
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 19:
Introduction to Model Checking

Matt Fredrikson
mfredrik@cs.cmu.edu

November 9, 2016

Matt Fredrikson Intro. Model Checking 1 / 27

Approaches for Demonstrating Correctness

We’ve seen how to prove correctness with automated assistance:
▶ Systematic techniques for generating verification
conditions
▶ Decision
procedures for checking these VC’s
▶ Heuristics for inferring inductive invariants

There is still quite a bit of manual effort involved in proof development

Model
checking refers to a set of techniques that:
▶ Take a system model and a temporal
specification
▶ Automatically determine whether the model matches the

specification

Matt Fredrikson Intro. Model Checking 2 / 27

Model Checking

Developed independently by Clarke and Emerson, Queille and
Sifakis in the 80’s

At a high level, these techniques:
▶ Verify correctness by exhaustive
search of the system’s state

space
▶ Use specifications that describe states
over
time, as they

evolve according to the system’s computations
▶ Naturally handle concurrent
systems

Model checking has been applied to:
▶ Hardware and embedded systems
▶ Systems, device driver, and concurrent software
▶ Network and cryptographic protocols
▶ Hybrid dynamical systems

Matt Fredrikson Intro. Model Checking 3 / 27

Model Checking: Strengths

There are many reasons to use MC:

▶ Completely automatic, so no
manual
proof burden
▶ Handles partial
specifications perfectly well
▶ Produces diagnostic
counterexamples, which give helpful

information about problematic parts of the system
▶ In many cases, produces answers quickly
▶ For the user, reasoning about concurrent systems is no more

challenging than sequential systems

Matt Fredrikson Intro. Model Checking 4 / 27

Model Checking: Drawbacks

There are also some things that make it challengin:

▶ The central issue: state-space
explosion
▶ ...i.e., too many states to explore
▶ Another potential issue: correctness of the model

We’ll look at both of these problems, and notable solutions
▶ State-space reduction by exploiting symmetries in the model
▶ Symbolic techniques that avoid exploring all states explicitly
▶ Program abstraction techniques that build semantically-correct

models

Matt Fredrikson Intro. Model Checking 5 / 27

Modeling Computation

Computations are modeled using a state
transition
graph, also called
a Kripke
structure

Kripke structure
A Kripke structure
M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

{p0, p2}
s0

{p0, p1}
s1

{p1, p2}
s2

▶ P = {p0, p1, p2}, S = {s0, s1, s2}
▶ I = {s0}
▶ L = {(s0, {p0, p2}), . . .}
▶ R = {(s0, s1), (s1, s2), . . .}

Matt Fredrikson Intro. Model Checking 6 / 27

Kripke Structure: Intuition

▶ The atomic propositions
model relevant facts about
the system

▶ e.g., “the GPS is turned on”,
x = 5, …

▶ Transitions model the
behavior of the system
step-by-step

▶ The transition relation is total:
for every state s ∈ S, there
exists s′ ∈ S such that
(s, s′) ∈ R

{p0, p2}
s0

{p0, p1}
s1

{p1, p2}
s2

▶ P = {p0, p1, p2}, S = {s0, s1, s2}
▶ I = {s0}
▶ L = {(s0, {p0, p2}), . . .}
▶ R = {(s0, s1), (s1, s2), . . .}

Matt Fredrikson Intro. Model Checking 7 / 27

Example: Kripke Structure

coin
s0

select
s1

coffee
s2

tea
s3

▶ S = {s0, s1, s2, s3}
▶ P = {coin, select, coffee, tea}
▶ I = {s0}
▶ Label function:

L =


(s0, {coin}),
(s1, {select}),
(s2, {coffee}),
(s3, {tea})


▶ Transition relation:

R =


(s0, s1)
(s1, s2)
(s1, s3)
(s2, s0)
(s3, s0)



Matt Fredrikson Intro. Model Checking 8 / 27

Example: Microwave Transition System

¬start
¬close
¬heat
¬error

¬start
close
¬heat
error

start
¬close
¬heat
error

¬start
close
heat
¬error

start
close
¬heat
¬error

start
close
¬heat
error

start
close
heat
¬error

Matt Fredrikson Intro. Model Checking 9 / 27

Example: Deriving a Kripke Structure

Suppose we have a system with variables x, y that range over {0, 1}

It begins with x = 1, y = 1

The system updates its state by executing:
x := (x + y) mod 2

Define the Kripke structure:
▶ S = {0, 1} × {0, 1}
▶ P = {x = 0, x = 1, y = 0, y = 1}
▶ I = {(1, 1)}
▶ R = {((1, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 0), (1, 0)), ((0, 0), (0, 0))}
▶ L((a, b)) = {x = a, y = b}

Matt Fredrikson Intro. Model Checking 10 / 27

Modeling Computations

Computations correspond to traversals of a Kripke structure

Formally, a path π is an infinite sequence of states s0s1 . . . where
for 0 ≤ i, (si, si+1) ∈ R

Often, we’ll write πi to denote the suffix starting at i

The trace of π is the sequence of corresponding labels

The set of all paths forms an infinite computation
tree
▶ Tree nodes represent system states
▶ Edges represent transitions
▶ Tree paths represent computations (one for each Kripke path)
▶ Branching results from non-determinism

Matt Fredrikson Intro. Model Checking 11 / 27

Properties

We’ve defined the model, what are we checking?

So far, we’ve dealt with properties on input/output behavior
▶ When P (input) holds, Q(output) does too
▶ Expressed using Hoare logic, first-order assertions

In this setting, we’re interested in the transition behavior over
time

To express these, we’ll use temporal
logic

Matt Fredrikson Intro. Model Checking 12 / 27

Temporal Logic: Intuition

In first-order logic, we evaluate formulas in a fixed interpretation
▶ The interpretation defines all facts about one particular “world”
▶ E.g., the predicate polls_open is either true or false in any world

In a temporal logic, formulas are evaluated in a set of worlds
▶ E.g., polls_open is true in all worlds in which the date is

November 9 in an election year
▶ The set of worlds define moments
in
time
▶ Temporal operators that refer to different moments in time
▶ eventually reach a safe state; an error state is never reached

For us, each moment in time corresponds to a path
location

Facts about the world come from the labeling function

Matt Fredrikson Intro. Model Checking 13 / 27

Temporal Operators

There are five basic temporal operators we’ll use

X p p holds at the next point in time
F p p holds at some
future point in time
G p p holds at every
point in time
p U q p holds until q holds
p R q p releases q: q holds until p (if it ever does)

These operators describe properties of a path π

Matt Fredrikson Intro. Model Checking 14 / 27

Examples: Temporal Operators

▶ Lunch will come eventually
F lunch

▶ Requests are served until the connection terminates (if ever)
terminate R serve

▶ Each request is always followed by an eventual response
G (request → F response)

▶ p holds only finitely often
F G ¬p

▶ Whenever the start button is pressed, the oven heats eventually
G (start → F heat)

Matt Fredrikson Intro. Model Checking 15 / 27

Linear Temporal Logic

These operators allow us to define linear
temporal
logic (LTL)

LTL contains state
formulas and path
formulas

State Formula
The syntax of state formulas is given by:

f ::= ⊤ | ⊥ | p | ¬f | f1 ∨ f2 | f1 ∧ f2

State formulas correspond to facts that hold in a particular state.

Path Formula
An LTL formula is composed of the following elements:

g ::= f | ¬g | g1 ∨ g2 | g1 ∧ g2 | X g | F g | G g | g1 U g2 | g1 R gs

Path formulas are evaluated along a particular path.

Matt Fredrikson Intro. Model Checking 16 / 27

LTL: Semantics

The semantic judgement that we use is of the form:
M,π |= g

Read: “g holds along path π in Kripke structure M”

We’ll also use M, s |= f for path formulas, where s is a state in M

The semantics of path formulas is straightforward

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬f ⇔ M, s ̸|= f
M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2
M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2

Matt Fredrikson Intro. Model Checking 17 / 27

LTL: Semantics (X operator)

Recall, X p asserts that p holds in the next state

We’ll replace p with an arbitrary path formula

Then, we define the meaning of X g to be:
M,π |= X g ⇔ M,π1 |= g

(we’re beginning path indices at 0)

Sometimes, it helps to visualize the path:

· · ·

any g any any any

X g

Matt Fredrikson Intro. Model Checking 18 / 27

LTL: Semantics (F operator)

F g asserts that g holds at some point in the future

Formally:
M,π |= F g ⇔ exists i ≥ 0,M, πi |= g

The following path satisfies F g:

· · · · · ·

¬g ¬g g ¬g

Whereas this one doesn’t

· · ·

¬g ¬g ¬g ¬g ¬g

Matt Fredrikson Intro. Model Checking 19 / 27

LTL: Semantics (G operator)

G g asserts that g holds globally into the future

Formally:
M,π |= G g ⇔ for all i ≥ 0,M, πi |= g

The following path satisfies G g:

· · ·

g g g g g

Does this one?

· · ·

¬g ¬g g g g

Matt Fredrikson Intro. Model Checking 20 / 27

LTL: Semantics (U operator)

g1 U g2 asserts that g1 holds until g2 does

Formally:

M,π |= g1 U g2 ⇔ exists i ≥ 0,M, πi |= g2,
and for all 0 ≤ j < i,M, πj |= g1

The following path satisfies g1 U g2:

· · ·

g1 g1 g1 g2 ⊤

Does this one?

· · ·

g1 g1 g1, g2 g1 g1

Matt Fredrikson Intro. Model Checking 21 / 27

LTL: Semantics (R operator)

g1 R g2 asserts that g2 releases g1

It is the dual to U

Formally:

M,π |= g1 R g2 ⇔ forall i ≥ 0, if for every j < i,M, πj ̸|= g1,
then M,πi |= g2

The following path satisfies g1 R g2:

· · ·

g2 g2 g2 g1, g2 ⊤

So does this one:

· · ·

g2 g2 g2 g2 g2

Matt Fredrikson Intro. Model Checking 22 / 27

Example: Temporal Semantics

Write example paths that satisfy these formulas.

F G p

· · ·

⊤ p p p p

G (p → F q)

· · ·

p T q p q

Matt Fredrikson Intro. Model Checking 23 / 27

Example: Temporal Semantics

Write counterexample paths for satisfy these formulas.

G (p → F q)

· · ·

p q p p p

F (p → X X q)

· · ·

p p q p q

G F p

· · ·

q p q q q

Matt Fredrikson Intro. Model Checking 24 / 27

Satisfiability and Validity of LTL

An LTL formula g is satisfiable if and only if:
there exists M where for every π in M : M,π |= g

If M,π |= g for all π, then M is a model of g

An LTL formula g is valid if and only if:
for all M,π in M : M,π |= g

These notions are similar to sat. and validity we’ve discussed before

But notice: to be sat, there must be a model where for
every π,
M,π |= g

Hence, LTL universally quantifies over all paths in the model

Matt Fredrikson Intro. Model Checking 25 / 27

LTL Model Checking

LTL Model Checking
Given M and g, decide whether M is a model of g.

Formally, for M = (P, S, I, L,R), decide whether for each s0 ∈ I and
every path π starting from s0,

M,π |= g

Alternatively, given M = (P, S, I, L,R) find the states s0 ∈ I where:
for all π starting in s0,M, π |= g

If this set is not I, then find a path πcex where:
M,πcex ̸|= g

πcex is called a counterexample

Matt Fredrikson Intro. Model Checking 26 / 27

Next Lecture

▶ Continue discussing model checking

▶ More on temporal logic
▶ Useful temporal properties

Matt Fredrikson Intro. Model Checking 27 / 27

