Automated Program Verification and Testing
15414/15614 Fall 2016

Lecture 19:
Introduction to Model Checking

Matt Fredrikson
mfredrik@cs.cmu.edu

November 9, 2016

Matt Fredrikson

Intro. Model Checking

Approaches for Demonstrating Correctness

We’ve seen how to prove correctness with automated assistance:
» Systematic techniques for generating verification conditions

» Decision procedures for checking these VC'’s

» Heuristics for inferring inductive invariants
There is still quite a bit of manual effort involved in proof development

Model checking refers to a set of techniques that:
» Take a system model and a temporal specification

» Automatically determine whether the model matches the
specification

Matt Fredrikson Intro. Model Checking 2/27

Model Checking

Developed independently by Clarke and Emerson, Queille and
Sifakis in the 80’s

At a high level, these techniques:

» Verify correctness by exhaustive search of the system’s state
space

» Use specifications that describe states over time, as they
evolve according to the system’s computations

» Naturally handle concurrent systems

Model checking has been applied to:
» Hardware and embedded systems

» Systems, device driver, and concurrent software
» Network and cryptographic protocols

» Hybrid dynamical systems

Matt Fredrikson Intro. Model Checking 3/27

Model Checking: Strengths

There are many reasons to use MC:

» Completely automatic, so no manual proof burden
» Handles partial specifications perfectly well

» Produces diagnostic counterexamples, which give helpful
information about problematic parts of the system

» In many cases, produces answers quickly

» For the user, reasoning about concurrent systems is no more
challenging than sequential systems

Matt Fredrikson Intro. Model Checking 4/27

Model Checking: Drawbacks

There are also some things that make it challengin:

» The central issue: state-space explosion
» ...i.e., too many states to explore

» Another potential issue: correctness of the model

We’'ll look at both of these problems, and notable solutions
» State-space reduction by exploiting symmetries in the model

» Symbolic techniques that avoid exploring all states explicitly

» Program abstraction techniques that build semantically-correct
models

Matt Fredrikson Intro. Model Checking 5/27

Modeling Computation

Computations are modeled using a state transition graph, also called
a Kripke structure

_({po,p2}
So
Kripke structure
A Kripke structure
M = (P, S,I, L, R) consists of:
» Set of atomic propositions P
» States S
» Initial states I C S
» Labeling L : S — 27 > P={po,p1,p2}, 5 = {s0, 51,52}
» Transition relation R C S x S > I={s0}

> L= {(80,{p0,p2}),. . }
> R:{(80,31)7(81,82),...}

Matt Fredrikson Intro. Model Checking 6/27

Kripke Structure: Intuition

» The atomic propositions
model relevant facts about
the system

» e.g., “the GPS is turned on”,
r =35, ...

» Transitions model the
behavior of the system
step-by-step

» The transition relation is total:
for every state s € S, there
exists s’ € S such that
(s,s') € R

Matt Fredrikson

{po, p2}
So

» P ={po,p1,p2},S = {s0, 51,52}
> I={s0}

» L ={(s0,{po,p2}),-.-}

> R:{(So,sl),(ShSQ)v"'}

Intro. Model Checking 7/27

Example: Kripke Structure

>

>

>
—

>

S = {so, 51, 52, 83}

P = {coin, select, coffee, tea}
I = {8()}

Label function:

(s0, {coin}),
(s1, {select}),
(s2, {coffee}),
(s3. {tea})

L=

v

Transition relation:

Matt Fredrikson Intro. Model Checking 8/27

Example: Microwave Transition System

Matt Fredrikson Intro. Model Checking 9/27

Example: Deriving a Kripke Structure

Suppose we have a system with variables z, y that range over {0, 1}
It begins withz =1,y =1

The system updates its state by executing:
x = (z +y) mod 2

Define the Kripke structure:
» §={0,1} x {0,1}
» P={x=0,z=1,y=0,y =1}
I={(1,1)}
R={((1,1),(0,1)),((0,1),(1,1)),((1,0), (1,0)), ((0,0), (0,0)) }
L((a,b)) ={z = a,y = b}

v

v

v

Matt Fredrikson Intro. Model Checking 10/27

Modeling Computations

Computations correspond to traversals of a Kripke structure

Formally, a path 7 is an infinite sequence of states sys; ... where
for0 < %, (Si78i+1) €ER

Often, we’ll write 7% to denote the suffix starting at 4

The trace of 7 is the sequence of corresponding labels

The set of all paths forms an infinite computation tree
» Tree nodes represent system states
» Edges represent transitions
» Tree paths represent computations (one for each Kripke path)
» Branching results from non-determinism

Matt Fredrikson Intro. Model Checking 11/27

We've defined the model, what are we checking?

So far, we've dealt with properties on input/output behavior
» When P(input) holds, Q(output) does too
» Expressed using Hoare logic, first-order assertions

In this setting, we're interested in the transition behavior over time

To express these, we’ll use temporal logic

Matt Fredrikson Intro. Model Checking 12/27

Temporal Logic: Intuition

In first-order logic, we evaluate formulas in a fixed interpretation
» The interpretation defines all facts about one particular “world”

» E.g., the predicate polls_open is either true or false in any world

In a temporal logic, formulas are evaluated in a set of worlds

» E.g., polls_open is true in all worlds in which the date is
November 9 in an election year

» The set of worlds define moments in time
» Temporal operators that refer to different moments in time

» eventually reach a safe state; an error state is never reached
For us, each moment in time corresponds to a path location

Facts about the world come from the labeling function

Matt Fredrikson Intro. Model Checking 13/27

Temporal Operators

There are five basic temporal operators we’ll use

Xp p holds at the next point in time

Fp p holds at some future point in time
Gp p holds at every point in time

p U g | pholds until ¢ holds

p R q | preleases ¢: ¢ holds until p (if it ever does)

These operators describe properties of a path =

Matt Fredrikson Intro. Model Checking 14 /27

Examples: Temporal Operators

» Lunch will come eventually
F lunch

v

Requests are served until the connection terminates (if ever)
terminate R serve

v

Each request is always followed by an eventual response
G (request — F response)

v

p holds only finitely often
FG—p

v

Whenever the start button is pressed, the oven heats eventually
G (start — F heat)

Matt Fredrikson Intro. Model Checking 15/27

Linear Temporal Logic

These operators allow us to define linear temporal logic (LTL)

LTL contains state formulas and path formulas

State Formula

The syntax of state formulas is given by:

fuo= TlL|p|=flfiVialfirf

State formulas correspond to facts that hold in a particular state.

Path Formula
An LTL formula is composed of the following elements:

gu= flogloVglgng | Xg|Fg[GglgUga|g Ry,
Path formulas are evaluated along a particular path.

Matt Fredrikson Intro. Model Checking 16/27

LTL: Semantics

The semantic judgement that we use is of the form:
M,mkEg
Read: “g holds along path = in Kripke structure M”

We’ll also use M, s f for path formulas, where s is a state in M

The semantics of path formulas is straightforward

M,sEp < peL(s)

M,sE~f & MsEf
M,S'=f1\/f2 = M,S'=f10rM,S'=f2
M35'=f1/\f2 < MaSFflandMaSFfQ

Matt Fredrikson Intro. Model Checking 17/27

LTL: Semantics (X operator)

Recall, X p asserts that p holds in the next state
We’ll replace p with an arbitrary path formula

Then, we define the meaning of X g to be:
M,nEXg & M1'kEg
(we’re beginning path indices at 0)

Sometimes, it helps to visualize the path:

g any any any

K O OO OO

Matt Fredrikson Intro. Model Checking 18/27

LTL: Semantics (F operator)

F g asserts that g holds at some point in the future

Formally: A
M,neEFg <& existsi>0,M,n"kEg

The following path satisfies F g:

DS S

Whereas this one doesn’t

~O0—0—0—0—0

Matt Fredrikson Intro. Model Checking 19/27

LTL: Semantics (G operator)

G g asserts that g holds globally into the future

Formally: ‘
M,reGg <« foralli>0,Mn' kg

The following path satisfies G g:
9 g g 9 9
—O0—0—0—0—0
Does this one?

36

Matt Fredrikson Intro. Model Checking 20/27

LTL: Semantics (U operator)

g1 U go asserts that g; holds until g, does
Formally:

exists i > 0, M, r' ,
M,mE g1 Ugo 0 =92

andforall 0 < j <i, M, 7 g

The following path satisfies g, U g-:

~O—0O—0—0—0

Does this one?

g1 g1, 92 g1 g1

O O—O—0O

Matt Fredrikson Intro. Model Checking 21/27

LTL: Semantics (R operator)

g1 R go asserts that g, releases ¢,
Itis the dualto U

Formally:
forall i > 0, if for every j < i, M, 77 ¥ g,

MrEgnRep < then M, ' E go

The following path satisfies g; R go:

g2 g2 g2 g1, 92 T
—O—0O—0O0—0—0
So does this one:

RS W

Matt Fredrikson Intro. Model Checking 22/27

Example: Temporal Semantics

Write example paths that satisfy these formulas.

FGp

—O—O—0—0—0
G((p—Fq

—O—0—0—0—0

Matt Fredrikson Intro. Model Checking 23/27

Example: Temporal Semantics

Write counterexample paths for satisfy these formulas.

G(p—Fq
—O—0O0—0O0—0O—0
F(p—XXgq)

Matt Fredrikson Intro. Model Checking

Satisfiability and Validity of LTL

An LTL formula g is satisfiable if and only if:
there exists M where forevery rin M : M, 7 E g

If M, n | g for all 7, then M is a model of g

An LTL formula g is valid if and only if:
forall M,minM: M,7mEg

These notions are similar to sat. and validity we’ve discussed before

But notice: to be sat, there must be a model where for every T,
M,mEg

Hence, LTL universally quantifies over all paths in the model

Matt Fredrikson Intro. Model Checking 25/27

LTL Model Checking

LTL Model Checking
Given M and g, decide whether M is a model of g.

Formally, for M = (P, S, I, L, R), decide whether for each s, € I and
every path 7 starting from s,

M,mEg

Alternatively, given M = (P, S, I, L, R) find the states sy € I where:
for all 7 starting in so, M, 7 E g

If this set is not I, then find a path wcex Where:
M, meex # g

Teex IS Called a counterexample

Matt Fredrikson Intro. Model Checking 26/27

Next Lecture

» Continue discussing model checking

» More on temporal logic
» Useful temporal properties

Matt Fredrikson Intro. Model Checking 27/27

