness?
Yes, both processes enabled infinitely often along all paths

So a strongly-fair scheduler lets both execute infinitely often

Matt Fredrikson Explicit-State MC 15/34

Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i, G F P,

Matt Fredrikson Explicit-State MC 16 /34

Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i, G F P,

Yes. It held for strong fairness, which was:
Strong Fairness : for all ¢, (G F enabled;) — (G F F;)

Matt Fredrikson Explicit-State MC 16 /34

Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i, G F P,

Yes. It held for strong fairness, which was:
Strong Fairness : for all ¢, (G F enabled;) — (G F F;)

So we see that unconditional fairness implies strong fairness

Matt Fredrikson Explicit-State MC 16 /34

Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i, G F P,

Yes. It held for strong fairness, which was:
Strong Fairness : for all ¢, (G F enabled;) — (G F F;)

So we see that unconditional fairness implies strong fairness

In fact, we can say that:
Unconditional Fairness = Strong Fairness =—- Weak Fairness

Matt Fredrikson Explicit-State MC 16 /34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

Matt Fredrikson Explicit-State MC

17/34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:

Matt Fredrikson Explicit-State MC 17 /34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:
1. Compute Sat(¢), the set of all states that satisfy ¢

Matt Fredrikson Explicit-State MC 17 /34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:
1. Compute Sat(¢), the set of all states that satisfy ¢

2. Check to make sure that I C Sat(¢)

Matt Fredrikson Explicit-State MC 17 /34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:
1. Compute Sat(¢), the set of all states that satisfy ¢

2. Check to make sure that I C Sat(¢)

This is stronger than model checking: know all states that satisfy ¢

Matt Fredrikson Explicit-State MC 17 /34

Checking CTL

CTL Model Checking Problem

Given a transition system M = (P, S, I, L, R) and a CTL formula ¢,
check whether:
M,sk¢forallsel

We’'ll take the following approach:
1. Compute Sat(¢), the set of all states that satisfy ¢

2. Check to make sure that I C Sat(¢)

This is stronger than model checking: know all states that satisfy ¢

Sometimes called “global” model checking

Matt Fredrikson Explicit-State MC 17 /34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:
» Sat(true) = S

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:
» Sat(true) = S
> Sat(p) = {s € S|p € L(s)}

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:
» Sat(true) = S
> Sat(p) = {s € S|p € L(s)}
» Sat(—¢) = S\ Sat(¢)

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(¢)

To reduce the number of cases, we’ll assume a normal form

Existential Normal Form (ENF)
¢Zl=true|¢1 /\d)g | ﬁ¢|EX¢|E(¢1 U¢2) ‘ EG¢

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ¢ and M = (P, S, 1, L, R), we define Sat(¢) as follows:
» Sat(true) = S
> Sat(p) = {s € S|p € L(s)}
» Sat(—¢) = S\ Sat(¢)
> Sat(¢ A ¢) = Sat(¢) N ()

Matt Fredrikson Explicit-State MC 18/34

Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}

Matt Fredrikson Explicit-State MC

19/34

Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}

Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # &}

Matt Fredrikson Explicit-State MC

19/34

Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}

Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # &}

In other words, the set of states satisfying EX ¢ are:

Matt Fredrikson Explicit-State MC

19/34

Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}

Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # &}

In other words, the set of states satisfying EX ¢ are:
1. States with at least one direct successor s,

Matt Fredrikson Explicit-State MC

19/34

Satisfiable Set: Sat(EX ¢)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) ={s' €S| (s,s') € R}
Pre(s) ={s'e€S|(s,s)€ R}
Continuing on:
Sat(EX ¢) = {s € S | Post(s) N Sat(¢) # o}

In other words, the set of states satisfying EX ¢ are:
1. States with at least one direct successor s,

2. Where s is in the states that satisfy ¢

Matt Fredrikson Explicit-State MC

19/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

2. have at least one successor that satisfies EG ¢

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

2. have at least one successor that satisfies EG ¢

Note the recursion: Sat(EG ¢) is the largest set T satisfying:
T = {s € Sat(¢) | Post(s) NT # &}

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set: Sat(EG ¢)

Now for “exists always”

Sat(EG ¢) is the largest subset T' C S where:
1. T C Sat(¢)

2. s € T implies that Post(s) N T # @

The set of states satisfying EG ¢ are the largest set of:
1. States that satisfy ¢, and

2. have at least one successor that satisfies EG ¢

Note the recursion: Sat(EG ¢) is the largest set T satisfying:
T = {s € Sat(¢) | Post(s) NT # &}

We say T is a greatest fixed point solution of the above equation

Matt Fredrikson Explicit-State MC 20/34

Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:

Matt Fredrikson Explicit-State MC 21/34

Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
1. T C Sat(vy)

Matt Fredrikson Explicit-State MC

Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
1. T C Sat(vy)

2. s € Sat(¢) and Post(s) N T # @ impliesthat s € T

Matt Fredrikson Explicit-State MC 21/34

Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
1. T C Sat(vy)

2. s € Sat(¢) and Post(s) N T # @ impliesthat s € T

We can give a similar fixed-point characterization here:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

Matt Fredrikson Explicit-State MC 21/34

Satisfiable Set Sat(E (¢ U 1))

Sat(E (¢ U v)) is the smallest subset " C S where:
1. T C Sat(vy)

2. s € Sat(¢) and Post(s) N T # @ impliesthat s € T

We can give a similar fixed-point characterization here:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

In this case, T is a least fixed point solution

Matt Fredrikson Explicit-State MC 21/34

Example

Consider the formula EX (a > ¢)

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|

Matt Fredrikson Explicit-State MC 22/34

Example: EX (a <> ¢)

First label the nodes that satisfy a < ¢

{ec} Z

ST
{av b7 C} ° J/ @ {a}
a {0} {a,c}
I

{b, c} S2 {a,b}

Matt Fredrikson Explicit-State MC

23/34

Example: EX (a <> ¢)

First label the nodes that satisfy a <> ¢
{c}
() /@
a<b
{a,b,c} (so J @ {a}

a<b
{a7 C}
{b, c} S2 {a,b}

Matt Fredrikson Explicit-State MC 23/34

Example: EX (a <> ¢)

Then the nodes that satisfy EX (a < ¢)

EX (a < b) a+b
{c} @

o :
E

a<b
{a,b,c}

lEX(aHb) EX (a < b)
a<b asb
{v} {a,c}

EX(a<~ Db
{b, c} S2 {a,b}

Matt Fredrikson Explicit-State MC 23/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:
1. First, label the states that satisfy ¢ and v

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:
1. First, label the states that satisfy ¢ and v

2. Anything labeled v is also labeled E (¢ U)

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:
1. First, label the states that satisfy ¢ and v

2. Anything labeled v is also labeled E (¢ U)

3. Then, work backwards using the transition relation

Matt Fredrikson Explicit-State MC 24/34

Computing Sat(E (¢ U ¢)

What to do about E (¢ U ¥)?

We need to find the smallest fixed-point that satisfies:
T = Sat(y) U {s € Sat(¢) | Post(s) N T # &}

The algorithm will work as follows:
1. First, label the states that satisfy ¢ and v

2. Anything labeled v is also labeled E (¢ U)
3. Then, work backwards using the transition relation

4. Label states that can be reached by a path labeled ¢

Matt Fredrikson Explicit-State MC 24/34

Example

Consider the formula E ((b — a) U ¢)

{c} %]
() .
e (=) l (=)
{a,c}
{b, c} S2 {a,b}
|

Matt Fredrikson Explicit-State MC 25/34

Example

First label states by b — a and ¢

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|

Matt Fredrikson Explicit-State MC 25/34

Example

First label states by b — a and ¢

E(U))
b—a,c b—a
{c})
S6
baac
{abc} {a}
b—>a
b—>ac
{b} {a,c}
{bc} 52 {a, b}
b—a
(U)

Matt Fredrikson Explicit-State MC 25/34

Example

Then work backwards from states labeled E ((b — a) U ¢)

E(U-)
b—a,c b—a
{c} @
S6
baac
{abc} {a}
b—>a
b—>ac
{b} {a,c}
{bc} 52 {a, b}
b—a
(U)

Matt Fredrikson Explicit-State MC 25/34

Example

Start with s
E(U)
b—a,c b—a
{c})
S6
E(U)
b — a, c
{abc} {a}
b—>a
b—>a c
{b} {a,c}
{b c} {a,b}
b—a

Matt Fredrikson Explicit-State MC 25/34

Start with sg Then s3

E(U)
b—a,c b—a
{c} 2
S6 s7
E(U
b—>ac
{a,b,c}

{b c}

AN

Matt Fredrikson Explicit-State MC 25/34

Then s3
E(U) E(U)
b—a,c b—a
{c} 2
S6 s7
E(U)
b — a, c
{a,b,c}

%d

KN,

Matt Fredrikson Explicit-State MC 25/34

Nothing left to label but sy4; it isn’t in Sat

E(.U.) E(.U.)
b—a,c b—a
{c})
S6 ST

b—>ac
{abc}
E(U)
b—a,c
{b} {a,c}
{bc} 52 {a, b}
b—a
E(U) E(U.)

Matt Fredrikson Explicit-State MC 25/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Then M, s E EG ¢ iff:

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C
» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Then M, s E EG ¢ iff:
» se 5 (i.e., M,s E 9¢)

Matt Fredrikson Explicit-State MC 26/34

Computing Sat(EG ¢)

This algorithm is based on strongly-connected components

An SCC C is a maximal subgraph where:
» Each node in C is reachable from every other node in C'

» The paths between are contained entirely within C

» (' is nontrivial if it has more than one node, or a self-loop

Let M’ be obtained from M by deleting all states not satisfying ¢

Then M, s E EG ¢ iff:
» se 5 (i.e., M,s E 9¢)
» There is a path in M’ from s to some ¢ in a nontrivial SCC

Matt Fredrikson Explicit-State MC 26/34

Example

Consider the formula EG (a V (b <+ ¢))

{c} %]
& :
e (=) l (=)
{a,c}
{b, c} S2 {a,b}
|

Matt Fredrikson Explicit-State MC 27/34

Example

First delete everything not satisfying a vV (b + ¢)

{c} 2
& :
{av b7 C} ° J/ @ {a}
{a,c}
{b, c} S2 {a,b}
|

Matt Fredrikson Explicit-State MC 27/34

First delete everything not satisfying a vV (b + ¢)

{a,b,c} ° @ {a}

{a,c}

{b,c} 52 {a, b}

Matt Fredrikson Explicit-State MC 27/34

Then find the strongly-connected components

{a,b,c} ° @ {a}

{a,c}

{b, c} S2 {a,b}

Matt Fredrikson Explicit-State MC 27/34

Then find the strongly-connected components

{av b, C} S0)€ @ {a}

{a,c}

{b,c} { s2 » s1) {a,b}

Matt Fredrikson Explicit-State MC 27/34

Then label everything that reaches an SCC

{av b, C} S0)€ @ {a}

{a,c}

{b,c} { s2 » s1) {a,b}

Matt Fredrikson Explicit-State MC 27/34

Then label everything that reaches an SCC

EG (aV (b ¢) G (aV (b))
{a,b,c} [so)¢ @ {a}

EG ()
{a,c}

{b, c} ED) » s1 {a,b}
EG (aV (b+ ¢) G (aV (b+c))

Matt Fredrikson Explicit-State MC 27/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula
» Each pass takes at most O(|S| + |R|)

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula
» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

E (¢ U)isalso O(|S| + |R|)

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

E (¢ U)isalso O(|S| + |R|)

EG ¢ requires computing strongly-connected components

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

E (¢ U)isalso O(|S| + |R|)
EG ¢ requires computing strongly-connected components

Tarjan’s algorithm has complexity O(|S| + |R|)

Matt Fredrikson Explicit-State MC 28/34

Complexity of CTL Checking

For the “simple” formulas: true, p, —¢, ¢ A 1, EX ¢:
» We start with the innermost-nested formulas

» Label each state that matches the formula

» Each pass takes at most O(|S| + |R|)
» We pass once per subformula, so this gives us O(|¢| - (|S] + |R]))

E (¢ U)isalso O(|S| + |R|)
EG ¢ requires computing strongly-connected components
Tarjan’s algorithm has complexity O(|S| + |R|)

Therefore, checking CTL is done in time O(|| - (|S] + |R]))

Matt Fredrikson Explicit-State MC 28/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample

In general, these are path prefixes that refute ¢

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

» Ending in a single cycle traversal (with —¢)

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

» Ending in a single cycle traversal (with —¢)

What is a counterexample for a formula beginning in E ?

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

» Ending in a single cycle traversal (with —¢)

What is a counterexample for a formula beginning in E ?
» In this case, the answer “no” might suffice

Matt Fredrikson Explicit-State MC 29/34

Counterexamples in CTL

When M, s ¢ ¢, we want a counterexample
In general, these are path prefixes that refute ¢

For example, a counterexample of AF ¢ is a path =
» Beginning with a sequence of —¢ states

» Ending in a single cycle traversal (with —¢)

What is a counterexample for a formula beginning in E ?
» In this case, the answer “no” might suffice

» When E ¢ holds, we can provide a withess

Matt Fredrikson Explicit-State MC 29/34

Counterexamples and Witnesses: X operator

This is the simplest case

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

A witness for EX ¢ is a pair of states (s, s’) where:

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

A witness for EX ¢ is a pair of states (s, s’) where:
1. sel

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

A witness for EX ¢ is a pair of states (s, s’) where:
1. sel

2. s’ € Post(s)

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ¢ is a pair of states (s, s") where:
1. sel

2. s’ € Post(s)
3. M,s' F o

A witness for EX ¢ is a pair of states (s, s’) where:
1. sel

2. s’ € Post(s)
3. M,s' E¢

Matt Fredrikson Explicit-State MC 30/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M7 E G (¢ A)

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN)
2.0rM,m E(p A=) U (mdp A

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN)
2.0rM,m E(p A=) U (mdp A

In the first case, the prefix should be of the form:

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN)
2.0rM,m E(p A=) U (mdp A

In the first case, the prefix should be of the form:

/

/
8181 ..-8Sn—15nS1 .5,

cycle

satisfy pA—Y

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN)
2.0rM,m E(p A=) U (mdp A

In the first case, the prefix should be of the form:

/

/
8181 ..-8Sn—15nS1 .5,

cycle

satisfy pA—Y

In the second, the prefix should be:

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A counterexample for A (¢ U v) is a prefix of some 7 where:
1. M,mn EG (¢ AN)
2.0rM,m E(p A=) U (mdp A

In the first case, the prefix should be of the form:

/

/
8181 ..-8Sn—15nS1 .5,

cycle

satisfy pA—Y

In the second, the prefix should be:
$181 .- 8n—1 8, With M, s, E—¢ A ¢
N—————’

satisfy gAY

Matt Fredrikson Explicit-State MC 31/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:

1. m=5081...5p

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p

2. M,s;E¢forall0<i<n

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Witnesses are generated by backward search from ¢ states

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Witnesses are generated by backward search from ¢ states

Counterexamples are generated by backwards search from:

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Witnesses are generated by backward search from ¢ states

Counterexamples are generated by backwards search from:
1. SCCs satisfying ¢ A =)

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: U operator

A witness for A (¢ U) is a prefix of some = where:
1. m=5081...5p
2. M,s;E¢forall0<i<n
3. M,s, Ev

Witnesses are generated by backward search from ¢ states

Counterexamples are generated by backwards search from:
1. SCCs satisfying ¢ A =)

2. Or —p A\

Matt Fredrikson Explicit-State MC 32/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:

1. m=5081...5,

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,

2. M,s;E¢forall0<i<n

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,
2. M,s;E¢forall0<i<n
3. M, s, E ¢

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,
2. M,s;E¢forall0<i<n
3. M, s, E ¢

A witness for EG ¢ is a prefix of the form:

/
T

5081 ...5,8)...5. where s, =s.

satisfies ¢

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,
2. M,s;E¢forall0<i<n
3. M, s, E ¢

A witness for EG ¢ is a prefix of the form:

/
T

5081 ...5,8)...5. where s, =s.

satisfies ¢

Counterexamples are found by backward search

Matt Fredrikson Explicit-State MC 33/34

Counterexamples and Witnesses: G operator

A counterexample for AG ¢ is a prefix of some = where:
1. m=5081...5,
2. M,s;E¢forall0<i<n
3. M, s, E ¢

A witness for EG ¢ is a prefix of the form:

/
T

5081 ...5,8)...5. where s, =s.

satisfies ¢

Counterexamples are found by backward search

Witnesses are found by looking for cycles that satisfy ¢, backward

search

Matt Fredrikson Explicit-State MC

33/34

Next Lecture

v

Continue discussing model checking

Infinite automata

v

v

LTL model checking

v

Dealing with state explosion

Matt Fredrikson Explicit-State MC 34/34

