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Useful Temporal Properties (Review)

Typically, the properties we want to check fall into a few categories

▶ Safety: Properties which require that “nothing bad should ever
happen”

▶ Liveness: Require that “something good always happens” in
the future

▶ Fairness: Precludes “degenerate” infinite behaviors

These are inherently linear-time properties
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Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times
▶ Mutual exclusion
▶ Deadlock freedom
▶ Well-formedness of data structures

If ϕ is a propositional formula over P , then the LTL formula
G ϕ

is an invariant property
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Example: Mutual Exclusion (Review)

Consider a concurrent system with processes P1 and P2

What is ϕ? P1 and P2 can’t be simultaneously critical
ϕ⇔ ¬c1 ∨ ¬c2

Algorithmically, invariant checking is a reachability problem

To see if G ϕ holds, check for a state ¬ϕ reachable from I
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Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes

▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths

▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ

▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Safety properties, beyond invariants (Review)

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ
▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Explicit-State MC 5 / 34



Liveness Properties (Review)

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do
nothing

Usually this isn’t what we want, and liveness properties address this

Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:
▶ Safety properties are violated in finite
time
▶ Liveness properties can only be violated in infinite
time
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Liveness, Formally

Liveness properties are defined in terms of infinite
path
extensions
▶ Let ϕ be a property over paths
▶ Let σ̂ be a finite path prefix
▶ σ is an infinite path extension if σ̂σ satisfies ϕ

ϕ is a liveness property iff every finite prefix has an infinite extension

Put differently: a liveness property does not rule out any finite prefix

This implies that there are no finite witnesses for liveness
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Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each Pi enters criticali infinitely often
G F c1 ∧G F c2

Another: each waiting process eventually enters its criticali
G (wi → F ci)

Any finite prefix can always be extended to satisfy these properties
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Liveness: “Repeated Eventually”

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

¬(G F c1)

Does this satisfy G F c1 ∧G F c2? No. What’s a counterexample?
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Liveness: Starvation Freedom

n1, n1, y = 1
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c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1
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Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
▶ Choices that are globally biased against certain options
▶ Often these choices are unrealistic in practice

To prove liveness, we want to rule out unfair paths from the model

We accomplish this by ruling out unfair paths when checking liveness

Fairness
constraints allow us to do this
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Fairness Constraints

There are several different types of fairness

▶ Unconditional
fairness: Every process is executed infinitely
often.

for all i,G F Pi
▶ Strong
fairness: Every process that is enabled infinitely often

gets its turn infinitely often when it is enabled
for all i, (G F enabledi) → (G F Pi)

▶ Weak
fairness: Every process that is at some point
continuously enabled gets its turn infinitely often

for all i, (F G enabledi) → (G F Pi)

“Enabled” means “able to execute” a particular transition
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for all i, (G F enabledi) → (G F Pi)

▶ Weak
fairness: Every process that is at some point
continuously enabled gets its turn infinitely often

for all i, (F G enabledi) → (G F Pi)

“Enabled” means “able to execute” a particular transition
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Example: Weak Fairness
Consider the mutual exclusion example

A process is enabled if able to enter its critical section immediately

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Does this satisfy G (wi → F ci) under weak fairness?
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No, G (wi → F ci) isn’t satisfied under weak fairness

Whenever P2 enters critical, P1 is not enabled

The antecedent that Pi be enabled continuously is false
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Example: Strong Fairness

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Does this satisfy G (wi → F ci) under strong fairness?

Yes, both processes enabled infinitely often along all paths

So a strongly-fair scheduler lets both execute infinitely often
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Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i,G F Pi

Yes. It held for strong fairness, which was:
Strong Fairness : for all i, (G F enabledi) → (G F Pi)

So we see that unconditional fairness implies strong fairness

In fact, we can say that:
Unconditional Fairness =⇒ Strong Fairness =⇒ Weak Fairness
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Checking CTL

CTL Model Checking Problem
Given a transition system M = (P, S, I, L,R) and a CTL formula ϕ,
check whether:

M, s |= ϕ for all s ∈ I

We’ll take the following approach:
1. Compute Sat(ϕ), the set of all states that satisfy ϕ
2. Check to make sure that I ⊆ Sat(ϕ)

This is stronger than model checking: know all states that satisfy ϕ

Sometimes called “global” model checking
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Satisfiable Set: Sat(ϕ)

To reduce the number of cases, we’ll assume a normal form

Existential
Normal
Form (ENF)
ϕ ::= true | ϕ1 ∧ ϕ2 | ¬ϕ | EX ϕ | E (ϕ1 U ϕ2) | EG ϕ

Exercise: Convince yourself we can rewrite formulas in ENF

Given ENF ϕ and M = (P, S, I, L,R), we define Sat(ϕ) as follows:
▶ Sat(true) = S
▶ Sat(p) = {s ∈ S|p ∈ L(s)}
▶ Sat(¬ϕ) = S \ Sat(ϕ)
▶ Sat(ϕ ∧ ψ) = Sat(ϕ) ∩ (ψ)
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Satisfiable Set: Sat(EX ϕ)

For the next rules, we’ll refer to direct predecessors and successors:
Post(s) = {s′ ∈ S | (s, s′) ∈ R}
Pre(s) = {s′ ∈ S | (s′, s) ∈ R}

Continuing on:
Sat(EX ϕ) = {s ∈ S | Post(s) ∩ Sat(ϕ) ̸= ∅}

In other words, the set of states satisfying EX ϕ are:
1. States with at least one direct successor s,
2. Where s is in the states that satisfy ϕ
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Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:

1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)

2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:

1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and

2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set: Sat(EG ϕ)

Now for “exists always”

Sat(EG ϕ) is the largest subset T ⊆ S where:
1. T ⊆ Sat(ϕ)
2. s ∈ T implies that Post(s) ∩ T ̸= ∅

The set of states satisfying EG ϕ are the largest set of:
1. States that satisfy ϕ, and
2. have at least one successor that satisfies EG ϕ

Note the recursion: Sat(EG ϕ) is the largest set T satisfying:
T = {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

We say T is a greatest
fixed
point
solution of the above equation

Matt Fredrikson Explicit-State MC 20 / 34



Satisfiable Set Sat(E (ϕ U ψ))

Sat(E (ϕ U ψ)) is the smallest subset T ⊆ S where:

1. T ⊆ Sat(ψ)
2. s ∈ Sat(ϕ) and Post(s) ∩ T ̸= ∅ implies that s ∈ T

We can give a similar fixed-point characterization here:
T = Sat(ψ) ∪ {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

In this case, T is a least
fixed
point
solution
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Example

Consider the formula EX (a↔ c)

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example: EX (a↔ c)

First label the nodes that satisfy a↔ c
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Example: EX (a↔ c)

Then the nodes that satisfy EX (a↔ c)

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

a ↔ b

a ↔ b a ↔ b

a ↔ b

EX (a ↔ b)

EX (a ↔ b) EX (a ↔ b)

EX (a ↔ b)

EX (a ↔ b)
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Computing Sat(E (ϕ U ψ)

What to do about E (ϕ U ψ)?

We need to find the smallest fixed-point that satisfies:
T = Sat(ψ) ∪ {s ∈ Sat(ϕ) | Post(s) ∩ T ̸= ∅}

The algorithm will work as follows:
1. First, label the states that satisfy ϕ and ψ
2. Anything labeled ψ is also labeled E (ϕ U ψ)

3. Then, work backwards using the transition relation
4. Label states that can be reached by a path labeled ϕ
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Example

Consider the formula E ((b→ a) U c)

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

First label states by b→ a and c

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

First label states by b→ a and c

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)
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Example

Then work backwards from states labeled E ((b→ a) U c)

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)
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Example

Start with s0

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)
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Example

Start with s0 Then s3

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)

E (· U ·)
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Example

Then s3

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)

E (· U ·)

E (· U ·)

E (· U ·)
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Example

Nothing left to label but s4; it isn’t in Sat

s0

s2 s1

s3

s5

s7s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

b → a, c
E (· U ·)

c
E (· U ·)

b → a

b → a

b → a, c
E (· U ·)

b → ab → a, c
E (· U ·)

E (· U ·)

E (· U ·)

E (· U ·)
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Computing Sat(EG ϕ)

This algorithm is based on strongly-connected
components

An SCC C is a maximal subgraph where:
▶ Each node in C is reachable from every other node in C
▶ The paths between are contained entirely within C
▶ C is nontrivial if it has more than one node, or a self-loop

Let M ′ be obtained from M by deleting all states not satisfying ϕ

Then M, s |= EG ϕ iff:
▶ s ∈ S′ (i.e., M, s |= ϕ)
▶ There is a path in M ′ from s to some t in a nontrivial SCC
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Example

Consider the formula EG (a ∨ (b↔ c))

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

First delete everything not satisfying a ∨ (b↔ c)

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

First delete everything not satisfying a ∨ (b↔ c)

s0

s2 s1

s3

s5

s7s6
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{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

Then find the strongly-connected components

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅
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Example

Then find the strongly-connected components

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

s0

s2 s1

s3
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Example

Then label everything that reaches an SCC

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

s0

s2 s1

s3
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Example

Then label everything that reaches an SCC

s0

s2 s1

s3

s5

s7s6

s4

{a, b, c}

{b, c} {a, b}

{a, c}

{a}

{b}

{c} ∅

s0

s2 s1

s3

EG (a ∨ (b ↔ c))

EG (a ∨ (b ↔ c))

EG (a ∨ (b ↔ c))

EG (a ∨ (b ↔ c))

EG (· · · )
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Complexity of CTL Checking

For the “simple” formulas: true, p,¬ϕ, ϕ ∧ ψ,EX ϕ:

▶ We start with the innermost-nested formulas
▶ Label each state that matches the formula
▶ Each pass takes at most O(|S| + |R|)
▶ We pass once per subformula, so this gives us O(|ϕ| · (|S| + |R|))

E (ϕ U ψ) is also O(|S| + |R|)

EG ϕ requires computing strongly-connected components

Tarjan’s algorithm has complexity O(|S| + |R|)

Therefore, checking CTL is done in time O(|ϕ| · (|S| + |R|))
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Counterexamples in CTL

When M, s ̸|= ϕ, we want a counterexample

In general, these are path prefixes that refute ϕ

For example, a counterexample of AF ϕ is a path π:
▶ Beginning with a sequence of ¬ϕ states
▶ Ending in a single cycle traversal (with ¬ϕ)

What is a counterexample for a formula beginning in E ?
▶ In this case, the answer “no” might suffice
▶ When E ϕ holds, we can provide a witness
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Counterexamples and Witnesses: X operator

This is the simplest case

A counterexample for AX ϕ is a pair of states (s, s′) where:
1. s ∈ I

2. s′ ∈ Post(s)
3. M, s′ ̸|= ϕ

A witness for EX ϕ is a pair of states (s, s′) where:
1. s ∈ I

2. s′ ∈ Post(s)
3. M, s′ |= ϕ
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Counterexamples and Witnesses: U operator

A counterexample for A (ϕ U ψ) is a prefix of some π where:

1. M,π |= G (ϕ ∧ ¬ψ)
2. OrM,π |= (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ

In the first case, the prefix should be of the form:
s1s1 . . . sn−1 sns

′
1 . . . s

′
r︸ ︷︷ ︸

cycle︸ ︷︷ ︸
satisfy ϕ∧¬ψ

In the second, the prefix should be:
s1s1 . . . sn−1︸ ︷︷ ︸

satisfy ϕ∧¬ψ

sn with M, sn |= ¬ϕ ∧ ¬ψ
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Counterexamples and Witnesses: U operator

A witness for A (ϕ U ψ) is a prefix of some π where:

1. π = s0s1 . . . sn
2. M, si |= ϕ for all 0 ≤ i < n

3. M, sn |= ψ

Witnesses are generated by backward search from ψ states

Counterexamples are generated by backwards search from:
1. SCCs satisfying ϕ ∧ ¬ψ
2. Or ¬ϕ ∧ ¬ψ
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Counterexamples and Witnesses: G operator

A counterexample for AG ϕ is a prefix of some π where:

1. π = s0s1 . . . sn
2. M, si |= ϕ for all 0 ≤ i < n

3. M, sn |= ¬ϕ

A witness for EG ϕ is a prefix of the form:
s0s1 . . . sns

′
1 . . . s

′
r︸ ︷︷ ︸

satisfies ϕ

where sn = s′r

Counterexamples are found by backward search

Witnesses are found by looking for cycles that satisfy ϕ, backward
search
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Next Lecture

▶ Continue discussing model checking

▶ Infinite automata

▶ LTL model checking

▶ Dealing with state explosion
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